Skip to main content

The Role of Chemokines in Linking Innate and Adaptive Immunity

  • Chapter
Innate Immunity

Part of the book series: Infectious Disease ((ID))

  • 378 Accesses

Abstract

Of the myriad of immune defense systems that exist in nature, the mammalian defense system is clearly the most sophisticated and successful. This immune sophistication arises from the fact that immune events in mammals involve a progression of detailed events leading to exquisite specificity toward a bacterial, viral, or fungal byproduct, or a nonself protein. On its simplest level, the immune response in mammals is divided into two major components: the nonspecific innate and the adaptive or acquired immune systems (1). When examined phylogenetically, the innate immune system appears to be more ancient than its acquired counterpart, and, historically, it was thought that the innate response was nonselectively directed toward microorganisms. However, the distinctions between the innate and acquired immune responses are now widely viewed as somewhat artificial, as it has been shown that both arms of the immune response share several common features including amazing degrees of specificity for pathogens and foreign antigens (2). Indeed, there is increasing evidence that the induction of different types of effector adaptive responses is directed by the innate immune system after its highly selective recognition of particular groups of pathogens through pattern recognition molecules (i.e., the Toll-like receptor family) and the elaboration of soluble protein signals that activate the relevant lymphoid cell population.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alam R. A brief review of the immune system. Prim Care 1998;25:727–738.

    Article  PubMed  CAS  Google Scholar 

  2. Palucka K, Banchereau J. Linking innate and adaptive immunity. Nat Med 1999;5:868–870.

    Article  PubMed  CAS  Google Scholar 

  3. Tanaka Y. T cell integrin activation by chemokines in inflammation. Arch Immunol Ther Exp (Warsz) 2000;48:443–450.

    CAS  Google Scholar 

  4. Flesch IE, Collins H, Hess J, Kaufmann SH. Checkpoints in antibacterial immunity. Res Immunol 1998;149:693–697.

    Article  PubMed  CAS  Google Scholar 

  5. Bromley SK, Burack WR, Johnson KG, et al. The immunological synapse. Annu Rev Immunol 2001;19:375–396.

    Article  PubMed  CAS  Google Scholar 

  6. Wiedle G, Dunon D, Imhof BA. Current concepts in lymphocyte homing and recirculation. Crit Rev Clin Lab Sci 2001;38:1–31.

    Article  PubMed  CAS  Google Scholar 

  7. Parish CR, O’Neill ER. Dependence of the adaptive immune response on innate immunity: some questions answered but new paradoxes emerge. Immunol Cell Biol 1997;75:523–527.

    Article  PubMed  CAS  Google Scholar 

  8. Lo D, Feng L, Li L, et al. Integrating innate and adaptive immunity in the whole animal. Immunol Rev 1999;169:225–239.

    Article  PubMed  CAS  Google Scholar 

  9. Moser B, Loetscher P. Lymphocyte traffic control by chemokines. Nat Immunol 2001;2:123–128.

    Article  PubMed  CAS  Google Scholar 

  10. Thelen M. Dancing to the tune of chemokines. Nat Immunol 2001;2:129–134.

    Article  PubMed  CAS  Google Scholar 

  11. Yoshie O. Immune chemokines and their receptors: the key elements in the genesis, homeostasis and function of the immune system. Springer Semin Immunopathol 2000;22:371–391.

    Article  PubMed  CAS  Google Scholar 

  12. Gerard C, Rollins BJ. Chemokines and disease. Nat Immunol 2001;2:108–115.

    Article  PubMed  CAS  Google Scholar 

  13. Youn BS, Mantel C, Broxmeyer HE. Chemokines, chemokine receptors and hematopoiesis. Immunol Rev 2000;177:150–174.

    Article  PubMed  CAS  Google Scholar 

  14. Cyster JG. Chemokines and cell migration in secondary lymphoid organs. Science 1999;286:2098–2102.

    Article  PubMed  CAS  Google Scholar 

  15. Cyster JG, Ngo VN, Ekland EH, et al. Chemokines and B-cell homing to follicles. Curr Top Microbiol Immunol 1999;246:87–92; discussion 93.

    Article  PubMed  CAS  Google Scholar 

  16. Matsukawa A, Hogaboam CM, Lukacs NW, Kunkel SL. Chemokines and innate immunity. Rev Immunogenet 2000;2:339–358.

    PubMed  CAS  Google Scholar 

  17. Kunkel SL. Through the looking glass: the diverse in vivo activities of chemokines. J Clin Invest 1999;104:1333–1334.

    Article  PubMed  CAS  Google Scholar 

  18. Keiner GS, Kennedy J, Bacon KB, et al. Lymphotactin: a cytokine that represents a new class of chemokine. Science 1994;266:1395.

    Article  Google Scholar 

  19. Bianchi G, Sozzani S, Zlotnick A, Mantovani A, Allavena P. Migratory response of human NK cells to lymphotactin. Eur. J. Immunol. 1996;26:3238.

    Article  CAS  Google Scholar 

  20. Zlotnik A, Yoshie O. Chemokines: a new classification system and their role in immunity. Immunity 2000;12:121–127.

    Article  PubMed  CAS  Google Scholar 

  21. Rossi D, Zlotnik A. The biology of chemokines and their receptors. Annu Rev Immunol 2000;18:217–242.

    Article  PubMed  CAS  Google Scholar 

  22. Frade JM, Mellado M, del Real G, Gutierrez-Ramos JC, Lind P, Martinez AC. Characterization of the CCR2 chemokine receptor: functional CCR2 receptor expression in B cells. J Immunol 1997;159:5576–5584.

    PubMed  CAS  Google Scholar 

  23. Gao JL, Sen AI, Kitaura M, et al. Identification of a mouse eosinophil receptor for the C-C chemokine eotaxin. Biochem Biophys Res Commun 1996;223:679–684.

    Article  PubMed  CAS  Google Scholar 

  24. Raport CJ, Gosling J, Schweickart VL, Gray PW, Charo IF. Molecular cloning and functional characterization of a novel human CC chemokine receptor (CCR5) for RANTES, MIP-1 beta, and MIP- l alpha. and MIP- l alpha. J Biol Chem 1996;271:17161–17166.

    Article  PubMed  CAS  Google Scholar 

  25. Baba M, Imai T, Nishimura M, et al. Identification of CCR6, the specific receptor for a novel lymphocyte-directed CC chemokine LARC. J Biol Chem 1997;272:14893–14898.

    Article  PubMed  CAS  Google Scholar 

  26. Homey B, Wang W, Soto H, et al. Cutting edge: the orphan chemokine receptor G protein-coupled receptor-2 (GPR-2, CCR10) binds the skin-associated chemokine CCL27 (CTACK/ALP/ILC). J Immunol 2000;164:3465–3470.

    PubMed  CAS  Google Scholar 

  27. Scapini P, Lapinet-Vera JA, Gasperini S, et al. The neutrophil as a cellular source of chemokines. Immunol Rev 2000;177:195–203.

    Article  PubMed  CAS  Google Scholar 

  28. Yoshie O. Role of chemokines in trafficking of lymphocytes and dendritic cells. Int J Hematol 2000;72:399–407.

    PubMed  CAS  Google Scholar 

  29. Clark GJ, Angel N, Kato M, et al. The role of dendritic cells in the innate immune system. Microbes Infect 2000;2:257–272.

    Article  PubMed  CAS  Google Scholar 

  30. Stockwin LH, McGonagle D, Martin IG, Blair GE. Dendritic cells: immunological sentinels with a central role in health and disease. Immunol Cell Biol 2000;78:91–102.

    Article  PubMed  CAS  Google Scholar 

  31. Foti M, Granucci F, Aggujaro D, et al. Upon dendritic cell (DC) activation chemokines and chemokine receptor expression are rapidly regulated for recruitment and maintenance of DC at the inflammatory site. Int Immunol 1999;11:979–986.

    Article  PubMed  CAS  Google Scholar 

  32. Caux C, Ait-Yahia S, Chemin K, et al. Dendritic cell biology and regulation of dendritic cell trafficking by chemokines. Springer Semin Immunopathol 2000;22:345–369.

    Article  PubMed  CAS  Google Scholar 

  33. Gunn MD, Kyuwa S, Tam C, et al. Mice lacking expression of secondary lymphoid organ chemokine have defects in lymphocyte homing and dendritic cell localization [see comments]. J Exp Med 1999;189:451–460.

    Article  PubMed  CAS  Google Scholar 

  34. Chan VW, Kothakota S, Rohan MC, et al. Secondary lymphoid-tissue chemokine (SLC) is chemotactic for mature dendritic cells. Blood 1999;93:3610–3616.

    PubMed  CAS  Google Scholar 

  35. Willimann K, Legler DF, Loetscher M, et al. The chemokine SLC is expressed in T cell areas of lymph nodes and mucosal lymphoid tissues and attracts activated T cells via CCR7. Eur J Immunol 1998;28:2025–2034.

    Article  PubMed  CAS  Google Scholar 

  36. Demangel C, Britton WJ. Interaction of dendritic cells with mycobacteria: where the action starts. Immunol Cell Biol 2000;78:318–324.

    Article  PubMed  CAS  Google Scholar 

  37. McWilliam AS, Napoli S, Marsh AM, et al. Dendritic cells are recruited into the airway epithelium during the inflammatory response to a broad spectrum of stimuli. J Exp Med 1996;184:2429–2432.

    Article  PubMed  CAS  Google Scholar 

  38. Rescigno M, Granucci F, Ricciardi-Castagnoli P. Molecular events of bacterial-induced maturation of dendritic cells. J Clin Immunol 2000;20:161–166.

    Article  PubMed  CAS  Google Scholar 

  39. Zou W, Borvak J, Marches F, et al. Macrophage-derived dendritic cells have strong Th 1-polarizing potential mediated by beta-chemokines rather than IL-12. J Immunol 2000;165:4388–4396.

    PubMed  CAS  Google Scholar 

  40. Mantovani A, Gray PA, Van Damme J, Sozzani S. Macrophage-derived chemokine (MDC). J Leukoc Biol 2000;68:400–404.

    PubMed  CAS  Google Scholar 

  41. Yoneyama H, Kawasaki S, Matsushima K. Regulation of Th 1 and Th2 immune responses by chemokines. Springer Semin Immunopathol 2000;22:329–344.

    Article  PubMed  CAS  Google Scholar 

  42. Biron CA, Nguyen KB, Pien GC, Cousens LP, Salazar-Mather TP. Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annu Rev Immunol 1999;17:189–220.

    Article  PubMed  CAS  Google Scholar 

  43. Robertson MJ, Williams BT, Christopherson K, Brahmi Z, Hromas R. Regulation of human natural killer cell migration and proliferation by the exodus subfamily of CC chemokines. Cell Immunol 2000;199:8–14.

    Article  PubMed  CAS  Google Scholar 

  44. Lukacs NW, Chensue SW, Karpus WJ, et al. C-C chemokines differentially alter interleukin-4 production from lymphocytes. Am J Pathol 1997;150:1861–1868.

    PubMed  CAS  Google Scholar 

  45. Hogaboam CM, Lukacs NW, Chensue SW, Strieter RM, Kunkel SL. Monocyte chemoattractant protein-1 synthesis by murine lung fibroblasts modulates CD4+ T cell activation. J Immunol 1998;160:4606–4614.

    PubMed  CAS  Google Scholar 

  46. Gunn MD, Nelken NA, Liao X, Williams LT. Monocyte chemoattractant protein-1 is sufficient for the chemotaxis of monocytes and lymphocytes in transgenic mice but requires an additional stimulus for inflammatory activation. J Immunol 1997;158:376–383.

    PubMed  CAS  Google Scholar 

  47. Matsukawa A, Hogaboam CM, Lukacs NW, et al. Endogenous monocyte chemoattractant protein-1 (MCP-1) protects mice in a model of acute septic peritonitis: cross-talk between MCP-1 and leukotriene B4. J Immunol 1999;163:6148–6154.

    PubMed  CAS  Google Scholar 

  48. Karpus WJ, Lukacs NW, Kennedy KJ, et al. Differential CC chemokine-induced enhancement of T helper cell cytokine production. J Immunol 1997;158:4129–4136.

    PubMed  CAS  Google Scholar 

  49. Gu L, Tseng S, Horner RM, et al. Control of Th2 polarization by the chemokine monocyte chemoattractant protein-1. Nature 2000;404:407–411.

    Article  PubMed  CAS  Google Scholar 

  50. Matsukawa A, Lukacs NW, Standiford TJ, Chensue SW, Kunkel SL. Adenoviral-mediated overexpression of monocyte chemoattractant protein-1 differentially alters the development of Th 1 and Th2 type responses in vivo. J Immunol 2000;164:1699–1704.

    PubMed  CAS  Google Scholar 

  51. Odum N, Bregenholt S, Eriksen KW, et al. The CC-chemokine receptor 5 (CCR5) is a marker of, but not essential for the development of human Th 1 cells. Tissue Antigens 1999;54:572–577.

    Article  PubMed  CAS  Google Scholar 

  52. D’Ambrosio D, Iellem A, Bonecchi R, et al. Selective up-regulation of chemokine receptors CCR4 and CCR8 upon activation of polarized human type 2 Th cells. J Immunol 1998;161:5111–5115.

    PubMed  Google Scholar 

  53. Zingoni A, Soto H, Hedrick JA, et al. The chemokine receptor CCR8 is preferentially expressed in Th2 but not Th 1 cells. J Immunol 1998;161:547–551.

    PubMed  CAS  Google Scholar 

  54. Campbell JD, HayGlass KT. T cell chemokine receptor expression in human Th1- and Th2-associated diseases. Arch Immunol Ther Exp (Warsz) 2000;48:451–456.

    CAS  Google Scholar 

  55. Khan IA, MacLean JA, Lee FS, et al. IP-10 is critical for effector T cell trafficking and host survival in Toxoplasma gondii infection. Immunity 2000;12:483–494.

    Article  PubMed  CAS  Google Scholar 

  56. Lukacs NW, Hogaboam C, Campbell E, Kunkel SL. Chemokines: function, regulation and alteration of inflammatory responses. Chem Immunol 1999;72:102–120.

    Article  PubMed  CAS  Google Scholar 

  57. Naumann M. Nuclear factor-kappa B activation and innate immune response in microbial pathogen infection. Biochem Pharmacol 2000;60:1109–1114.

    Article  PubMed  CAS  Google Scholar 

  58. Izadpanah A, Dwinell MB, Eckmann L, Varki NM, Kagnoff ME Regulated MIP-3alpha/CCL20 production by human intestinal epithelium: mechanism for modulating mucosal immunity. Am J Physiol Gastrointest Liver Physiol 2001;280:G710–G719.

    PubMed  CAS  Google Scholar 

  59. Lillard JW, Boyaka PN, Taub DD, McGhee JR. RANTES potentiates antigen-specific mucosal immune responses. J Immunol 2001;166:162–169.

    PubMed  CAS  Google Scholar 

  60. Hogaboam CM, Smith RE, Kunkel SL. Dynamic interactions between lung fibroblasts and leukocytes: implications for fibrotic lung disease. Proc Assoc Am Physicians 1998;110:313–320.

    PubMed  CAS  Google Scholar 

  61. Smith RS, Smith TJ, Blieden TM, Phipps RP. Fibroblasts as sentinel cells. Synthesis of chemokines and regulation of inflammation. Am J Pathol 1997;151:317–322.

    PubMed  CAS  Google Scholar 

  62. Xia Y, Pauza ME, Feng L, Lo D. Re1B regulation of chemokine expression modulates local inflammation. Am J Pathol 1997;151:375–387.

    PubMed  CAS  Google Scholar 

  63. Cocchi F, DeVico AL, Arya SK, Gallo RC, Lusso P. Identification of RANTES, MIP-1 alpha, and MIP-1 beta as the major HIV-suppressive factors produced by CD8+ T cells. Science 1995;270:1811–1815.

    Article  PubMed  CAS  Google Scholar 

  64. Murphy PM. Viral exploitation and subversion of the immune system through chemokine mimicry. Nat Immunol 2001;2:116–122.

    Article  PubMed  CAS  Google Scholar 

  65. Scarlatti G, Tresoldi E, Bjorndal A, et al. In vivo evolution of HIV-1 co-receptor usage and sensitivity to chemokine-mediated suppression. Nat Med 1997;3:1259–1265.

    Article  PubMed  CAS  Google Scholar 

  66. Simmons G, Reeves JD, Hibbitts S, et al. Co-receptor use by HIV and inhibition of HIV infection by chemokine receptor ligands. Immunol Rev 2000;177:112–126.

    Article  PubMed  CAS  Google Scholar 

  67. Howie S, Ramage R, Hewson T. Innate Immune system damage in human immunodeficiency virus type 1 infection. Implications for acquired immunity and vaccine design. Am J Respir Crit Care Med 2000;162:S141–S145.

    PubMed  CAS  Google Scholar 

  68. Holland SM. Host defense against nontuberculous mycobacterial infections. Semin Respir Infect 1996;11:217–230.

    PubMed  CAS  Google Scholar 

  69. Dairaghi DJ, Fan RA, McMaster BE, Hanley MR, Schall TJ. HHV8-encoded vMIP-I selectively engages chemokine receptor CCR8. Agonist and antagonist profiles of viral chemokines. J Biol Chem 1999;274:21569–21574.

    Article  PubMed  CAS  Google Scholar 

  70. Endres MJ, Garlisi CG, Xiao H, Shan L, Hedrick JA. The Kaposi’s sarcoma-related herpesvirus (KSHV)-encoded chemokine vMIP-I is a specific agonist for the CC chemokine receptor (CCR)8. J Exp Med 1999;189:1993–1998.

    Article  PubMed  CAS  Google Scholar 

  71. Sozzani S, Luini W, Bianchi G, et al. The viral chemokine macrophage inflammatory protein-II is a selective Th2 chemoattractant. Blood 1998;92:4036–4039.

    PubMed  CAS  Google Scholar 

  72. Kledal TN, Rosenkilde MM, Coulin F, et al. A broad-spectrum chemokine antagonist encoded by Kaposi’s sarcoma-associated herpesvirus. Science 1997;277:1656–1659.

    Article  PubMed  CAS  Google Scholar 

  73. Chen S, Bacon KB, Li L, et al. In vivo inhibition of CC and CX3C chemokine-induced leukocyte infiltration and attenuation of glomerulonephritis in Wistar-Kyoto (WKY) rats by vMIP-II. J Exp Med 1998;188:193–198.

    Article  PubMed  CAS  Google Scholar 

  74. Penfold ME, Dairaghi DJ, Duke GM, et al. Cytomegalovirus encodes a potent alpha chemokine. Proc Natl Acad Sci USA 1999;96:9839–9844.

    Article  PubMed  CAS  Google Scholar 

  75. Zhang P, Summer WR, Bagby GJ, Nelson S. Innate immunity and pulmonary host defense. Immunol Rev 2000;173:39–51.

    Article  PubMed  CAS  Google Scholar 

  76. Itakura M, Tokuda A, Kimura H, et al. Blockade of secondary lymphoid tissue chemokine exacerbates Propionibacterium acnes-induced acute lung inflammation. J Immunol 2001;166:2071–2079.

    PubMed  CAS  Google Scholar 

  77. Standiford TJ. Cytokines and pulmonary host defenses. Curr Opin Pulm Med 1997;3:81–88.

    Article  PubMed  CAS  Google Scholar 

  78. Standiford TJ, Huffnagle GB. Cytokines in host defense against pneumonia. J Invest Med 1997;45:335–345.

    CAS  Google Scholar 

  79. Boring L, Gosling J, Chensue SW, et al. Impaired monocyte migration and reduced type 1 (Th1) cytokine responses in C-C chemokine receptor 2 knockout mice. J Clin Invest 1997;100:2552–2561.

    Article  PubMed  CAS  Google Scholar 

  80. Peters W, Dupuis M, Charo IF. A mechanism for the impaired IFN-gamma production in C-C chemokine receptor 2 (CCR2) knockout mice: role of CCR2 in linking the innate and adaptive immune responses. J Immunol 2000;165:7072–7077.

    PubMed  CAS  Google Scholar 

  81. Sato N, Kuziel WA, Melby PC, et al. Defects in the generation of IFN-gamma are overcome to control infection with Leishmania donovani in CC chemokine receptor (CCR) 5-, macrophage inflammatory protein-1 alpha-, or CCR2-deficient mice. J Immunol 1999;163:5519–5525.

    PubMed  CAS  Google Scholar 

  82. Sato N, Ahuja SK, Quinones M, et al. CC chemokine receptor (CCR)2 is required for Langerhans cell migration and localization of T helper cell type 1 (Th 1)-inducing dendritic cells. Absence of CCR2 shifts the Leishmania major-resistant phenotype to a susceptible state dominated by Th2 cytokines, B cell outgrowth, and sustained neutrophilic inflammation. J Exp Med 2000;192:205–218.

    Article  PubMed  CAS  Google Scholar 

  83. Wiley R, Palmer K, Gajewska B, et al. Expression of the Th1 chemokine IFN-gamma-inducible protein 10 in the airway alters mucosal allergic sensitization in mice. J Immunol 2001;166:2750–2759.

    PubMed  CAS  Google Scholar 

  84. Brun-Buisson C. The epidemiology of the systemic inflammatory response. Intensive Care Med 2000;26:S64—S74.

    Article  PubMed  Google Scholar 

  85. Fry DE. Sepsis syndrome. Am Surg 2000;66:126–132.

    PubMed  CAS  Google Scholar 

  86. Glauser MP. Pathophysiologic basis of sepsis: considerations for future strategies of intervention. Crit Care Med 2000;28:S4—S8.

    Article  PubMed  Google Scholar 

  87. Deitch EA, Goodman ER. Prevention of multiple organ failure. Surg Clin North Am 1999;79:1471–1488.

    Article  PubMed  CAS  Google Scholar 

  88. Matsukawa A, Hogaboam CM, Lukacs NW, et al. Endogenous MCP-1 influences systemic cytokine balance in a murine model of acute septic peritonitis. Exp Mol Pathol 2000;68:77–84.

    Article  PubMed  CAS  Google Scholar 

  89. Zisman DA, Kunkel SL, Strieter RM, et al. MCP-1 protects mice in lethal endotoxemia. J Clin Invest 1997;99:2832–2836.

    Article  PubMed  CAS  Google Scholar 

  90. Matsukawa A, Hogaboam CM, Lukacs NW, et al. Pivotal role of the CC chemokine, macrophage-derived chemokine, in the innate immune response. J Immunol 2000;164:5362–5368.

    PubMed  CAS  Google Scholar 

  91. Steinhauser ML, Hogaboam CM, Matsukawa A, et al. Chemokine C10 promotes disease resolution and survival in an experimental model of bacterial sepsis. Infect Immun 2000;68:6108–6114.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Hogaboam, C.M., Kunkel, S.L. (2003). The Role of Chemokines in Linking Innate and Adaptive Immunity. In: Ezekowitz, R.A.B., Hoffmann, J.A. (eds) Innate Immunity. Infectious Disease. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-320-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-320-0_15

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9746-5

  • Online ISBN: 978-1-59259-320-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics