Skip to main content

Antimicrobial Peptides

  • Chapter
Innate Immunity

Part of the book series: Infectious Disease ((ID))

  • 372 Accesses

Abstract

This review centers on the endogenous antimicrobial polypeptides of humans. Such molecules, which typically contain fewer than 100 amino acids, occur in many types of cells and secretions and are increasingly recognized as ancient and integral components of the innate immune systems of all living organisms. They are generally cationic (positively charged) and amphipathic, an overall configuration that facilitates their binding and insertion into the anionic cell walls and phospholipid membranes of microbes. Analogous peptides exist in vertebrates, invertebrates, plants, and protozoa. For example, several antimicrobial molecules structurally related to granulysin (an αhelical antimicrobial peptide of human T cells) (1) have been purified from amoebae, including the parasite Entamoeba histolytica (2) and the free-living slime mold Dictyostelium discoides (3). Antimicrobial peptides are also produced by some prokaryotes (4) and even by archaea (5). Microbe-made antimicrobial peptides often contain extensive posttranslational modifications or “exotic” amino acids not found in the antimicrobial peptides of animals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Krensky AM, Okada S, Clayberger C, Kumar J. Granulysin: a novel antimicrobial. Expert Opin Invest Drugs 2001;10:321–329.

    Article  Google Scholar 

  2. Leippe M. Antimicrobial and cytolytic polypeptides of amoeboid protozoa—effector molecules of primitive phagocytes. Dev Comp Immunol 1999;23:267–279.

    Article  PubMed  CAS  Google Scholar 

  3. Zhai Y, Saier MH Jr. The amoebapore superfamily. Biochim Biophys Acta 2000;1469:87–99.

    Article  PubMed  CAS  Google Scholar 

  4. Sablon E, Contreras B, Vandamme E. Antimicrobial peptides of lactic acid bacteria: mode of action, genetics and biosynthesis. Adv Biochem Eng Biotechnol 2000;68:21–60.

    PubMed  CAS  Google Scholar 

  5. Haseltine C, Hill T, Montalvo-Rodriguez R, et al. Secreted eutyarchaeal microhalocins kill hyperthermophilic crenarchaea. J Bacteriol 2001;183:287–291.

    Article  PubMed  CAS  Google Scholar 

  6. Benz R. Porin from bacterial and mitochondrial outer membranes. CRC Crit Rev Biochem 1985;19:145–190.

    Article  PubMed  CAS  Google Scholar 

  7. Hancock RE, Bell A. Antibiotic uptake into gram-negative bacteria. Eur J Clin Microbiol Infect Dis 1988;7:713–720.

    Article  PubMed  CAS  Google Scholar 

  8. Shai Y. Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochim Biophys Acta 1999;1462:55–70.

    Article  PubMed  CAS  Google Scholar 

  9. Ludtke SJ, He K, Heller WT, et al. Membrane pores induced by magainin. Biochemistry 1996;35:13723–13728.

    Article  PubMed  CAS  Google Scholar 

  10. Higashimoto Y, Kodama H, Jelokhani-Niaraki M, Kato F, Kondo M. Structure-function relationship of model Aib-containing peptides as ion transfer intermembrane templates. J Biochem (Tokyo) 1999;125:705–712.

    Article  CAS  Google Scholar 

  11. Hara T, Kodama H, Kondo M, et al. Effects of peptide dimerization on pore formation: antiparallel disulfide-dimerized magainin 2 analogue. Biopolymers 2001;58:437–446.

    Article  PubMed  CAS  Google Scholar 

  12. Lehrer RI, Barton A, Daher KA, Harwig SS, Ganz T, Selsted ME. Interaction of human defensins with Escherichia coli. Mechanism of bactericidal activity. J Clin Invest 1989;84:553–561.

    Article  PubMed  CAS  Google Scholar 

  13. Wimley WC, Selsted ME, White SH. Interactions between human defensins and lipid bilayers: evidence for formation of multimeric pores. Protein Sci 1994;3:1362–1373.

    Article  PubMed  CAS  Google Scholar 

  14. Wilkins DK, Grimshaw SB, Receveur V, et al. Hydrodynamic radii of native and denatured proteins measured by pulse field gradient NMR techniques. Biochemistry 1999;38:16424–16431.

    Article  PubMed  CAS  Google Scholar 

  15. Kobayashi S, Takeshima K, Park CB, Kim SC, Matsuzaki K. Interactions of the novel antimicrobial peptide buforin 2 with lipid bilayers: proline as a translocation promoting factor. Biochemistry 2000;39:8648–8654.

    Article  PubMed  CAS  Google Scholar 

  16. Ganz T, Lehrer RI. Defensins. Pharmacol Ther 1995;66:191–205.

    Article  CAS  Google Scholar 

  17. Lehrer RI, Lichtenstein AK, Ganz T. Defensins: antimicrobial and cytotoxic peptides of mammalian cells. Annu Rev Immunol 1993;11:105–128.

    Article  PubMed  CAS  Google Scholar 

  18. Tang YQ, Yuan J, Osapay G, et al. A cyclic antimicrobial peptide produced in primate leukocytes by the ligation of two truncated alpha-defensins [see comments]. Science 1999;286:498–502.

    Article  PubMed  CAS  Google Scholar 

  19. Hill CP, Yee J, Selsted ME, Eisenberg D. Crystal structure of defensin HNP-3, an amphiphilic dimer: mechanisms of membrane permeabilization. Science 1991;251:1481–1485.

    Article  PubMed  CAS  Google Scholar 

  20. Hoover DM, Rajashankar KR, Blumenthal R, et al. The structure of human beta-defensin-2 shows evidence of higher-order oligomerization. J Biol Chem 2000;275:32, 911–32,918.

    Google Scholar 

  21. Pardi A, Zhang XL, Selsted ME, Skalicky JJ, Yip PF. NMR studies of defensin antimicrobial peptides.2. Three-dimensional structures of rabbit NP-2 and human HNP-1. Biochemistry 1992;31:11357–11364.

    Article  PubMed  CAS  Google Scholar 

  22. Skalicky JJ, Selsted ME, Pardi A. Structure and dynamics of the neutrophil defensins NP-2, NP5, and HNP-1: NMR studies of amide hydrogen exchange kinetics. Proteins 1994;20:52–67.

    CAS  Google Scholar 

  23. Zimmermann GR, Legault P, Selsted ME, Pardi A. Solution structure of bovine neutrophil betadefensin-12: the peptide fold of the beta-defensins is identical to that of the classical defensins. Biochemistry 1995;34:13663–13671.

    Article  PubMed  CAS  Google Scholar 

  24. Sawai MV, Jia HP, Liu L, et al. The NMR structure of human beta-defensin-2 reveals a novel alpha-helical segment. Biochemistry 2001;40:3810–3816.

    Article  PubMed  CAS  Google Scholar 

  25. Zeya HI, Spitznagel JK. Antibacterial and enzymic basic proteins from leukocyte lysosomes: separation and identification. Science 1963;142:1085–1087.

    Article  PubMed  CAS  Google Scholar 

  26. Zeya HI, Spitznagel JK. Arginine-rich proteins of polymorphonuclear leukocyte lysosomes. Antimicrobial specificity and biochemical heterogeneity. J Exp Med 1968;127:927–941.

    Article  PubMed  CAS  Google Scholar 

  27. Selsted ME, Brown DM, DeLange RJ, Lehrer RI. Primary structures of MCP-1 and MCP-2, natural peptide antibiotics of rabbit lung macrophages. J Biol Chem 1983;258:14485–14489.

    PubMed  CAS  Google Scholar 

  28. Ganz T, Selsted ME, Szklarek D, et al. Defensins. Natural peptide antibiotics of human neutrophils. J Clin Invest 1985;76:1427–1435.

    Article  PubMed  CAS  Google Scholar 

  29. Selsted ME, Harwig SS, Ganz T, Schilling JW, Lehrer RI. Primary structures of three human neutrophil defensins. J Clin Invest 1985;76:1436–1439.

    Article  PubMed  CAS  Google Scholar 

  30. Gabay JE, Scott RW, Campanelli D, et al. Antibiotic proteins of human polymorphonuclear leukocytes. Proc Natl Acad Sci USA 1989;86:5610–5614.

    Article  PubMed  CAS  Google Scholar 

  31. Joiner KA, Ganz T, Albert J, Rotrosen D. The opsonizing ligand on Salmonella typhimurium influences incorporation of specific, but not azurophil, granule constituents into neutrophil phagosomes. J Cell Biol 1989;109:2771–2782.

    Article  PubMed  CAS  Google Scholar 

  32. Porter EM, Liu L, Oren A, Anton PA, Ganz T. Localization of human intestinal defensin 5 in Paneth cell granules. Infect Immun 1997;65:2389–2395.

    PubMed  CAS  Google Scholar 

  33. Porter EM, vanDam E, Valore EV, Ganz T. Broad-spectrum antimicrobial activity of human intestinal defensin 5. Infect Immun 1997;65:2396–2401.

    PubMed  CAS  Google Scholar 

  34. Jones DE, Bevins CL. Defensin-6 mRNA in human Paneth cells: implications for antimicrobial peptides in host defense of the human bowel. FEBS Lett 1993;315:187–192.

    Article  PubMed  CAS  Google Scholar 

  35. Jones DE, Bevins CL. Paneth cells of the human small intestine express an antimicrobial peptide gene. J Biol Chem 1992;267:23216–23225.

    PubMed  CAS  Google Scholar 

  36. Ouellette AJ. Paneth cells and innate immunity in the crypt microenvironment. Gastroenterology 1997;113:1779–1784.

    Article  PubMed  CAS  Google Scholar 

  37. Agerberth B, Charo J, Werr J, et al. The human antimicrobial and chemotactic peptides LL-37 and alpha-defensins are expressed by specific lymphocyte and monocyte populations. Blood 2000;96:3086–3093.

    PubMed  CAS  Google Scholar 

  38. Bensch KW, Raida M, Magert HJ, Schulz-Knappe P, Forssmann WG. hBD-1: a novel betadefensin from human plasma. FEBS Lett 1995;368:331–335.

    Article  PubMed  CAS  Google Scholar 

  39. Zhao CQ, Wang I, Lehrer RI. Widespread expression of beta-defensin HBD-1 in human secretory glands and epithelial cells. FEBS Lett 1996;396:319–322.

    Article  PubMed  CAS  Google Scholar 

  40. Harder J, Bartels J, Christophers E, Schroeder J-M. A peptide antibiotic from human skin. Nature 1997;387:861–862.

    Article  PubMed  CAS  Google Scholar 

  41. Harder J, Bartels J, Christophers E, Schroder JM. Isolation and characterization of human betadefensin-3, a novel human inducible peptide antibiotic. J Biol Chem 2001;276:5707–5713.

    Article  PubMed  CAS  Google Scholar 

  42. Valore EV, Park CH, Quayle AJ, et al. Human beta-defensin-1: an antimicrobial peptide of urogenital tissues. J Clin Invest 1998;101:1633–1642.

    Article  PubMed  CAS  Google Scholar 

  43. Bartoli E, Romano G. Measurement of reabsorption by single segments of the human nephron. J Nephrol 1999;12:275–287.

    PubMed  CAS  Google Scholar 

  44. Diamond G, Russell JP, Bevins CL. Inducible expression of an antibiotic peptide gene in lipopolysaccharide-challenged tracheal epithelial cells. Proc Natl Acad Sci USA 1996;93:5156–5160.

    Article  PubMed  CAS  Google Scholar 

  45. Schonwetter BS, Stolzenberg ED, Zasloff MA. Epithelial antibiotics induced at sites of inflammation. Science 1995;267:1645–1648.

    Article  PubMed  CAS  Google Scholar 

  46. Diamond G, Zasloff M, Eck H, et al. Tracheal antimicrobial peptide, a cysteine-rich peptide from mammalian tracheal mucosa: peptide isolation and cloning of a cDNA. Proc Natl Acad Sci USA 1991;88:3952–3956.

    Article  PubMed  CAS  Google Scholar 

  47. Dutis LA, Rademaker M, Ravensbergen B, et al. Inhibition of hBD-3, but not hBD-1 and hBD2, mRNA expression by corticosteroids. Biochem Biophys Res Commun 2001;280:522–525.

    Article  CAS  Google Scholar 

  48. Frohlich O, Po C, Young LG. Organization of the human gene encoding the epididymis-specific ep2 protein variants and its relationship to defensin genes. Biol Reprod 2001;64:1072–1079.

    Article  PubMed  CAS  Google Scholar 

  49. Li P, Chan HC, He B, et al. An antimicrobial peptide gene found in the male reproductive system of rats. Science 2001;291:1783–1785.

    Article  PubMed  CAS  Google Scholar 

  50. Lung O, Kuo L, Wolfner MF. Drosophila males transfer antibacterial proteins from their accessory gland and ejaculatory duct to their mates. J Insect Physiol 2001;47:617–622.

    Article  PubMed  CAS  Google Scholar 

  51. Sitaram N, Subbalakshmi C, Krishnakumari V, Nagaraj R. Identification of the region that plays an important role in determining antibacterial activity of bovine seminalplasmin. FEBS Lett 1997;400:289–292.

    Article  PubMed  CAS  Google Scholar 

  52. Samakovlis C, Kylsten P, Kimbrell DA, Engstrom A, Hultmark D. The andropin gene and its product, a male-specific antibacterial peptide in Drosophila melanogaster. EMBO J 1991;10:163–169.

    PubMed  CAS  Google Scholar 

  53. Ganz T, Rayner JR, Valore EV, et al. The structure of the rabbit macrophage defensin genes and their organ-specific expression. J Immunol 1989;143:1358–1365.

    PubMed  CAS  Google Scholar 

  54. Ryan LK, Rhodes J, Bhat M, Diamond G. Expression of beta-defensin genes in bovine alveolar macrophages. Infect Immun 1998;66:878–881.

    PubMed  CAS  Google Scholar 

  55. Ogata K, Linzer BA, Zuberi RI, et al. Activity of defensins from human neutrophilic granulocytes against Mycobacterium avium-Mycobacterium intracellulare. Infect Immun 1992;60:4720–4725.

    PubMed  CAS  Google Scholar 

  56. Miyasaki KT, Bodeau AL, Ganz T, Selsted ME, Lehrer RI. In vitro sensitivity of oral, gramnegative, facultative bacteria to the bactericidal activity of human neutrophil defensins. Infect Immun 1990;58:3934–3940.

    PubMed  CAS  Google Scholar 

  57. Daher KA, Selsted ME, Lehrer RI. Direct inactivation of viruses by human granulocyte defensins. J Virol 1986;60:1068–1074.

    PubMed  CAS  Google Scholar 

  58. Lehrer RI, Ganz T, Szklarek D, Selsted ME. Modulation of the in vitro candidacidal activity of human neutrophil defensins by target cell metabolism and divalent cations. J Clin Invest 1988;81:1829–1835.

    Article  PubMed  CAS  Google Scholar 

  59. Lehrer RI, Szklarek D, Ganz T, Selsted ME. Correlation of binding of rabbit granulocyte peptides to Candida albicans with candidacidal activity. Infect Immun 1985;49:207–211.

    PubMed  CAS  Google Scholar 

  60. Higazi AA, Barghouti II, Abu-Much R. Identification of an inhibitor of tissue-type plasminogen activator-mediated fibrinolysis in human neutrophils. A role for defensin. J Biol Chem 1995;270:9472–9477.

    Article  PubMed  CAS  Google Scholar 

  61. Murphy CJ, Foster BA, Mannis MJ, Selsted ME, Reid TW. Defensins are mitogenic for epithelial cells and fibroblasts. J Cell Physiol 1993;155:408–413.

    Article  PubMed  CAS  Google Scholar 

  62. Singh A, Bateman A, Zhu QZ, et al. Structure of a novel human granulocyte peptide with antiACTH activity. Biochem Biophys Res Commun 1988;155:524–529.

    Article  PubMed  CAS  Google Scholar 

  63. Zhu QZ, Singh AV, Bateman A, Esch F, Solomon S. The corticostatic (anti-ACTH) and cytotoxic activity of peptides isolated from fetal, adult and tumor-bearing lung. J Steroid Biochem 1987;27:1017–1022.

    Article  PubMed  CAS  Google Scholar 

  64. Lehrer RI, Barton A, Ganz T. Concurrent assessment of inner and outer membrane permeabilization and bacteriolysis in E. coli by multiple-wavelength spectrophotometry. J Immunol Methods 1988;108:153–158.

    Article  PubMed  CAS  Google Scholar 

  65. Lichtenstein AK, Ganz T, Nguyen TM, Selsted ME, Lehrer RI. Mechanism of target cytolysis by peptide defensins. Target cell metabolic activities, possibly involving endocytosis, are crucial for expression of cytotoxicity. J Immunol 1988;140:2686–2694.

    PubMed  CAS  Google Scholar 

  66. Lichtenstein A, Ganz T, Selsted ME, Lehrer RI. In vitro tumor cell cytolysis mediated by peptide defensins of human and rabbit granulocytes. Blood 1986;68:1407–1410.

    PubMed  CAS  Google Scholar 

  67. White SH, Wimley WC, Selsted ME. Structure, function, and membrane integration of defensins. Curr Opin Struct Biol 1995;5:521–527.

    Article  PubMed  CAS  Google Scholar 

  68. Fujii G, Selsted ME, Eisenberg D. Defensins promote fusion and lysis of negatively charged membranes. Protein Sci 1993;2:1301–1312.

    Article  PubMed  CAS  Google Scholar 

  69. Kagan BL, Selsted ME, Ganz T, Lehrer RI. Antimicrobial defensin peptides form voltagedependent ion-permeable channels in planar lipid bilayer membranes. Proc Natl Acad Sci USA 1990;87:210–214.

    Article  PubMed  CAS  Google Scholar 

  70. Liu L, Zhao C, Heng HHQ, Ganz T. The human β**3-defensin-1 and a-defensins are encoded by adjacent genes: two peptide families with differing disulfide topology share a common ancestry. Genomics 1997;43:316–320.

    Article  PubMed  CAS  Google Scholar 

  71. Linzmeier R, Michaelson D, Liu L, Ganz T. The structure of neutrophil defensin genes. FEBS Lett 1993;321:267–273.

    Article  PubMed  CAS  Google Scholar 

  72. Sparkes RS, Kronenberg M, Heinzmann C, et al. Assignment of defensin gene(s) to human chromosome 8p23. Genomics 1989;5:240–244.

    Article  PubMed  CAS  Google Scholar 

  73. Zhao C, Nguyen T, Liu L, et al. Gallinacin-3, an inducible epithelial beta-defensin in the chicken. Infect Immun 2001;69:2684–2691.

    Article  PubMed  CAS  Google Scholar 

  74. Eisenhauer PB, Lehrer RI. Mouse neutrophils lack defensins. Infect Immun 1992;60:3446–3447.

    PubMed  CAS  Google Scholar 

  75. Huttner KM, Kozak CA, Bevins CL. The mouse genome encodes a single homolog of the antimicrobial peptide human beta-defensin 1. FEBS Lett 1997;413:45–49.

    Article  PubMed  CAS  Google Scholar 

  76. Morrison GM, Davidson DJ, Dorin JR. A novel mouse beta defensin, Defb2, which is upregulated in the airways by lipopolysaccharide. FEBS Lett 1999;442:112–116.

    Article  PubMed  CAS  Google Scholar 

  77. Bals R, Wang X, Meegalla RL, et al. Mouse beta-defensin 3 is an inducible anitimicrobial peptide expressed in the epithelia of multiple organs. Infect Immun 1999;67:3542–3547.

    PubMed  CAS  Google Scholar 

  78. Jia HP, Wowk SA, Schutte BC, et al. A novel murine beta-defensin expressed in tongue, esophagus, and trachea [In Process Citation]. J Biol Chem 2000;275:33314–33320.

    Article  PubMed  CAS  Google Scholar 

  79. Zhu QZ, Hu J, Mulay S, et al. Isolation and structure of corticostatin peptides from rabbit fetal and adult lung. Proc Natl Acad Sci USA 1988;85:592–596.

    Article  PubMed  CAS  Google Scholar 

  80. Tominaga T, Fukata J, Naito Y, et al. Effects of corticostatin-I on rat adrenal cells in vitro. J Endocrinol 1990;125:287–292.

    Article  PubMed  CAS  Google Scholar 

  81. Masera RG, Bateman A, Muscettola M, Solomon S, Angeli A. Corticostatins/defensins inhibit in vitro NK activity and cytokine production by human peripheral blood mononuclear cells. Regul Pept 1996;62:13–21.

    Article  PubMed  CAS  Google Scholar 

  82. Akbulut S, Byersdorfer CA, Larsen CP, et al. Expression of the melanocortin 5 receptor on rat lymphocytes. Biochem Biophys Res Commun 2001;281:1086–1092.

    Article  PubMed  CAS  Google Scholar 

  83. Yang D, Chen Q, Chertov O, Oppenheim JJ. Human neutrophil defensins selectively chemoattract naive T and immature dendritic cells. J Leukoc Biol 2000;68:9–14.

    PubMed  CAS  Google Scholar 

  84. Yang D, Chertov O, Bykovskaia SN, et al. Beta-defensins: linking innate and adaptive immunity through dendritic and T cell CCR6 [see comments]. Science 1999;286:525–528.

    Article  PubMed  CAS  Google Scholar 

  85. Ganz T, Metcalf JA, Gallin JI, Boxer LA, Lehrer RI. Microbicidal/cytotoxic proteins of neutrophils are deficient in two disorders: Chediak-Higashi syndrome and “specific” granule deficiency. J Clin Invest 1988;82:552–556.

    Article  PubMed  CAS  Google Scholar 

  86. Gallin JI, Fletcher MP, Seligmann BE, et al. Human neutrophil-specific granule deficiency: a model to assess the role of neutrophil-specific granules in the evolution of the inflammatory response. Blood 1982;59:1317–1329.

    PubMed  CAS  Google Scholar 

  87. Gombart AF, Shiohara M, Kwok SH, A et al. Neutrophil-specific granule deficiency: homozygous recessive inheritance of a frameshift mutation in the gene encoding transcription factor CCAAT/enhancer binding protein-epsilon. Blood 2001;97:2561–2567.

    Article  PubMed  CAS  Google Scholar 

  88. Wilson CL, Ouellette AJ, Satchell DP, et al. Regulation of intestinal alpha-defensin activation by the metalloproteinase matrilysin in innate host defense. Science 1999;286:113–117.

    Article  PubMed  CAS  Google Scholar 

  89. Ayabe T, Satchell DP, Wilson CL, et al. Secretion of microbicidal a-defensins by intestinal Paneth cells in response to bacteria. Nature Immunology 2000;1:113–118.

    Article  PubMed  CAS  Google Scholar 

  90. Charlet M, Chernysh S, Philippe H, et al. Innate immunity. Isolation of several cysteine-rich antimicrobial peptides from the blood of a mollusc, Mytilus edulis. J Biol Chem 1996;271:21808–21813.

    Article  PubMed  CAS  Google Scholar 

  91. Hoffmann JA, Hetru C. Insect defensins: inducible antibacterial peptides. Immunol Today 1992;13:411–415.

    Article  PubMed  CAS  Google Scholar 

  92. Hoffmann JA. Innate immunity of insects. Curr Opin Immunol 1995;7:4–10.

    Article  PubMed  CAS  Google Scholar 

  93. Meister M, Lemaitre B, Hoffmann JA. Antimicrobial peptide defense in Drosophila. Bioessays 1997;19:1019–1026.

    Article  PubMed  CAS  Google Scholar 

  94. Brokaert WF, Terras FR, Cammune BP, Osborn RW. Plant defensins: novel antimicrobial peptides as components of the host defense system. Plant Physiol 1995;108:1353–1358.

    Article  Google Scholar 

  95. Fehlbaum P, Bulet P, Michaut L, et al. Insect immunity. Septic injury of Drosophila induces the synthesis of a potent antifungal peptide with sequence homology to plant antifungal peptides. J Biol Chem 1994;269:33159–33163.

    PubMed  CAS  Google Scholar 

  96. Bulet P, Hetru C, Dimarcq JL, Hoffmann D. Antimicrobial peptides in insects; structure and function. Dev Comp Immunol 1999;23:329–344.

    Article  PubMed  CAS  Google Scholar 

  97. Couto MA, Liu L, Lehrer RI, Ganz T. Inhibition of intracellular Histopasma capsulatum replication by murine macrophages that produce human defensin. Infect Immun 1994;62:2375–2378.

    PubMed  CAS  Google Scholar 

  98. Kisich KO, Heifets L, Higgins M, Diamond G. Antimycobacterial agent based on mRNA encoding human beta-defensin 2 enables primary macrophages to restrict growth of Mycobacterium tuberculosis. Infect Immun 2001;69:2692–2699.

    Article  PubMed  CAS  Google Scholar 

  99. Zhang XH, Guo DJ, Zhang LM, Li WB, Sun YR. [The research on the expression of rabbit defensin (NP-1) gene in transgenic tomato]. Yi Chuan Xue Bao 2000;27:953–958.

    PubMed  CAS  Google Scholar 

  100. Zanetti M, Gennaro R, Romeo D. Cathelicidins: a novel protein family with a common proregion and a variable C-terminal antimicrobial domain. FEBS Lett 1995;374:1–5.

    Article  PubMed  CAS  Google Scholar 

  101. Prige ST, Mains RE, Eipper BA, Amzel LM. New insights into copper monooxygenases and peptide amidation: structure, mechanism and function. Cell Mol Life Sci 2000;57:1236–1259.

    Article  Google Scholar 

  102. Romeo D, Skerlavaj B, Bolognesi M, Gennaro R. Structure and bactericidal activity of an antibiotic dodecapeptide purified from bovine neutrophils. J Biol Chem 1988; 263: 9573–9575.

    PubMed  CAS  Google Scholar 

  103. Selsted ME, Novotny MJ, Morris WL, et al. Indolicidin, a novel bactericidal tridecapeptide amide from neutrophils. J Biol Chem 1992;267:4292–4295.

    PubMed  CAS  Google Scholar 

  104. Kokryakov VN, Harwig SS, Panyutich EA, et al. Protegrins: leukocyte antimicrobial peptides that combine features of corticostatic defensins and tachyplesins. FEBS Lett 1993;327:231–236.

    Article  PubMed  CAS  Google Scholar 

  105. Gennaro R, Skerlavaj B, Romeo D. Purification, composition, and activity of two bactenecins, antibacterial peptides of bovine neutrophils. Infect Immun 1989;57:3142–3146.

    PubMed  CAS  Google Scholar 

  106. Travis SM, Anderson NN, Forsyth WR, et al. Bactericidal activity of mammalian cathelicidinderived peptides. Infect Immun 2000;68:2748–2755.

    Article  PubMed  CAS  Google Scholar 

  107. Turner J, Cho Y, Dinh NN, Waring AJ, Lehrer RI. Activites of LL-37, a cathelin-associated antimicrobial peptide of human neutrophils. Antimicrob Agents Chemother 1998;42:2206–2214.

    PubMed  CAS  Google Scholar 

  108. Panytich A, Shi J, Boutz PL, Zhao C, Ganz T. Porcine polymorphonuclear leukocytes generate extracellular microbicidal activity by elastase-mediated activation of secreted proprotegrins. Infect Immun 1997;65:978–985.

    Google Scholar 

  109. Scocchi M, Skerlavaj B, Romeo D, Gennaro R. Proteolytic cleavage by neutrophil elastase converts inactive storage proforms to antibacterial bactenecins. Eur J Biochem 1992;209:589–595.

    Article  PubMed  CAS  Google Scholar 

  110. Zanetti M, Litteri L, Griffiths G, Gennaro R, Romeo D. Stimulus-induced maturation of probactenecins, precursors of neutrophil antimicrobial polypeptides. J Immunol 1991;146:4295–4300.

    PubMed  CAS  Google Scholar 

  111. Levy O, Weiss J, Zarember K, Ooi CE, Elsbach P. Antibacterial 15-kDa protein isoforms (p 15 s) are members of a novel family of leukocyte proteins. J Biol Chem 1993;268:6058–6063.

    PubMed  CAS  Google Scholar 

  112. Zarember K, Elsbach P, Shin-Kim K, Weiss J. p 15s (15–1W antimicrobial proteins) are stored in the secondary granules of rabbit granulocytes: implications for antibacterial synergy with the bactericidal/permeability-increasing protein in inflammatory fluids. Blood 1997;89:672–679.

    PubMed  CAS  Google Scholar 

  113. Hirata M, Shimomura Y, Yoshida M, et al. Characterization of a rabbit cationic protein (CAP18) with lipopolysaccharide-inhibitory activity. Infect Immun 1994;62:1421–1426.

    PubMed  CAS  Google Scholar 

  114. Larrick JW, Hirata M, Balint RF, et al. Human CAP18: a novel antimicrobial lipopolysaccharide-binding protein. Infect Immun 1995;63:1291–1297.

    PubMed  CAS  Google Scholar 

  115. Cowland JB, Johnsen AH, Borregaard N. hCAP-18, a cathelin/pro-bactenecin-like protein of human neutrophil specific granules. FEBS Lett 1995;368:173–176.

    Article  PubMed  CAS  Google Scholar 

  116. Gudmundsson GH, Magnusson KP, Chowdhary BP, et al. Structure of the gene for porcine peptide antibiotic PR-39, a cathelin gene family member: comparative mapping of the locus for the human peptide antibiotic FALL-39. Proc Natl Acad Sci USA 1995;92:7085–7089.

    Article  PubMed  CAS  Google Scholar 

  117. Gudmundsson GH, Agerberth B, Odeberg J, et al. The human gene FALL39 and processing of the cathelin precursor to the antibacterial peptide LL-37 in granulocytes. Eur J Biochem 1996;238:325–332.

    Article  PubMed  CAS  Google Scholar 

  118. Agerberth B, Gunne H, Odeberg J, Kogner P, Boman HG, Gudmundsson GH. FALL-39, a putative human peptide antibiotic, is cysteine-free and expressed in bone marrow and testis. Proc Natl Acad Sci USA 1995;92:195–199.

    Article  PubMed  CAS  Google Scholar 

  119. Borregaard N, Sehested M, Nielsen BS, Sengelov H, Kjeldsen L. Biosynthesis of granule proteins in normal human bone marrow cells. Gelatinase is a marker of terminal neutrophil differentiation. Blood 1995;85:812–817.

    PubMed  CAS  Google Scholar 

  120. Sorensen OE, Follin P, Johnsen AH, et al. Human cathelicidin, hCAP-18, is processed to the antimicrobial peptide LL-37 by extracellular cleavage with proteinase 3. Blood 2001;97:3951–3959.

    Article  PubMed  CAS  Google Scholar 

  121. Frohm M, Agerberth B, Ahangari G, et al. The expression of the gene coding for the antibacterial peptide LL-37 is induced in human keratinocytes during inflammatory disorders. J Biol Chem 1997;272:15258–15263.

    Article  PubMed  CAS  Google Scholar 

  122. Frohm NM, Sandstedt B, Sorensen O, et al. The human cationic antimicrobial protein (hCAP18), a peptide antibiotic, is widely expressed in human squamous epithelia and colocalizes with interleukin-6. Infect Immun 1999;67:2561–2566.

    Google Scholar 

  123. Bals R, Wang X, Zasloff M, Wilson JM. The peptide antibiotic LL-37lhCAP-18 is expressed in epithelia of the human lung where it has broad antimicrobial activity at the airway surface. Proc Natl Acad Sci USA 1998;95:9541–9546.

    Article  PubMed  CAS  Google Scholar 

  124. Malm J, Sorensen O, Persson T, et al. The human cationic antimicrobial protein (hCAP-18) is expressed in the epithelium of human epididymis, is present in seminal plasma at high concentrations, and is attached to spermatozoa. Infect Immun 2000;68:4297–4302.

    Article  PubMed  CAS  Google Scholar 

  125. Sorensen O, Bratt T, Johnsen AH, Madsen MT, Borregaard N. The human antibacterial cathelicidin, hCAP-18, is bound to lipoproteins in plasma. J Biol Chem 1999;274:22445–22451.

    Article  PubMed  CAS  Google Scholar 

  126. Islam D, Bandholtz L, Nilsson J, et al. Downregulation of bactericidal peptides in enteric infections: a novel immune escape mechanism with bacterial DNA as a potential regulator. Nat Med 2001;7:180–185.

    Article  PubMed  CAS  Google Scholar 

  127. Johansson J, Gudmundsson GH, Rottenberg ME, Berndt KD, Agerberth B. Conformationdependent antibacterial activity of the naturally occurring human peptide LL-37. J Biol Chem 1998;273:3718–3724.

    Article  PubMed  CAS  Google Scholar 

  128. Oren Z, Lerman JC, Gudmundsson GH, Agerberth B, Shai Y. Structure and organization of the human antimicrobial peptide LL-37 in phospholipid membranes: relevance to the molecular basis for its non-cell-selective activity. Biochem J 1999;341:501–513.

    Article  PubMed  CAS  Google Scholar 

  129. Hirata M, Zhong J, Wright SC, Larrick JW. Structure and functions of endotoxin-binding peptides derived from CAP18. Prog Clin Biol Res 1995;392:317–326.

    PubMed  CAS  Google Scholar 

  130. De Y, Chen Q, Schmidt AP, et al. LL-37, the neutrophil granule- and epithelial cell-derived cathelicidin, utilizes formyl peptide receptor-like 1 (FPRL1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells. J Exp Med 2000;192:1069–1074.

    Article  Google Scholar 

  131. Shi J, Ganz T. The role of protegrins and other elastase-activated polypeptides in the bactericidal properties of porcine inflammatory fluids. Infect Immun 1998;66:3611–3617.

    PubMed  CAS  Google Scholar 

  132. Cole AM, Shi J, Ceccarelli A, et al. Inhibition of neutrophil elastase prevents cathelicidin activation and impairs clearance of bacteria from wounds. Blood 2001;97:297–304.

    Article  PubMed  CAS  Google Scholar 

  133. Tkalcevic J, Novelli M, Phylactides M, et al. Impaired immunity and enhanced resistance to endotoxin in the absence of neutrophil elastase and cathepsin G. Immunity 2000;12:201–210.

    Article  PubMed  CAS  Google Scholar 

  134. Belaaouaj A, McCarthy R, Baumann M, et al. Mice lacking neutrophil elastase reveal impaired host defense against gram negative bacterial sepsis. Nat Med 1998;4:615–618.

    Article  PubMed  CAS  Google Scholar 

  135. Belaaouaj A, Kim KS, Shapiro SD. Degradation of outer membrane protein A in Escherichia coli killing by neutrophil elastase. Science 2000;289:1185–1188.

    Article  PubMed  CAS  Google Scholar 

  136. Gallo RL, Kim KJ, Bernfield M, et al. Identification of CRAMP, a cathelin-related antimicrobial peptide expressed in the embryonic and adult mouse. J Biol Chem 1997;272:13088–13093.

    Article  PubMed  CAS  Google Scholar 

  137. Bals R, Weiner DJ, Meegalla RL, Wilson JM. Transfer of a cathelicidin peptide antibiotic gene restores bacterial killing in a cystic fibrosis xenograft model. J Clin Invest 1999;103:1113–1117.

    Article  PubMed  CAS  Google Scholar 

  138. Bals R, Weiner DJ, Moscioni AD, Meegalla RL, Wilson JM. Augmentation of innate host defense by expression of a cathelicidin antimicrobial peptide. Infect Immun 1999;67:6084–6089.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Ganz, T., Lehrer, R.I. (2003). Antimicrobial Peptides. In: Ezekowitz, R.A.B., Hoffmann, J.A. (eds) Innate Immunity. Infectious Disease. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-320-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-320-0_16

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9746-5

  • Online ISBN: 978-1-59259-320-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics