Skip to main content

Immunology of the Gastrointestinal Tract

  • Chapter
Colonic Diseases

Abstract

The gastrointestinal system is essentially a long muscular tube, the functional surface of which is a thin, mucus-coated layer approx 1 mm thick, that is joined at both ends with the external integument and, thus, is a contact surface with the external environment (1). The surface area of the adult human intestine is estimated to be approx 300 M2 (2). This surface is constantly exposed to antigens, which, proximally, is mostly of dietary origin and, distally, tends to be bacterial products derived from colonic flora. Providing a protective barrier at this external surface is complicated by the need to selectively absorb nutrients. To prevent the colonization and/or invasion of the intestinal mucosa by foreign organisms, the intestine makes use of a number of innate and adaptive defense factors. This chapter provides a broad overview of immune responses in the intestine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. MacDonald TT, Bajaj-Elliot M, Pender SLF. T cells orchestrate intestinal mucosal shape and integrity. Immunol. Today, 20 (1999) 505–510.

    Article  PubMed  CAS  Google Scholar 

  2. Brandtzaeg P, Bjerke K. Human Peyer’s patches: lympho-epithelial relationships and characteristics of Ig-producing cells. Immunol. Invest., 18 (1989) 29–45.

    Article  PubMed  CAS  Google Scholar 

  3. Pitman RS, Blumberg RS. First line of defense: the role of the intestinal epithelium as an active component of the mucosal immune system. Gastroenterology, 35 (2000) 805–814.

    Article  CAS  Google Scholar 

  4. Jones DE, Bevin CL. Paneth cells of the human small intestine express an antimicrobial peptide gene. J. Biol. Chem., 267 (1992) 23216–23225.

    CAS  Google Scholar 

  5. Valnes K, Brandtzaeg P, Elgio K, Stave R. Specific and nonspecific humoral defense factors in the epithelium of normal and inflamed gastric mucosal. Immunohistochemical localization of Igs, secretory component, lysozyme, and lactoferrin. Gastroenterology, 86 (1984) 402–412.

    PubMed  CAS  Google Scholar 

  6. Kiyohara H, Egami H, Shibata Y, Murata K, Ohshima S, Ogawa M. Light microscopic immunohistochemical analysis of the distribution of groups II phospholipase A2 in human digestive organs. J. Histochem. Cytochem., 40 (1992) 1659–1664.

    Article  PubMed  CAS  Google Scholar 

  7. Jabbal I, Kells DI, Forstner G, Forstner J. Human intestinal goblet cell mucin. Can. J. Biochem., 54 (1979) 707–716.

    Google Scholar 

  8. Podolsky DK, Lynch-Devaney K, Stow JL, et al. Identification of human intestinal trefoil factor. Goblet cell-specific expression of a peptide targeted for apical secretion. J. Biol. Chem., 268 (1993) 6694–6702.

    PubMed  CAS  Google Scholar 

  9. Modlin IM, Poulsom R. Trefoil peptides: mitogens, motogens, or mirages? J. Clin. Gastroenterol., 1 (1997) S94 - S100.

    Article  Google Scholar 

  10. Mowat AM, Viney JL. The anatomical basis of intestinal immunity. Immunol. Rev., 156 (1997) 145–166.

    Article  PubMed  CAS  Google Scholar 

  11. Moghaddami M, Cummins A, Mayerhofr G. Lymphocyte-filled villi: comparisons with other lymphoid aggregations in the mucosal of the human small intestine. Gastroenterology, 115 (1998) 1414–1425.

    Article  PubMed  CAS  Google Scholar 

  12. Kelsall BL, Strober W. The role of dendritic cells in antigen processing in the Peyer’s patch. Ann. NYAcad. Sci., 778 (1996) 47–54.

    Google Scholar 

  13. Dasso JF, Obiakor H, Bach H, Anderson AO, Mage RG. A morphological and immunohistological study of the human and rabbit appendix for comparison with the avian bursa. Dev. Comp. Immunol., 24 (2000) 797–814.

    Article  PubMed  CAS  Google Scholar 

  14. Gebbers JO, Kennel I, Laissue JA. Lymphoid follicles of the human large bowel mucosal: structure and function. Verh. Dtsch. Ges. Pathol., 76 (1992) 126–130.

    PubMed  CAS  Google Scholar 

  15. Jacob E, Baker SJ, Swaminathan SP. `M’ cells in the follicle-associated epithelium of the human colon. Histopathology, 11 (1987) 941–952.

    Article  PubMed  CAS  Google Scholar 

  16. Neutra MR, Pringault E, Kraehenbuhl JP. Antigen sampling across epithelial barriers and induction of mucosal immune responses. Annu. Rev. Immunol., 14 (1996) 275–300.

    Article  PubMed  CAS  Google Scholar 

  17. Kohbata S, Yokoyama H, Yabuuchi E. Cytopathogenic effect of Salmonella typhi GIFU 10007 on M cells of murine Peyer’s patches in ligated ileal loops: an ultrastructural study. Microbiol. Immunol., 30 (1986) 1225–1237.

    PubMed  CAS  Google Scholar 

  18. WassefJS, Keren DF, Mailloux JL. Role of M cells in initial antigen uptake and in ulcer formation in the rabbit intestinal loop model of shigellosis. Infect. Immun., 57 (1989) 858–863.

    PubMed  CAS  Google Scholar 

  19. Grutzkau A, Hanski C, Hahn H, Riecken EO. Involvement of M cells in the bacterial invasion of Peyer’s patches: a common mechanism shared by Yersinia entercoliticaand other enteroinvasive bacteria. Gut,31 (1990)1011–1015.

    Article  PubMed  CAS  Google Scholar 

  20. Wolfe JL, Rubin DH, Finberg R, et al. Intestinal M cells: a pathway for entry of reovirus into the host. Science, 212 (1983) 471–472.

    Article  Google Scholar 

  21. Sicinski P, Rowinski J, Warchol JB, et al. Poliovirus type l enters the human host through intestinal M cells. Gastroenterology, 98 (1990) 56–58.

    PubMed  CAS  Google Scholar 

  22. Marcial MA, Madara JL. Cryptosporidium: cellular localization, structural analysis of absorptive cell parasite membrane-membrane interactions in guinea pigs, and suggestion of protozoan transport by M cells. Gastroenterology, 90 (1986) 583–594.

    PubMed  CAS  Google Scholar 

  23. Neutra MR. M cells in antigen sampling in mucosal tissues. Curr. Top. Microbiol. Immunol., 236 (1999) 17–32.

    Article  PubMed  CAS  Google Scholar 

  24. Bjerke K, Brandtzaeg P. T cells and epithelial expression of HLA class II determinants in relation to putative M cells of follicle-associated epithelium in human Peyer’s patches. Adv. Exp. Med. Biol., 237 (1988) 695–698.

    Article  PubMed  CAS  Google Scholar 

  25. Farstad IN, Halstensen TS, Fausa O, Brandtzaeg P. Heterogeneity of M-cell-associated B and T cells in human Peyer’s patches. Immunology, 83 (1994) 457–464.

    PubMed  CAS  Google Scholar 

  26. Steinman RM, Pack M, Inaba K. Dendritic cells in the T cell areas of lymphoid organs. Immunol. Rev., 156 (1997) 25–37.

    Article  PubMed  CAS  Google Scholar 

  27. McLellan AD, Sorg RV, Williams LA, Hart DN. Human dendritic cells activate T lymphocytes via a CD40: CD40 ligand-dependent pathway. Eur. J. Immunol., 26 (1996) 1204–1210.

    Article  PubMed  CAS  Google Scholar 

  28. Petro TM, Chen SS, Panther RB. Effect of CD80 and CD86 on T cell cytokine production. Immunol. Invest., 4 (1995) 965–976.

    Article  Google Scholar 

  29. Kremer IB, Cooper KD, Teunissen MB, Stevens SR. Low expression of CD40 and B7 on macrophages infiltrating UV-exposed human skin; role in IL-2Ralpha-T cell activation. Eur. J. Immunol., 28 (1998) 2936–2946.

    Article  PubMed  CAS  Google Scholar 

  30. Dunkley ML, Husband AJ. Distribution and functional characteristics of antigen-specific helper T cells arising after Peyer’s patch immunization. Immunology, 61 (1987) 475–482.

    PubMed  CAS  Google Scholar 

  31. Farrar MA, Schreiber RD. The molecular cell biology of interferon-gamma and its receptor. Annu. Rev. Immunol., 11 (1993) 571–611.

    Article  PubMed  CAS  Google Scholar 

  32. Biron CA. Cytokines in the generation of the immune responses to, and resolution of, virus infection. Curr. Opin. Immunol., 6 (1994) 530–538.

    Article  PubMed  CAS  Google Scholar 

  33. McHugh S, Deighton J, Rifkin I, Ewan P. Kinetics and functional implication of Th1 and Th2 cytokine production following activation of peripheral blood mononuclear cells in primary culture. Eur. J. Immunol., 26 (1996) 1260–1265.

    Article  PubMed  CAS  Google Scholar 

  34. Rousset F, Garcia E, Banchereau J. Cytokine-induced proliferation and immunoglobulin production of human B lymphocytes triggered through their CD40 antigen. J. Exp. Med., 173 (1991) 705–710.

    Article  PubMed  CAS  Google Scholar 

  35. Burdin N, Van Kooten C, Galibert L, et al. Endogenous IL-6 and IL-10 contribute to the differentiation of CD40-activated human B lymphocytes. J. Immunol., 154 (1995) 2533–2544.

    PubMed  CAS  Google Scholar 

  36. Faria AM, Weiner HL. Oral tolerance: mechanisms and therapeutic applications. Adv. Immunol., 73 (1999) 153–264.

    Article  PubMed  CAS  Google Scholar 

  37. Shibuya K, Robinson D, Zonin F, et al. IL-1 alpha and TNF-alpha are required for IL-12-induced development of Thl cells producing high levels of IFN-gamma in BALB/C but not C57BL/6 mice. J. Immunol., 160 (1998) 1708–1716.

    PubMed  CAS  Google Scholar 

  38. McHugh SM, Rifkin I, Deighton J, et al. The immunosuppressive drug thalidomide induces T helper cell type 2 (Th2) and concomitantly inhibits Thl cytokine production in mitogen-and antigen-stimulated human peripheral blood mononuclear cell cultures. Clin. Exp. Immunol., 99 (1995) 160–167.

    Article  PubMed  CAS  Google Scholar 

  39. Schmitz J, Assenmacher M, Radbruch A. Regulation of T helper cell cytokine expression: functional dichotomy of antigen-presenting cells. Eur. J. Immunol., 23 (1993) 191–199.

    Article  PubMed  CAS  Google Scholar 

  40. Schieferdecker HL, Ullrich R, Hirseland H, Zeitz M. T cell differentiation antigens on lymphocytes in the human intestinal lamina propria. J. Immunol., 149 (1992) 2816–2822.

    PubMed  CAS  Google Scholar 

  41. Ullrich R, Schieferdecker HL, Ziegler K, Riecken EO, Zeitz M. gamma delta T cells in the human intestine express surface markers of activation and are preferentially located in the epithelium. Cell. Immunol., 128 (1990) 619–627.

    Article  PubMed  CAS  Google Scholar 

  42. Abuzakouk M, Carton J, Feighery C, O’Donoghue DP, Weir DG, O’Farrelly C. CD4+ CD8+ and CD8alphaTheta- T lymphocytes in human small intestinal lamina propria. Eur. J. Gastroenterol. Hepatol., 10 (1998) 325–329.

    Article  PubMed  CAS  Google Scholar 

  43. Farstad IN, Halstensen TS, Lien B, Kilshaw PJ, Lazarovitz AI. Distribution of ß7 integrins in the human intestinal mucosal and organized gut-associated lymphoid tissue. Immunology, 89 (1996) 227–237.

    Article  PubMed  CAS  Google Scholar 

  44. Ebert EC, Roberts AI. Costimulation of the CD3 pathway by CD28 ligation in the human intestinal lymphocytes. Cell. Immunol., 171 (1996) 211–216.

    PubMed  CAS  Google Scholar 

  45. De Maria R, Fais S, Silvestri M, et al. Continuous in vivo activation and transient hyporesponsiveness to TcR/ CD3 triggering of human gut lamina propria lymphocytes. Eur. J. Immunol., 23 (1993) 3104–3108.

    Article  PubMed  Google Scholar 

  46. Watanabe M, Ueno Y, Yajima T, et al. Interleukin 7 is produced by human intestinal epithelial cells and regulates the proliferation of intestinal mucosal lymphocytes. J. Clin. Invest., 95 (1995) 2945–2953.

    Article  PubMed  CAS  Google Scholar 

  47. Zeitz M, Greene WC, Peffer NJ, James SP. Lymphocytes isolated from the intestinal lamina propria of normal nonhuman primates have increased expression of genes associated with T cell activation. Gastroenterology, 94 (1988) 647–655.

    PubMed  CAS  Google Scholar 

  48. De Maria R, Boirivant M, Cifone MG, et al. Functional expression of Fas and Fas ligand on human gut lamina propria T lymphocytes. A potential role for the acidic sphingomyelinase pathway in normal immunoregulation. J. Clin. Invest., 97 (1996) 316–322.

    Article  PubMed  Google Scholar 

  49. Gonsky R, Deem RL, Bream JH, Lee DH, Young HA, Targan SR. Mucosa-specific targets for regulation of IFN-gamma expression: lamina propria T cells use different cis-elements than peripheral blood T cells to regulate transactivation of IFN-gamma expression. J. Immunol., 1164 (2000) 1399–1407.

    Google Scholar 

  50. Gonsky R, Deem RL, Hughes CC, Targan SR. Activation of the CD2 pathway in lamina propria T cells up-regulates functionally active AP-1 binding to the IL-2 promoter, resulting in messenger RNA transcription and IL-2 secretion. J. Immunol., 160 (1998) 4914–4922.

    PubMed  CAS  Google Scholar 

  51. Targan SR, Deem RL, Liu M, Wang S, Nel A. Definition of a lamina propria T cell responsive state. Enhanced cytokine responsiveness of T cells stimulated through the CD2 pathway. J. Immunol., 154 (1995) 664–675.

    PubMed  CAS  Google Scholar 

  52. Boirivant M, Fuss I, Fiocchi C, Klein JS, Strong SA, Strober W. Hypoproliferative human lamina propria T cells retain the capacity to secrete lymphokines when stimulated via CD2/CD28 pathways. Proc. Assoc. Am. Physicians., 108 (1996) 55–67.

    PubMed  CAS  Google Scholar 

  53. Braunstein J, Qiao L, Autschbach F, Schurmann G, Meuer S. T cells of the human intestinal lamina propria are high producers of interleukin-10. Gut, 41 (1997) 215–220.

    Article  PubMed  CAS  Google Scholar 

  54. Riordan SM, McIver CJ, Wakefield D, Thomas MC, Duncombe VM, Bolin TD. Interleukin-6 and small intestinal lumenal immunoglobulins. Dig. Dis. Sci., 43 (1998) 442–445.

    Article  PubMed  CAS  Google Scholar 

  55. Danis VA, Heady RV. Evidence for regulation of human colonic mucosal immunoglobulin secretion by intestinal lymphoid cells. J. Clin. Lab. Immunol., 22 (1987) 7–11.

    PubMed  CAS  Google Scholar 

  56. Goodrich ME, McGee DW. Regulation of mucosal B cell immunoglobulin secretion by intestinal epithelial cell-derived cytokines. Cytokine, 10 (1998) 948–955.

    Article  PubMed  CAS  Google Scholar 

  57. Hiroi T, Yanagita M, Ohta N, Sakaue G, Kiyono H. IL-15 and IL-15 receptor selectively regulate differentiation of common mucosal immune system-independent B-1 cells for IgA responses. J. Immunol., 165 (2000) 4329–4337.

    PubMed  CAS  Google Scholar 

  58. Jarry A, Cerf-Bensussan N, Brousse N, Selz F, Guy-Grand D. Subsets of CD3+ (T cell receptor alpha/beta or gamma/delta) and CD3- lymphocytes isolated from normal human gut epithelium display phenotypical features different from their counterparts in peripheral blood. Eur. J. Immunol., 20 (1990) 1097–1103.

    Article  PubMed  CAS  Google Scholar 

  59. Higgins JM, Mandlebrot DA, Shaw SK, et al. Direct and regulated interaction of integrin alphaEbeta7 with E-cadherin. J. Cell. Biol., 140 (1998) 197–210.

    Article  PubMed  CAS  Google Scholar 

  60. Abuzakouk M, Kelleher D, Feighery C, O’Farrelly C. Increased HLA-DR and decreased CD3 on human intestinal intraepithelial lymphocytes; evidence of activation. Gut, 39 (1996) 396–400.

    Article  PubMed  CAS  Google Scholar 

  61. Hoang P, Crotty B, Dalton HR, Jewell DP. Epithelial cells bearing class II molecules stimulate allogeneic human colonic intraepithelial lymphocytes. Gut, 33 (1992) 1089–1093.

    Article  PubMed  CAS  Google Scholar 

  62. Trejdosiewicz LK, Smart CJ, Oakes DJ, et al. Expression of T cell receptors TcRI (gamma/delta) and TcR2 (alpha/beta) in the human intestinal mucosa. Immunology, 68 (1989) 7–12.

    PubMed  CAS  Google Scholar 

  63. Deusch K, Pfeffer K, Reich K, et al. Phenotypic and functional characterization of human TCR gamma delta+ intestinal intraepithelial lymphocytes. Curr. Top. Microbiol. Immunol., 173 (1991) 279–283.

    Article  PubMed  CAS  Google Scholar 

  64. Chardes T, Buzoni-Gatel D, Lepage A, Bernard F, Bout D. Toxoplasma gondii oral infection induces specific cytotoxic CD8 alpha/beta+ Thy-1+ gut intraepithelial lymphocytes, lytic for parasite-infected enterocytes. J. Immunol., 153 (1994) 4596–4603.

    PubMed  CAS  Google Scholar 

  65. Chen D, Lee F, Cebra JJ, Rubin DH. Predominant T cell receptor Vbeta usage of intraepithelial lymphocytes during the immune response to enteric reovirus infection. J. Virol., 71 (1997) 3431–3436.

    PubMed  CAS  Google Scholar 

  66. Cuff CF, Cebra CK, Rubin DH, Cebra JJ. Developmental relationship between cytotoxic alpha/beta T cell receptor-positive intraepithelial lymphocytes and Peyer’s patch lymphocytes. Eur. J. Immunol., 23 (1993) 1333–1339.

    Article  PubMed  CAS  Google Scholar 

  67. Sydora BC, Jamieson BD, Ahmed R, Kronenberg M. Intestinal intraepithelial lymphocytes respond to systemic lymphocytic choriomeningitis virus infection. Cell. Immunol., 167 (1996) 161–169.

    Article  PubMed  CAS  Google Scholar 

  68. Pluschke G, Taube H, Krawinkel U, et al. Oligoclonality and skewed T cell receptor V beta gene segment expression in in vivo activated human intestinal intraepithelial T lymphocytes. Immunobiology, 192 (1994) 77–93.

    Article  PubMed  CAS  Google Scholar 

  69. Regnault A, Kourilsky P, Cumano A. The TCR-beta chain repertoire of gut-derived T lymphocytes. Semin. Immunol., 7 (1995) 307–319.

    Article  PubMed  CAS  Google Scholar 

  70. Arstila T, Arstila TP, Calbo S, et al. Identical T cell clones are located in the mouse gut epithelium and lamina propria and circulate in the thoracic duct lymph. J. Exp. Med., 191 (2000) 823–834.

    Article  PubMed  CAS  Google Scholar 

  71. Barrett TA, Gajewski TF, Danielpour D, Chang EB, Beagley KW, Bluestone JA. Differential function of intestinal intraepithelial lymphocyte subsets. J. Immunol., 149 (1992) 1124–1130.

    PubMed  CAS  Google Scholar 

  72. Van Houten N, Mixter PF, Wolfe J, Budd, RC. CD2 expression on murine intestinal intraepithelial lymphocytes is bimodal and defines proliferative capacity. Int. Immunol., 5 (1993) 665–672.

    Article  PubMed  Google Scholar 

  73. Kvale D, Krajci P, Brandtzaeg P. Expression and regulation of adhesion molecules ICAM-1(CD54) and LFA3 (CD58) in human intestinal epithelial cell lines. Scand. J. Immunol., 35 (1992) 669–676.

    Article  PubMed  CAS  Google Scholar 

  74. Li Y, Yio XY, Mayer L. Human intestinal epithelial cell induced CD8+ T cell activation is mediated through CD8 and the activation of CD8-associated p561ck. J. Exp. Med., 182 (1995) 1079–1088.

    Article  PubMed  CAS  Google Scholar 

  75. Ebert EC. Tumor necrosis factor-alpha enhances intraepithelial lymphocyte proliferation and migration. Gut, 42 (1998) 650–655.

    Article  PubMed  CAS  Google Scholar 

  76. Roberts AI, Nadler SC, Ebert EC. Mesenchymal cells stimulate human intestinal intraepithelial lymphocytes. Gastroenterology, 113 (1997) 144–150.

    Article  PubMed  CAS  Google Scholar 

  77. Corazza N, Muller S, Brunner T, Kagi D, Mueller C. Differential contribution of Fas-and perforin-mediated mechanisms to the cell-mediated cytotoxic activity of naïve and in vivo primed intestinal intraepithelial lymphocytes. J. Immunol., 164 (2000) 398–403.

    PubMed  CAS  Google Scholar 

  78. Fan JY, Boyce CS, Cuff CF. T-helper 1 and T-helper 2 cytokine responses in gut-associated lymphoid tissue following enteric reovirus infection. Cell. Immunol., 188 (1998) 55–63.

    Article  PubMed  CAS  Google Scholar 

  79. Lundqvist C, Melgar S, Yeung MM, Hammarstrom S, Hammarstrom ML. Intraepithelial lymphocytes in human gut have lytic potential and a cytokine profile that suggests T helper 1 and cytotoxic functions. J. Immunol., 157 (1996) 1926–1934.

    PubMed  CAS  Google Scholar 

  80. Mattapallil JJ, Smit-McBride Z, McChesney M, Dandekar S. Intestinal intraepithelial lymphocytes are primed for gamma interferon and MIP-1 beta expression and display antiviral cytotoxic activity despite severe CD4(+) T cell depletion in primary simian immunodeficiency virus infection. J. Virol., 72 (1998) 6421–6429.

    PubMed  CAS  Google Scholar 

  81. Panja A, Blumberg RS, Balk SP, Mayer L. CD I d is involved in T cell-intestinal epithelial cell interactions. J. Exp. Med., 178 (1993) 1115–1119.

    Article  PubMed  CAS  Google Scholar 

  82. Sydora BC, Brossay L, Hagenbaugh A, Kronenberg M, Cheroutre H. TAP-independent selection of CD8+ intestinal intraepithelial lymphocytes. J. Immunol., 56 (1996) 4209–4216.

    Google Scholar 

  83. Deusch K, Luling F, Reich K, Classes M, Wagner H, Pfeffer K. A major fraction of human intraepithelial lymphocytes simultaneously expresses the gamma/delta T cell receptor, the CD8 accessory molecule and preferentially uses the V delta 1 gene segment. Eur. J. Immunol., 21 (1991) 1053–1059.

    Article  PubMed  CAS  Google Scholar 

  84. Groh V, Steinle A, Bauer S, Spies T. Recognition of stress-induced MHC molecules by intestinal epithelial gamma delta T cells. Science, 279 (1998) 1737–1740.

    Article  PubMed  CAS  Google Scholar 

  85. Griffith E, Ramsburg E, Hayday A. Recognition of human gut gamma-delta cells of stress-inducible major histocompatibility molecules on enterocytes. Gut, 43 (1998) 166–167.

    Article  PubMed  CAS  Google Scholar 

  86. Beagley KW, Fujihashi K, Black CA, et al. The Mycobacterium tuberculosis 71-kDa heat-shock protein induces proliferation and cytokine secretion by murine gut intraepithelial lymphocytes. Eur. J. Immunol., 23 (1993) 2049–2052.

    Article  PubMed  CAS  Google Scholar 

  87. Guy-Grand D, Cuenod-Jabri B, Malassis-Seris M, Selz F, Vassalli P. Complexity of the mouse gut T cell immune system: identification of two distinct natural killer T cell intraepithelial lineages. Eur. J. Immunol., 26 (1996) 2248–2256.

    Article  PubMed  CAS  Google Scholar 

  88. Bauer S, Groh V, Wu J, et al. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science, 285 (1999) 727–729.

    Article  PubMed  CAS  Google Scholar 

  89. Ebert EC. Inhibitory effects of transforming growth factor-beta (TGF-beta) on certain functions of intraepithelial lymphocytes. Clin. Exp. Immunol., 115 (1999) 415–420.

    Article  PubMed  CAS  Google Scholar 

  90. Hayday AC. [Gamma] [delta] cells: a right time and a right place for a conserved third way of protection. Annu. Rev. Immunol.,18 (2000) 975–1026.

    Article  PubMed  CAS  Google Scholar 

  91. Suzuki Y, Mori K, Iwanaga T. Intraepithelial gamma delta T cells are closely associated with apoptotic enterocytes in the bovine intestine. Arch. Histol. Cytol., 60 (1997) 319–328.

    Article  PubMed  CAS  Google Scholar 

  92. Komano H, Fujiura Y, Kawaguchi M, et al. Homoestatic regulation of intestinal epithelia by intraepithelial gamma delta T cells. Proc. Natl. Acad. Sci. USA, 92 (1995) 6147–6151.

    Article  PubMed  CAS  Google Scholar 

  93. Roberts SJ, Smith AJ, West AB, et al. T cell alpha beta+ and gamma delta+ deficient mice display abnormal but distinct phenotypes toward a natural, widespread infection of the intestinal epithelium. Proc. Natl. Acad. Sci. USA,93 (1996) 11,774–11,779.

    Google Scholar 

  94. Yoshikai Y. The interaction of intestinal epithelial cells and intraepithelial lymphocytes in host defense. Immunol. Res., 20 (1999) 219–235.

    Article  PubMed  CAS  Google Scholar 

  95. Chung CS, Song GY, Wang W, Chaudry IH, Ayala A. Septic mucosal intraepithelial lymphoid immune suppression: role for nitric oxide not Interleukin-10 or transforming growth factor-beta. J. Trauma 48 (2000) 807–812.

    Article  PubMed  CAS  Google Scholar 

  96. Farstad IN, Carlsen H, Morton HC, Brandtzaeg P. Immunoglobulin A cell distribution in the human small intestine: phenotypic and functional characteristics. Immunology, 101 (2000) 354–363.

    Article  PubMed  CAS  Google Scholar 

  97. Ahmed R, Gray D. Immunological memory and protective immunity: understanding their relation. Science, 272 (1996) 54–60.

    Article  PubMed  CAS  Google Scholar 

  98. Dunn-Walters DK, Isaacson PG, Spencer J. Sequence analysis of rearranged IgVH genes from microdissected human Peyer’s patch marginal zone B cells. Immunology, 88 (1996) 618–624.

    PubMed  CAS  Google Scholar 

  99. Brandtzaeg P, Baekkevold ES, Farstad IN, et al. Regional specialization in the mucosal immune system: what happens in the microcompartments? Immunol. Today, 20 (1999) 141–151.

    Article  PubMed  CAS  Google Scholar 

  100. Kett K, Brandtzaeg P, Radl J, Haaijman JJ. Different subclass distribution of IgA-producing cells in human lymphoid organs and various secretory tissues. J. Immunol., 136 (1986) 3631–3635.

    PubMed  CAS  Google Scholar 

  101. Bjerke K, Brandtzaeg P. Terminally differentiated human intestinal B cells. J chain expression of IgA and IgG subclass-producing immunocytes in the distal ileum compared with mesenteric and peripheral lymph nodes. Clin. Exp. Immunol., 82 (1990) 411–415.

    Article  PubMed  CAS  Google Scholar 

  102. Brandtzaeg P, Bjerke K, Kett K, et al. Production and secretion of immunoglobulins in the gastrointestinal tract. Ann. Allergy, 59 (1987) 21–39.

    PubMed  CAS  Google Scholar 

  103. Weinstein PD, Cebra JJ. The preference for switching to IgA expression by Peyer’s patch germinal center B cells is likely due to the intrinsic influence of their microenvironment. J. Immunol.,147 (1991) 4126–4135.

    PubMed  CAS  Google Scholar 

  104. Bjerke K, Brandtzaeg P. Terminally differentiated human intestinal B cells. IgA and IgG subclass-producing immunocytes in the distal ileum, including Peyer’ s patches, compared with lymph nodes and palatine tonsils. Scand. J. Immunol., 32 (1990) 61–67.

    Article  PubMed  CAS  Google Scholar 

  105. Brandtzaeg P, Farstad IN, Haraldsen G. Regional specialization in the mucosal immune system: primed cells do not always home along the same track. Immunol. Today, 20 (1999) 267–277.

    Article  PubMed  CAS  Google Scholar 

  106. Prigent-Delecourt L, Coffin B, Colombel JF, Dehinnin JP, Vaerman JP, Raumbaud JC. Secretion of immunoglobulins and plasma proteins from the colonic mucosal: an in vivo study in man. Clin. Exp. Immunol.,99 (1995)221–225.

    Article  PubMed  CAS  Google Scholar 

  107. Dickinson BL, Badizadegan K, Wu Z, et al. Bidirectional FcRn-dependent IgG transport in a polarized human intestinal epithelial cell line. J. Clin. Invest., 104 (1999) 903–911.

    Article  PubMed  CAS  Google Scholar 

  108. O’Malony S, Arranz E, Barton JR, Ferguson A. Dissociation between systemic and mucosal humoral immune responses in celiac disease. Gut, 32 (1991) 29–35.

    Article  Google Scholar 

  109. Murakami M, Honjo T. The involvement of B-1 cells in mucosal immunity and autoimmunity. Immunol. Today, 16 (1995) 534–539.

    Article  PubMed  CAS  Google Scholar 

  110. Boirivant M, Fais S, Annibale B, Agostini D, Delle Fave G, Pallone F. Vasoactive intestinal polypeptide modulates the in vitro immunoglobulin A production by intestinal lamina propria lymphocytes. Gastroenterology, 106 (1994) 576–582.

    PubMed  CAS  Google Scholar 

  111. Bos NA, Cebra JJ, Kroese FGM. B-1 cells and the intestinal microflora. Curr. Top. Microbiol. Immunol., 252 (2000) 211–220.

    Article  PubMed  CAS  Google Scholar 

  112. Friedman A, Weiner HL. Induction of anergy or active suppression following oral tolerance is determined by antigen dosage. Proc. Natl. Acad. Sci. USA, 91 (1994) 6688–6692.

    Article  PubMed  CAS  Google Scholar 

  113. Van Gool SW, Vermeiren J, Rafiq K, Lorr K, de Boer M, Ceuppens JL. Blocking of CD40–CD154 and CD80/ CD86–CD28 interactions during primary allogeneic stimulation results in T cell anergy and high IL-10 production. Eur. J. Immunol., 29 (1999) 2367–2375.

    Article  PubMed  Google Scholar 

  114. Koenen HJ, Joosten I. Blockade of CD86 and CD40 induces alloantigen-specific immunoregulatory T cells that remain anergic even after reversal of hyporesponsiveness. Blood, 95 (2000) 3153–3161.

    PubMed  CAS  Google Scholar 

  115. Villegas EN, Elloso MM, Reichmann G, Peach R, Hunter CA. Role of CD28 in the generation of effector and memory responses required for resistance to Toxoplasma gondii. J. Immunol., 163 (1999) 3344–3353.

    CAS  Google Scholar 

  116. Frauwirth KA, Alegre ML, Thompson CB. Induction of T cell anergy in the absence of CTLA-4/B7 interaction. J. Immunol., 164 (2000) 2987–2993.

    PubMed  CAS  Google Scholar 

  117. Perez VL, Van Parijs L, Biuckians A, Zheng XX, Strom TB, Abbas AK. Induction of peripheral T cell tolerance in vivo requires CTLA-4 engagement. Immunity,4 (1997) 411–417.dd

    Article  Google Scholar 

  118. Chen Y, Inobe J, Weiner HL. Inductive events in oral tolerance in the TCR transgenic adoptive transfer model. Cell. Immunol., 178 (1997) 62–68.

    Article  PubMed  CAS  Google Scholar 

  119. Kweon MN, Fujihashi K, Wakatsuki Y, et al. Mucosally induced systemic T cell unresponsiveness to ovalbumin requires CD40 ligand–CD40 interactions. J. Immunol., 162 (1999) 1904–1909.

    PubMed  CAS  Google Scholar 

  120. Kitani A, Chua K, Nakamura K, Strober W. Activated self-MHC-reactive T cells have the cytokine phenotype of the Th3/T regulatory cell 1 T cells. J. Immunol., 165 (2000) 691–702.

    PubMed  CAS  Google Scholar 

  121. Levings MK, Roncarolo MG. T-regulatory 1 cells: a novel subset of CD4 T cells with immunoregulatory properties. J. Allergy Clin. Immunol., 106 (2000) 5109–5112.

    Article  Google Scholar 

  122. Van Vlasselaer P, Punnonen J, de Vries JE. Transforming growth factor-beta directs IgA switching in human B cells. J. Immunol., 148 (1992) 2062–2067.

    PubMed  Google Scholar 

  123. Mengel J, Cardillo F, Aroeira LS, Williams O, Russo M, Vaz, NM. Anti-gamma delta T cell antibody blocks the induction and maintenance of oral tolerance to ovalbumin in mice. Immunol. Lett., 48 (1995) 97–102.

    Article  PubMed  CAS  Google Scholar 

  124. Ke Y, Pearce K, Lake JP, Ziegler HK, Kapp JA. Gamma delta T lymphocytes regulate the induction and maintenance of oral tolerance. J. Immunol., 158 (1997) 3610–3618.

    PubMed  CAS  Google Scholar 

  125. Fujihashi K, Taguchi T, Aicher WK,et al. Immunoregulatory functions for murine intraepithelial lymphocytes: gamma/delta T cell receptor-positive (TCR+) T cells abrogate oral tolerance, while alpha/beta TCR+ T cells provide B cell help. J. Exp. Med., 175 (1992) 695–707.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Fulton, J.R., Cunningham, C.A., Cuff, C.F. (2003). Immunology of the Gastrointestinal Tract. In: Koch, T.R. (eds) Colonic Diseases. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-314-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-314-9_8

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9740-3

  • Online ISBN: 978-1-59259-314-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics