Skip to main content

Thioester-Containing Proteins of Protostomes

  • Chapter
Innate Immunity

Part of the book series: Infectious Disease ((ID))

  • 374 Accesses

Abstract

The family of thioester-containing proteins (TEPs) appeared early in evolution: members of this family have been found in such diverse organisms as nematodes, insects, molluscs, fish, birds, and mammals (1). They are characterized by homologous sequence features, including a unique intrachain β-cysteinyl-γ-glutamyl thioester, and a propensity for multiple conformationally sensitive binding interactions (2). The presence of the highly reactive thioester bond renders the molecules unstable at elevated temperature and results in their autocatalytic fragmentation at the thioester site (3,4). Moreover, when exposed, the thioester bond is readily hydrolyzed by water. To avoid precocious inactivation, the thioester in the native protein is protected by a shielded environment (5,6). Proteolytic cleavage exposes a previously hidden thioester bond, which mediates covalent attachment through transacylation (7). The reactivity associated with the thioester is one of the defining features of this protein family. Another important feature is the propensity for diverse conformationally sensitive interactions with other molecules. This includes covalent attachment to activating self and nonself surfaces (complement factors), covalent or noncovalent crosslinking to the attacking proteases [α2-macroglobulins (α2Ms)], interactions with receptors (complement factors and α2Ms), and binding of cleavage-generated products to corresponding receptors (anaphylatoxins of complement factors). In addition, α2Ms bind cytokines and growth factors and regulate their clearance and activity (8,9).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nonaka M. Origin and evolution of the complement system. In: Du Pasquier L, Litman GW (eds.). Origin and Evolution of the Vertebrate Immune System, vol 248. New York: Springer-Verlag, 2000, pp. 37–50.

    Chapter  Google Scholar 

  2. Chu CT, Pizzo SV. Alpha 2-macroglobulin, complement, and biologic defense: antigens, growth factors, microbial proteases, and receptor ligation. Lab Invest 1994;71:792–812.

    PubMed  CAS  Google Scholar 

  3. Harpel PC, Hayes MB, Hugli TE. Heat-induced fragmentation of human alpha 2-macroglobulin. J Biol Chem 1979;254:8669–8678.

    PubMed  CAS  Google Scholar 

  4. Howard JB. Methylamine reaction and denaturation-dependent fragmentation of complement component 3. Comparison with alpha2-macroglobulin. J Biol Chem 1980;255:7082–7084.

    PubMed  CAS  Google Scholar 

  5. Salvesen GS, Sayers CA, Barrett AJ. Further characterization of the covalent linking reaction of alpha 2-macroglobulin. Biochem J 1981;195:453–461.

    PubMed  CAS  Google Scholar 

  6. Sim RB, Sim E. Autolytic fragmentation of complement components C3 and C4 under denaturing conditions, a property shared with alpha 2-macroglobulin. Biochem J 1981;193:129–141.

    PubMed  CAS  Google Scholar 

  7. Law SK, Dodds AW. The internal thioester and the covalent binding properties of the complement proteins C3 and C4. Protein Sci 1997;6:263–274.

    Article  PubMed  CAS  Google Scholar 

  8. Lysiak JJ, Hussaini IM, Webb DJ, et al. Alpha 2-macroglobulin functions as a cytokine carrier to induce nitric oxide synthesis and cause nitric oxide-dependent cytotoxicity in the RAW 264.7 macrophage cell line. J Biol Chem 1995;270:21919–21927.

    Article  PubMed  CAS  Google Scholar 

  9. Webb DJ, Wen J, Lysiak JJ, et al. Murine alpha-macroglobulins demonstrate divergent activities as neutralizers of transforming growth factor-beta and as inducers of nitric oxide synthesis. A possible mechanism for the endotoxin insensitivity of the alpha2-macroglobulin gene knock-out mouse. J Biol Chem 1996;271:24982–24988.

    Article  PubMed  CAS  Google Scholar 

  10. Del Rio-Tsonis K, Tsonis PA, Zarkadis IK, Tsagas AG, Lambris JD. Expression of the third component of complement, C3, in regenerating limb blastema cells of urodeles. J Immunol 1998;161:6819–6824.

    PubMed  Google Scholar 

  11. Mastellos D, Papadimitriou JC, Franchini S, Tsonis PA, Lambris JD. A novel role of complement: mice deficient in the fifth component of complement (C5) exhibit impaired liver regeneration. J Immunol 2001;166:2479–2486.

    PubMed  CAS  Google Scholar 

  12. Llanos RJ, Whitacre CM, Miceli DC. Potential involvement of C(3) complement factor in amphibian fertilization. Comp Biochem Physiol A Mol Integr Physiol 2000;127:29–38.

    Article  PubMed  CAS  Google Scholar 

  13. McMahon MJ, Bowen M, Mayer AD, Cooper EH. Relation of alpha 2-macroglobulin and other antiproteases to the clinical features of acute pancreatitis. Am J Surg 1984;147:164–170.

    Article  PubMed  CAS  Google Scholar 

  14. Umans L, Serneels L, Overbergh L, et al. Targeted inactivation of the mouse alpha 2-macroglobulin gene. J Biol Chem 1995;270:19778–19785.

    Article  PubMed  CAS  Google Scholar 

  15. Umans L, Serneels L, Overbergh L, Stas L, Van Leuven F. Alpha2-macroglobulin- and murinoglobulin-1-deficient mice. A mouse model for acute pancreatitis. Am J Pathol 1999;155:983–993.

    Article  PubMed  CAS  Google Scholar 

  16. Nonaka M. Origin and evolution of the complement system. Curr Top Microbiol Immunol 2000;248:37–50.

    Article  PubMed  CAS  Google Scholar 

  17. Nonaka M. Evolution of the complement system. Curr Opin Immunol 2001;13:69–73.

    Article  PubMed  CAS  Google Scholar 

  18. Smith LC, Azumi K, Nonaka M. Complement systems in invertebrates. The ancient alternative and lectin pathways. Immunopharmacology 1999;42:107–120.

    Article  PubMed  CAS  Google Scholar 

  19. Smith LC, Clow LA, Terwilliger DP. The ancestral complement system in sea urchins. Immunol Rev 2001;180:16–34.

    Article  PubMed  CAS  Google Scholar 

  20. Starkey PM, Barrett AJ. Inhibition by alpha-macroglobulin and other serum proteins. Biochem J 1973;131:823–831.

    PubMed  CAS  Google Scholar 

  21. Barrett AJ, Starkey PM. The interaction of alpha 2-macroglobulin with proteinases. Characteristics and specificity of the reaction, and a hypothesis concerning its molecular mechanism. Biochem J 1973;133:709–724.

    PubMed  CAS  Google Scholar 

  22. Starkey PM, Barrett AJ. Evolution of alpha 2-macroglobulin. The demonstration in a variety of vertebrate species of a protein resembling human alpha 2-macroglobulin. Biochem J 1982;205:91–95.

    PubMed  CAS  Google Scholar 

  23. Quigley JP, Armstrong PB. An endopeptidase inhibitor, similar to mammalian alpha 2-macroglobulin, detected in the hemolymph of an invertebrate, Limulus polyphemus. J Biol Chem 1983;258:7903–7906.

    PubMed  CAS  Google Scholar 

  24. Swarnakar S, Melchior R, Quigley JP. Regulation of the plasma cytolytic pathway of Limulus polyphemus α2-macroglobulin. Biol Bull 1995;189:226–227.

    CAS  Google Scholar 

  25. Iwaki D, Kawabata S, Miura Y, et al. Molecular cloning of Limulus alpha 2-macroglobulin. Eur J Biochem 1996;242:822–831.

    Article  PubMed  CAS  Google Scholar 

  26. Armstrong PB, Quigley JP. The Limulus blood cell secretes α2-macroglobulin when activated. Biol Bull 1990;178:137–143.

    Article  CAS  Google Scholar 

  27. Quigley JP, Armstrong PB. A homologue of alpha 2-macroglobulin purified from the hemolymph of the horseshoe crab Limulus polyphemus. J Biol Chem 1985;260:12715–12719.

    PubMed  CAS  Google Scholar 

  28. Enghild JJ, Thogersen IB, Salvesen G, et al. Alpha-macroglobulin from Limulus polyphemus exhibits proteinase inhibitory activity and participates in a hemolytic system. Biochemistry 1990;29:10070–10080.

    Article  PubMed  CAS  Google Scholar 

  29. Armstrong PB, Mangel WF, Wall JS, et al. Structure of alpha 2-macroglobulin from the arthropod Limulus polyphemus. J Biol Chem 1991;266:2526–2530.

    PubMed  CAS  Google Scholar 

  30. Bowen ME, Armstrong PB, Quigley JP, Gettins PG. Comparison of Limulus alpha-macroglobulin with human alpha2-macroglobulin: thiol ester characterization, subunit organization, and conformational change. Arch Biochem Biophys 1997;337:191–201.

    Article  PubMed  CAS  Google Scholar 

  31. Levashina EA, Moita LF, Blandin S, et al. Conserved role of a complement-like protein in phagocytosis revealed by dsRNA knockout in cultured cells of the mosquito, Anopheles gambiae. Cell 2001;104:709–718.

    Article  PubMed  CAS  Google Scholar 

  32. Armstrong PB, Quigley JP. Limulus alpha 2-macroglobulin. First evidence in an invertebrate for a protein containing an internal thiol ester bond. Biochem J 1987;248:703–707.

    PubMed  CAS  Google Scholar 

  33. Dodds AW, Law SK. Structural basis of the binding specificity of the thioester-containing proteins, C4, C3 and alpha-2-macroglobulin. Complement 1988;5:89–97.

    PubMed  CAS  Google Scholar 

  34. Sepp A, Dodds AW, Anderson MJ, et al. Covalent binding properties of the human complement protein C4 and hydrolysis rate of the internal thioester upon activation. Protein Sci 1993;2:706–716.

    Article  PubMed  CAS  Google Scholar 

  35. Armstrong PB, Armstrong MT, Quigley JP. Involvement of alpha2-macroglobulin and C-reactive protein in a complement-like hemolytic system in the arthropod Limulus polyphemus. Mol Immunol 1993;30:929–934.

    Article  PubMed  CAS  Google Scholar 

  36. Armstrong PB, Melchior R, Swarnakar S, Quigley JP. Alpha2-macroglobulin does not function as a C3 homologue in the plasma hemolytic system of the American horseshoe crab, Limulus. Mol Immunol 1998;35:47–53.

    PubMed  CAS  Google Scholar 

  37. Armstrong PB, Misquith S, Srimal S, Melchior R, Quigley JP. Identification of limulin as a major cytolytic protein in the plasma of the American horseshoe crab, Limulus polyphemus. Biol Bull 1994;187:227–228.

    PubMed  CAS  Google Scholar 

  38. Armstrong PB, Swarnakar S, Srimal S, et al. A cytolytic function for a sialic acid-binding lectin that is a member of the pentraxin family of proteins. J Biol Chem 1996;271:14717–14721.

    Article  PubMed  CAS  Google Scholar 

  39. Swarnakar S, Asokan R, Quigley JP, Armstrong PB. Binding of alpha2-macroglobulin and limulin: regulation of the plasma haemolytic system of the American horseshoe crab, Limulus. Biochem J 2000;347:679–685.

    Article  PubMed  CAS  Google Scholar 

  40. Sottrup-Jensen L. Alpha-macroglobulins: structure, shape, and mechanism of proteinase complex formation. J Biol Chem 1989;264:11539–11542.

    PubMed  CAS  Google Scholar 

  41. Quigley JP, Ikai A, Arakawa H, Osada T, Armstrong PB. Reaction of proteinases with alpha 2-macroglobulin from the American horseshoe crab, Limulus. J Biol Chem 1991;266:19426–19431.

    PubMed  CAS  Google Scholar 

  42. Melchior R, Quigley JP, Armstrong PB. Alpha 2-macroglobulin-mediated clearance of proteases from the plasma of the American horseshoe crab, Limulus polyphemus. J Biol Chem 1995;270:13496–13502.

    Article  PubMed  CAS  Google Scholar 

  43. Dolmer K, Husted LB, Armstrong PB, Sottrup-Jensen L. Localisation of the major reactive lysine residue involved in the self-crosslinking of proteinase-activated Limulus alpha 2-macroglobulin. FEBS Lett 1996;393:37–40.

    Article  PubMed  CAS  Google Scholar 

  44. Armstrong PB, Quigley JP. Alpha2-macroglobulin: an evolutionarily conserved arm of the innate immune system. Dev Comp Immunol 1999;23:375–390.

    Article  PubMed  CAS  Google Scholar 

  45. Barrett AJ, Brown MA, Sayers CA. The electrophoretically ‘slow’ and ‘fast’ forms of the alpha2-macroglobulin molecule. Biochem J 1979;181:401–418.

    PubMed  CAS  Google Scholar 

  46. Van Leuven F, Marynen P, Sottrup-Jensen L, Cassiman JJ, Van den Berghe H. The receptor-binding domain of human α2-macroglobulin. Isolation after limited proteolysis with a bacterial proteinase. J Biol Chem 1986;261:11369–11373.

    PubMed  Google Scholar 

  47. Armstrong PB, Levin J, Quigley JP. Role of endogenous protease inhibitors in the regulation of the blood clotting system of the horseshoe crab, Limulus polyphemus. Thromb Haemost 1984;52:117–120.

    PubMed  CAS  Google Scholar 

  48. Iwanaga S, Kawabata S, Muta T. New types of clotting factors and defense molecules found in horseshoe crab hemolymph: their structures and functions. J Biochem (Tokyo) 1998;123:1–15.

    Article  CAS  Google Scholar 

  49. Miura Y, Kawabata S, Iwanaga S. A Limulus intracellular coagulation inhibitor with characteristics of the serpin superfamily: purification, characterization and cDNA cloning. J Biol Chem 1994;269:542–547.

    PubMed  CAS  Google Scholar 

  50. Miura Y, Kawabata S, Wakamiya Y, Nakamura T, Iwanaga S. A Limulus intracellular coagulation inhibitor type 2. Purification, characterization, cDNA cloning, and tissue localization. J Biol Chem 1995;270:558–565.

    Article  PubMed  CAS  Google Scholar 

  51. Agarwala KL, Kawabata S, Miura Y, Kuroki Y, Iwanaga S. Limulus intracellular coagulation inhibitor type 3. Purification, characterization, cDNA cloning, and tissue localization. J Biol Chem 1996;271:23768–23774.

    Article  PubMed  CAS  Google Scholar 

  52. Iwanaga S, Morita T, Miyata T, et al. The Limulus Coagulation System Is Sensitive to Bacterial Endotoxins. Heidelberg: Verlag Chemie, 1983, pp. 365–382.

    Google Scholar 

  53. Muta T, Seki N, Takaki Y, et al. Horseshoe crab factor G: a new heterodimeric serine protease zymogen sensitive to (1 → 3)-beta-D-glucan. Adv Exp Med Biol 1996;389:79–85.

    Article  PubMed  CAS  Google Scholar 

  54. Asokan R, Armstrong MT, Armstrong PB. Association of alpha2-macroglobulin with the coagulin clot in the American horseshoe crab, Limulus polyphemus: a potential role in stabilization from proteolysis. Biol Bull 2000;199:190–192.

    Article  PubMed  CAS  Google Scholar 

  55. Ashida M. The prophenoloxidase cascade in insect immunity. Res Immunol 1990;141:908–910.

    PubMed  CAS  Google Scholar 

  56. Nagai T, Kawabata S. A link between blood coagulation and prophenol oxidase activation in arthropod host defense. J Biol Chem 2000;275:29264–29267.

    Article  PubMed  CAS  Google Scholar 

  57. Nagai T, Osaki T, Kawabata S. Functional conversion of hemocyanin to phenoloxidase by horseshoe crab antimicrobial peptides. J Biol Chem 2001;276:27166–27170.

    Article  PubMed  CAS  Google Scholar 

  58. Kopacek P, Weise C, Saravanan T, Vitova K, Grubhoffer L. Characterization of an alphamacroglobulin-like glycoprotein isolated from the plasma of the soft tick Ornithodoros moubata. Eur J Biochem 2000;267:465–475.

    Article  PubMed  CAS  Google Scholar 

  59. Dodds AW, Law SK. The phylogeny and evolution of the thioester bond-containing proteins C3, C4 and alpha 2-macroglobulin. Immunol Rev 1998;166:15–26.

    Article  PubMed  CAS  Google Scholar 

  60. Starkey PM, Barrett AJ. Evolution of alpha 2-macroglobulin. The structure of a protein homologous with human alpha 2-macroglobulin from plaice (Pleuronectes platessa L.) plasma. Biochem J 1982;205:105–115.

    PubMed  CAS  Google Scholar 

  61. Mutsuro J, Nakao M, Fujiki K, Yano T. Multiple forms of alpha2-macroglobulin from a bony fish, the common carp (Cyprinus carpio): striking sequence diversity in functional sites. Immunogenetics 2000;51:847–855.

    Article  PubMed  CAS  Google Scholar 

  62. Spycher SE, Arya S, Isenman DE, Painter RH. A functional, thioester-containing alpha 2-macroglobulin homologue isolated from the hemolymph of the American lobster (Homarus americanus). J Biol Chem 1987;262:14606–14611.

    PubMed  CAS  Google Scholar 

  63. Hergenhahn HG, Hall M, Soderhall K. Purification and characterization of an alpha 2-macroglobulin-like proteinase inhibitor from plasma of the crayfish Pacifastacus leniusculus. Biochem J 1988;255:801–806.

    PubMed  CAS  Google Scholar 

  64. Stocker W, Breit S, Sottrup-Jensen L, Zwilling R. Alpha2-macroglobulin from hemolymph of the freshwater crayfish Astacus astacus. Comp Biochem Physiol B 1991;98:501–509.

    Article  PubMed  CAS  Google Scholar 

  65. Hall M, Soderhall K, Sottrup-Jensen L. Amino acid sequence around the thiolester of alpha 2-macroglobulin from plasma of the crayfish, Pacifastacus leniusculus. FEBS Lett 1989;254:111–114.

    Article  PubMed  CAS  Google Scholar 

  66. Liang Z, Lindblad P, Beauvais A, et al. Crayfish alpha-macroglobulin and 76-kDa protein: their biosynthesis and subcellular localization of the 76-kDa protein. J Insect Physiol 1992;38:987–995.

    Article  CAS  Google Scholar 

  67. Thogersen IB, Salvesen G, Brucato FH, Pizzo SV, Enghild JJ. Purification and characterization of an alpha-macroglobulin proteinase inhibitor from the mollusc Octopus vulgaris. Biochem J 1992;285:521–527.

    PubMed  CAS  Google Scholar 

  68. Bender RC, Fryer SE, Bayne CJ. Proteinase inhibitory activity in the plasma of a mollusc: evidence for the presence of alpha-macroglobulin in Biomphalaria glabrata. Comp Biochem Physiol B 1992;102:821–824.

    Article  PubMed  CAS  Google Scholar 

  69. Bender RC, Bayne CJ. Purification and characterization of a tetrameric alpha-macroglobulin proteinase inhibitor from the gastropod mollusc Biomphalaria glabrata. Biochem J 1996;316:893–900.

    PubMed  CAS  Google Scholar 

  70. Yigzaw Y, Gielens C, Preaux G. Isolation and characterization of an alpha-macroglobulin from the gastropod mollusc Helix pomatia with tetrameric structure and preserved activity after methylamine treatment. Biochim Biophys Acta 2001;1545:104–113.

    Article  PubMed  CAS  Google Scholar 

  71. Hoffmann JA, Kafatos FC, Janeway CA, Ezekowitz RA. Phylogenetic perspectives in innate immunity. Science 1999;284:1313–1318.

    Article  PubMed  CAS  Google Scholar 

  72. Lagueux M, Perrodou E, Levashina EA, Capovilla M, Hoffmann JA. Constitutive expression of a complement-like protein in Toll and JAK gain-of-function mutants of Drosophila. Proc Natl Acad Sci USA 2000;97:11427–11432.

    Article  PubMed  CAS  Google Scholar 

  73. Crowley TE, Hoey T, Liu JK, et al. A new factor related to TATA-binding protein has highly restricted expression patterns in Drosophila. Nature 1993;361:557–561.

    Article  PubMed  CAS  Google Scholar 

  74. Jiang H, Kanost MR. Characterization and functional analysis of 12 naturally occurring reactive site variants of serpin-1 from Manduca sexta. J Biol Chem 1997;272:1082–1087.

    Article  PubMed  CAS  Google Scholar 

  75. Volanakis JE. Transcriptional regulation of complement genes. Annu Rev Immunol 1995;13:277–305.

    Article  PubMed  CAS  Google Scholar 

  76. Anderson KV. Toll signaling pathways in the innate immune response. Curr Opin Immunol 2000;12:13–19.

    Article  PubMed  CAS  Google Scholar 

  77. Imler JL, Hoffmann JA. Signaling mechanisms in the antimicrobial host defense of Drosophila. Curr Opin Microbiol 2000;3:16–22.

    Article  PubMed  CAS  Google Scholar 

  78. Qiu P, Pan PC, Govind S. A role for the Drosophila Toll/Cactus pathway in larval hematopoiesis. Development 1998;125:1909–1920.

    PubMed  CAS  Google Scholar 

  79. Mathey-Prevot B, Perrimon N. Mammalian and Drosophila blood: JAK of all trades? Cell 1998;92:697–700.

    Article  PubMed  CAS  Google Scholar 

  80. Dimopoulos G, Casavant TL, Chang S, et al. Anopheles gambiae pilot gene discovery project: identification of mosquito innate immunity genes from expressed sequence tags generated from immune-competent cell lines. Proc Natl Acad Sci USA 2000;97:6619–6624.

    Article  PubMed  CAS  Google Scholar 

  81. Oduol F, Xu J, Niare O, Natarajan R, Vernick KD. Genes identified by an expression screen of the vector mosquito Anopheles gambiae display differential molecular immune response to malaria parasites and bacteria. Proc Natl Acad Sci USA 2000;97:11397–11402.

    Article  PubMed  CAS  Google Scholar 

  82. Müller HM, Dimopoulos G, Blass C, Kafatos FC. A hemocyte-like cell line established from the malaria vector Anopheles gambiae expresses six prophenoloxidase genes. J Biol Chem 1999;274:11727–11735.

    Article  PubMed  Google Scholar 

  83. Catteruccia F, Nolan T, Blass C, et al. Toward Anopheles transformation: Minos element activity in anopheline cells and embryos. Proc Natl Acad Sci USA 2000;97:2157–2162.

    Article  PubMed  CAS  Google Scholar 

  84. Dimopoulos G, Müller HM, Kafatos FC. How does Anopheles gambiae kill malaria parasites? Parassitologia 1999;41:169–175.

    PubMed  CAS  Google Scholar 

  85. Weis JJ, Law SK, Levine RP, Cleary PP. Resistance to phagocytosis by group A streptococci: failure of deposited complement opsonins to interact with cellular receptors. J Immunol 1985;134:500–505.

    PubMed  CAS  Google Scholar 

  86. Touray MG, Warburg A, Laughinghouse A, Krettli AU, Miller LH. Developmentally regulated infectivity of malaria sporozoites for mosquito salivary glands and the vertebrate host. J Exp Med 1992;175:1607–1612.

    Article  PubMed  CAS  Google Scholar 

  87. Margos G, Navarette S, Butcher G, et al. Interaction between host complement and mosquitomidgut-stage Plasmodium berghei. Infect Immun 2001;69:5064–5071.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Levashina, E.A., Blandin, S., Moita, L.F., Lagueux, M., Kafatos, F.C. (2003). Thioester-Containing Proteins of Protostomes. In: Ezekowitz, R.A.B., Hoffmann, J.A. (eds) Innate Immunity. Infectious Disease. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-320-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-320-0_9

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9746-5

  • Online ISBN: 978-1-59259-320-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics