Skip to main content

Mucin and Goblet Cell Function

  • Chapter
Colonic Diseases
  • 245 Accesses

Abstract

The intestine and colon are coated by a protective mucous gel. The mucous gel consists of a variety of large mucin glycoproteins, trefoil factors (TFF), defensins, secreted immunoglobulins (Ig), electrolytes, sloughed epithelial cells, phospholipids, commensal bacteria, and other components. These factors form a dynamic barrier that protects epithelial surfaces from toxins, harmful bacteria, parasites, and digestive chemicals. Mucous gel components are largely derived from the secretory products of goblet cells. The protective functions of goblet cell products make them an integral part of the innate immune response of the gut. This review will focus on recent insights into the function of intestinal goblet cells and their secretory products that contribute to the protective mucous layer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Neutra M, Forstner JF. Gastrointestinal mucus: synthesis, secretion, and function. In Physiology of the Digestive Tract. Johnson L (ed.), Raven Press, New York, NY, 1987, pp. 975–1009.

    Google Scholar 

  2. Cheng H, LeBlond CP. Origin, differentiation and renewal of the four main epithelial cell types of the mouse small intestine. V. Unitarian theory of the origin of the four epithelial cell types. Am. J. Anat., 141 (1974) 537–562.

    Article  PubMed  CAS  Google Scholar 

  3. Specian RD, Oliver MG. Functional biology of intestinal goblet cells. Am. J. Physiol., 260 (1991) C183 - C193.

    PubMed  CAS  Google Scholar 

  4. Lipkin M. Growth and development of gastrointestinal cells. Annu. Rev. Physiol., 47 (1985) 175–197.

    Article  PubMed  CAS  Google Scholar 

  5. Akamatsu T, Ota T, Ishii K et al. Histochemical study of the surface mucous gel layer of the human large intestine. In Cytoprotection and Cytobiology. Yunoki K (ed.), Excerpta Medica, Amsterdam, 1991, pp. 90–95.

    Google Scholar 

  6. Matsuo K, Ota H, Akamatsu T, Sugiyama A, Katsuyama T. Histochemistry of the surface mucous gel layer of the human colon. Gut, 40 (1997) 782–789.

    Article  PubMed  CAS  Google Scholar 

  7. Pullan RD, Thomas GAO, Rhodes M, et al. Thickness of adherant mucus gel on colonic mucosa in humans and its relevance to colitis. Gut, 35 (1994) 353–359.

    Article  PubMed  CAS  Google Scholar 

  8. Phillips TE, Wilson J. Morphometric analysis of mucous granule depletion and replenishment in rat colon. Dig. Dis. Sci., 38 (1993) 2299–2304.

    Article  PubMed  CAS  Google Scholar 

  9. Phillips T, Wilson J. Signal transduction pathways mediating mucin secretion from intestinal goblet cells. Dig. Dis. Sci., 38 (1993) 1046–1054.

    Article  PubMed  CAS  Google Scholar 

  10. Neutra MR, O’Malley LJ, Specian RD. Regulation of intestinal goblet cell secretion. II. A survey of potential secretagogues. Am. J. Physiol., 242 (1982) G380 - G387.

    PubMed  CAS  Google Scholar 

  11. Castagliuolo I, Leeman S, Bartolak-Suki E, et al. A neurotensin antagonist, SR48692, inhibits colonic responses to immobilization stress in rats. Proc. Natl. Acad. Sci. USA,93 (1996) 12,611–12,615.

    Google Scholar 

  12. Bou-Hanna C, Berthon B, Combettes L, Claret M, Laboisse C. Role of calcium in carbachol-and neurotensininduced mucin exocytosis in a human colonic goblet cell line and cross-talk with the cyclic AMP pathway. Biochem. J., 299 (1994) 579–585.

    PubMed  CAS  Google Scholar 

  13. Moore B, Sharkey K, Mantle M. Role of 5-HT in cholera toxin-induced mucin secretion in the rat small intestine. Am. J. Physiol., 270 (1996) G1001 - G1009.

    PubMed  CAS  Google Scholar 

  14. Rozee KR, Cooper D, Lam K, Costerton JW. Microbial flora of the mouse ileum mucous layer and epithelial surface. Appl. Environ. Microbiol., 43 (1982) 1451–1463.

    PubMed  CAS  Google Scholar 

  15. Poulson LK, Lan F, Kristensen CS, Hobolth P, Molin S, Krogfelt KA. Spatial distribution of E. coli in the mouse large intestine inferred from rRNA in situ hybridization. Infect Immun., 62 (1994) 5191–5194.

    Google Scholar 

  16. Ensgraber M, Genitsariotis R, Storkel S, Loos M. Purification and characterization of a Salmonella typhimurium agglutinin from gut mucus secretions. Microb. Pathog., 12 (1992) 255–266.

    Article  PubMed  CAS  Google Scholar 

  17. Sajjan SU, Forstner JF. Role of the putative link glycopeptide of intestinal mucin in binding of piliated Escherichia coli serotype O157:H7 strain CL-49. Infect. Immun., 58 (1990) 868–873.

    PubMed  CAS  Google Scholar 

  18. Chadee K, Petri WA, Innes DJ, Ravdin JI. Rat and human colonic mucins bind to and inhibit adherence lectin of Entamoeba histolytica. J. Clin. Invest., 80 (1987) 1245–1254.

    Article  CAS  Google Scholar 

  19. Smith CJ, Kaper JB, Mack DR. Intestinal mucin inhibits adhesion of human enteropathogenic E. coli to HEp2 cells. J. Pediatr. Gastroenterol. Nutr., 21 (1995) 269–276.

    Article  PubMed  CAS  Google Scholar 

  20. Belley A, Keller K, Grove J, Chadee K. Interaction of LS 174T human colon cancer cell mucins with Entamoeba histolytica: an in vitro model for colonic disease. Gastroenterology, 111 (1996) 1484–1492.

    Article  PubMed  CAS  Google Scholar 

  21. Sajjan SU, Forstner JF. Characteristics of binding of Escherichia coli serotype O157:H7 strain CL-49 to purified intestinal mucin. Infect. Immunol., 58 (1990) 860–867.

    CAS  Google Scholar 

  22. Yolken RH, Ojeh C, Khatri IA, Sajjan U, Forstner JF. Intestinal mucin inhibits rotavirus infection in an oligosaccharide-dependent manner. J. Infect. Dis., 169 (1994) 1002–1006.

    Article  PubMed  CAS  Google Scholar 

  23. Magnusson KE, Stjemstrom I. Mucosal barrier mechanisms. Interplay between secretory IgA (SIgA), IgG and mucins on the surface properties and association of salmonellae with intestine and granulocytes. Immunology, 45 (1982) 239–248.

    PubMed  CAS  Google Scholar 

  24. Mack DR, Michail S, Wei S, McDougall L, Hollingsworth MA. Probiotics inhibit enteropathogenic E. coli adherence in vitro by inducing intestinal mucin gene expression. Am. J. Physiol. 276 (1999) G941 - G950.

    PubMed  CAS  Google Scholar 

  25. Hooper LV, Wong MH, Thelin A, Hansson L, Falk PG, Gordon JI. Molecular analysis of commensal host-microbial relationships in the intestine. Science,291 (2001)881–884.

    Google Scholar 

  26. Hooper LV, Xu J, Falk PG, Midtvedt T, Gordon JI. A molecular sensor that allows a gut commensal to control its nutrient foundation in a competitive ecosystem. Proc. Natl. Acad. Sci. USA, 96 (1999) 9833–9838.

    Article  PubMed  CAS  Google Scholar 

  27. Ho SB, Ewing S, Montgomery CK, et al. Mucin core peptide expression in the colon polyp-carcinoma sequence. Gastroenterology, 100 (1991) A370.

    Google Scholar 

  28. Strous GJ, Dekker J. Mucin-type glycoproteins. Crit. Rev. Biochem. Mol. Biol., 27 (1992) 57–92.

    Article  PubMed  CAS  Google Scholar 

  29. Gendler SJ, Spicer AP. Epithelial mucin genes. Annu. Rev. Physiol., 57 (1995) 607–634.

    Article  PubMed  CAS  Google Scholar 

  30. Hilkens J, Buijs F, Ligtenberg M. Complexity of MAM-6, an epithelial sialomucin associated with carcinomas. Cancer Res., 49 (1989) 786–793.

    PubMed  CAS  Google Scholar 

  31. Gendler SJ, Lancaster CA, Taylor-Papdimitriou J, et al. Molecular cloning and expression of human tumor-associated polymorphic epithelial mucin. J. Biol. Chem.,265 (1990) 15,286–15,293.

    Google Scholar 

  32. Siddiqui J, Abe M, Hayes D, Shani E, Yunis E, Kufe D. Isolation and sequencing of a cDNA coding for the human DF3 breast carcinoma-associated antigen. Proc. Natl. Acad. Sci. USA, 85 (1988) 2320–2323.

    Article  PubMed  CAS  Google Scholar 

  33. Ligtenberg MJL, Vos HL, Gennissen AMC, Hilkens J. Episialin, a carcinoma-associated mucin, is generated by a polymorphic gene encoding splice variants with alternative amino termini. J. Biol. Chem., 265 (1990) 5573–5578.

    PubMed  CAS  Google Scholar 

  34. Baeckstrom D, Karlsson N, Hansson GC. purification and characterization of sialyl-LeA-carrying mucins of human bile. Evidence for the presence of MUC1 and MUC3 apoproteins. J. Biol. Chem.,269 (1994) 14,430–14,437.

    Google Scholar 

  35. Patton S, Gendler SJ, Spicer AP. The epithelial mucin MUC1, of milk, mammary gland, and other tissues. Biochim. Biophys. Acta.,1241 (1995) 407–424:

    Google Scholar 

  36. Zhang K, Baeckstrom D, Breving H, Hansson GC. Secreted MUC1 mucins lacking their cytoplasmic part and carrying sialyl-Lewis a and x epitopes from a tumor cell line and sera of colon carcinoma patients can inhibit HL-60 leukocyte adhesion to E selectin-expressing endothelial cells. J. Cell. Biochem., 60 (1996) 538–549.

    CAS  Google Scholar 

  37. Boshell M, Lalani E-N, Pemberton L, Burchell J, Gendler SJ, Taylor-Papadimitriou J. The product of the human MUC 1 gene when secreted by mouse cells transfected with the full-length cDNA lacks the cytoplasmic tail. Biochem. Biophys. Res. Commun., 185 (1992) 1–8.

    Article  PubMed  CAS  Google Scholar 

  38. Gum JR, Ho JJL, Pratt WS, et al. MUC3 human intestinal mucin. Analysis of gene structure, the carboxyl terminus, and a novel upstream repetitive region. J. Biol. Chem.,272 (1997) 26,678–26,686.

    Google Scholar 

  39. Crawley SC, Gum JR, Hicks JW, et al. Genomic organization and structure of the 3’ region of human MUC3: alternative splicing predicts membrane-bound and soluble forms of the mucin. Biochem. Biophys. Res. Commun., 263 (1999) 728–736.

    Article  PubMed  CAS  Google Scholar 

  40. Shekels LL, Hunninghake DA, Tisdale AS, et al. Cloning and characterization of mouse intestinal MUC3 mucin: 3’ sequence contains epidermal-growth-factor-like domains. Biochem. J., 330 (1998) 1301–1308.

    PubMed  CAS  Google Scholar 

  41. Sheng Z, Wu K, Carraway K, Fregien N. Molecular cloning of the transmembrane component of the 13762 mammary adenocarcinoma sialomucin complex. J. Biol. Chem.,267 (1992) 16,341–16,346.

    Google Scholar 

  42. Rossi EA, McNeer RR, Price-Schiavi S, et al. Sialomucin complex, a heterodimeric glycoprotein complex. J. Biol. Chem.,271 (1996) 33,476–33,485.

    Google Scholar 

  43. Nollet S, Moniaux N, Maury J, et al. Human mucin gene MUC4: organization of its 5’-region and polymorphisms of its central tandem repeat array. Biocehm. J., 332 (1998) 739–748.

    CAS  Google Scholar 

  44. Moniaux N, Nollet S, Porchet N, Degand P, Laine A, Aubert J-P. Complete sequence of the human mucin MUC4: a putative cell membrane-associated mucin. Biochem. J., 338 (1999) 325–333.

    Article  PubMed  CAS  Google Scholar 

  45. Williams S, McGuckin M, Gotley D, Eyre H, Sutherland G, Antalis TM. Two novel mucin genes downregulated in colorectal cancer identified by differential display. Cancer Res. 59 (1999) 4083–4089.

    PubMed  CAS  Google Scholar 

  46. Mcneer RR, Price-Schiavi SA, Komatsu M, Fregien N, Carraway CAC, Carraway KL. Sialomucin complex in tumors and tissues. Front. Biosci., 2 (1998) 449–459.

    Google Scholar 

  47. Carlstedt I, Sheehan JK. Structure and macromolecular properties of mucus glycoproteins. Monogr. Allergy, 24 (1988) 16–24.

    PubMed  CAS  Google Scholar 

  48. Gum JR, Hicks JW, Toribara NW, Rothe E-M, Lagace RE, Kim YS. The human MUC2 intestinal mucin has cysteine-rich subdomains located both upstream and downstream of its central repetitive region. J. Biol. Chem.,267 (1992) 21,375–21,383.

    Google Scholar 

  49. Desseyn J-P, Guyonnet-Duperat, V, Porchet N, Aubert J-P, Laine A. Human mucin gene MUC5B, the 10.7-kb large central exon encodes various alternate subdomains resulting in a super-repeat. J. Biol. Chem., 272 (1997) 3168–3178.

    Article  PubMed  CAS  Google Scholar 

  50. Desseyn J-L, Aubert J-P, Van Seuningen I, Porchet N, Laine A. Genomic organization of the 3’ region of the human mucin gene MUC5B. J. Biol. Chem.,272 (1997) 16,873–16,883.

    Google Scholar 

  51. Inatomi T, Tisdale AS, Zhan Q, Spurr-Michaud S, Gipson IK. cloning of rat Muc5AC mucin gene: Comparison of its structure and tissue distribution to that of human and mouse homologues. Biochem. Biophys. Res. Commun., 236 (1997) 789–797.

    Article  PubMed  CAS  Google Scholar 

  52. Toribara NW, Ho SB, Gum E, Gum JR, Lau P, Kim YS. The carboxyl-terminal sequence of the human secretory mucin, MUC6: Analysis of the primary amino acid sequence. J. Biol. Chem.,272 (1997) 16,398–16,403.

    Google Scholar 

  53. Perez-Vilar J, Hill RL. Identification of the half-cystine residues in porcine submaxillary mucin critical for multimerization through the D-domains. J. Biol. Chem.,273 (1998) 34,527–34,534.

    Google Scholar 

  54. Perez-Vilar J, Hill RL. The structure and assembly of secreted mucins. J. Biol. Chem.,274 (1999) 31,75131,754.

    Google Scholar 

  55. Wesley A, Mantle M, Man D, Qureshi R, Forstner G, Forstner J. Neutral and acidic species of human intestinal mucin. Evidence for different core peptides. J. Biol. Chem., 260 (1985) 7955–7959.

    PubMed  CAS  Google Scholar 

  56. Van Klinken BJ-W, Dekker J, Buller HA, De Bolos C, Einerhand AWC. Biosynthesis of mucins (MUC2–6) along the longitudinal axis of the human gastrointestinal tract. Am. J. Physiol., 273 (1997) G296 - G302.

    PubMed  Google Scholar 

  57. Asker N, Axelsson MAB, Olofsson S-O, Hansson GC. Dimerization of the human MUC2 mucin in the endoplasmic reticulum is followed by a N-glycosylation-dependent transfer of the mono-and dimers to the golgi apparatus. J. Biol. Chem.,273 (1998) 18,857–18,863.

    Google Scholar 

  58. Sheehan JK, Thornton DJ, Howard M, Carlstedt I, Corfield AP, Paraskeva C. Biosynthesis of the MUC2 mucin: evidence for a slow assembly of fully glycosylated units. Biochem. J., 315 (1996) 1055–1060.

    PubMed  CAS  Google Scholar 

  59. Axelsson MAB, Asker N, Hansson GC. 0-glycosylated MUC2 monomer and dmer from LS 174T cells are water soluble, whereas larger MUC2 species formed early during biosynthesis are insoluble and contain nonreducible intermolecular bonds. J. Biol. Chem.,273 (1998) 18,864–18,870.

    Google Scholar 

  60. Herrmann A, Davies JR, Lindell G, et al. Studies on the “insoluble” glycoprotein complex from human colon. J. Biol. Chem.,274 (1999) 15,828–15,836.

    Google Scholar 

  61. Khatri IA, Forstner GG, Forstner JF. Susceptibility of the cysteine-rich N-terminal and C-terminal ends of rat intestinal mucin Muc2 to proteolytic cleavage. Biochem. J., 331 (1998) 323–330.

    PubMed  CAS  Google Scholar 

  62. Karlsson NG, Herrmann A, Karlsson H, Johansson MEV, Carlstedt I, Hansson GC. The glycosylation of rat intestinal Muc2 mucin varies between rat strains and the small and large intestine. J. Biol. Chem.,272 (1997) 27,025–27,034.

    Google Scholar 

  63. Van Klinken BJ-W, Dekker J, Van Gool SA, Van Marie J, Buller HA, Einerhand AWC. MUC5B is the prominent mucin in human gallbladder and is also expressed in a subset of colonic goblet cells. Am. J. Physiol., 274 (1998) G871 - G878.

    PubMed  Google Scholar 

  64. Winterford CM, Walsh MD, Leggett BA, Jass JR. Ultrastructural localization of epithelial mucin core proteins in colorectal tissues. J. Histochem. Cytochem., 47 (1999) 1063–1074.

    Article  PubMed  CAS  Google Scholar 

  65. Kovarik A, Peat N, Wilson D, Gendler SJ, Taylor-Papadimitriou J. Analysis of the tissue-specific promoter of the MUC1 gene. J. Biol. Chem., 268 (1993) 9917–9926.

    PubMed  CAS  Google Scholar 

  66. Abe M, Kufe D. Characterization of cis-acting elements regulating transcription of the human DF3 breast carcinoma-associated antigen (MUCI) gene. Proc. Natl. Acad. Sci. USA, 90 (1993) 282–286.

    Article  PubMed  CAS  Google Scholar 

  67. Gum JR, Hicks JW, Gillespie A-M, et al. Goblet cell-specific expression mediated by the MUC2 mucin gene promoter in the intestine of transgenic mice. Am. J. Physiol., 276 (1999) G666 - G676.

    PubMed  CAS  Google Scholar 

  68. Price-Schiavi SA, Perez A, Barco R, Carraway KL. Cloning and characterization of the 5’ flanking region of the sialomucin complex/rat Muc4 gene: promoter activity in cultured cells. Biochem. J., 349 (2000) 641–649.

    Article  PubMed  CAS  Google Scholar 

  69. Li J-D, Feng W, Gallup M, et al. Activation of NF-kB via a Src-dependent RasMAPK-pp90rsk pathway is required for Pseudomonas aeruginosa-induced mucin overproduction in epithelial cells. Proc. Natl. Acad. Sci. USA, 95 (1998) 5718–5723.

    Article  PubMed  CAS  Google Scholar 

  70. Temann U-A, Prasad B, Gallup MW, et al. A novel role for murine IL-4 in vivo: Induction of MUC5AC gene expression and mucin hypersecretion. Am. J. Respir. Cell Mol. Biol., 16 (1997) 471–478.

    PubMed  CAS  Google Scholar 

  71. Levine SJ, Larivee P, Logun C, Angus CW, Ognibene FP, Shelhamer JH. Tumor necrosis factor-alpha induces mucin hypersecretion and MUC2 gene expression by human airway epithelial cells. Am. J. Resp. Cell Mol. Biol. 12 (1995) 196–204.

    CAS  Google Scholar 

  72. Fischer BM, Krunkosky TM, Wright DT, Dolan-O’Keefe M, Adler KB. Tumor necrosis factor-alpha stimulates mucin secretion and gene expression in airway epithelium in vitro. Chest, 107 (1995) 133S - 135S.

    Article  PubMed  CAS  Google Scholar 

  73. Nielsen OH, Koppen T, Rudiger N, Horn T, Eriksen J, Kirman I. Involvement of interleukin-4 and-10 in inflammatory bowel disease. Dig. Dis. Sci., 41 (1996) 1786–1793.

    Article  PubMed  CAS  Google Scholar 

  74. Kusugami K, Haruta J, Ieda M, Shioda M, Ando T, Kuroiwa A. Phenotypic and functional characterization of T-cell lines generated from colonoscopic biopsy specimens in patients with ulcerative colitis. Dig. Dis. Sci., 40 (1995) 198–210.

    Article  PubMed  CAS  Google Scholar 

  75. Shim J, Dabbagh K, Ueki I, et al. IL-13 induces mucin production by stimulating epidermal growth factor receptors and by activating neutrophils. Am. J. Physiol. Lung Cell Mol. Physiol., 280 (2001) L134 - L140.

    PubMed  CAS  Google Scholar 

  76. Shekels LL, Anway RE, Lin J, et al. Coordinated Muc2 and Muc3 mucin gene expression in Trichinella spiralis infection in wild-type and cytokine deficient mice. Dig. Dis. Sci., 46 (2001) 1757–1764.

    Article  PubMed  CAS  Google Scholar 

  77. Podolsky DK. Mucosal immunity and inflammation V. Innate mechanisms of mucosal defense and repair: the best offense is a good defense. Am. J. Physiol., 277 (1999) G495 - G499.

    Google Scholar 

  78. Lefebvre O, Wolf C, Kedinger M, et al. The mouse one P-domain (pS2) and two P-domain (mSP) genes exhibit distinct patterns of expression. J. Cell Biol., 122 (1993) 191–198.

    Article  PubMed  CAS  Google Scholar 

  79. Suemori S, Lynch-Devaney K, Podolsky DK. Identification and characterization of rat intestinal trefoil factor: tissue-and cell-specific member of the trefoil protein family. Proc. Natl. Acad. Sci. USA,88 (1991) 11,017–11,021.

    Google Scholar 

  80. Ho SB, Shekels LL, Toribara NW, et al. Mucin gene expression in normal, preneoplastic, and neoplastic human gastric epithelium. Cancer Res. 55 (1995) 2681–2690.

    PubMed  CAS  Google Scholar 

  81. Chang S-Y, Dohrman AF, Basbaum CB, et al. Localization of mucin (MUC2 and MUC3) messenger RNA and peptide expression in human normal intestine and colon cancer. Gastroenterology, 107 (1994) 28–36.

    PubMed  CAS  Google Scholar 

  82. Mashimo H, Wu D-C, Podolsky DK, Fishman MC. Impaired defense of intestinal mucosa in mice lacking intestinal trefoil factor. Science, 274 (1996) 262–265.

    Article  PubMed  CAS  Google Scholar 

  83. Kindon H, Pothoulakis C, Thim L, Lynch-Devaney K, Podolsky DK. Trefoil peptide protection of intestinal epithelial barrier function: cooperative interaction with mucin glycoprotein. Gastroenterology, 109 (1995) 516–523.

    Article  PubMed  CAS  Google Scholar 

  84. Tomasetto C, Masson R, Linares J-S, et al. pS2/TFF1 interacts directly with the VWFC cysteine-rich domains of mucins. Gastroenterology, 118 (2000) 70–80.

    Article  PubMed  CAS  Google Scholar 

  85. Efstathiou JA, Noda M, Rowan A, et al. Intestinal trefoil factor controls the expression of the adenomatous polyposis coli-catenin and the E-cadherin-catenin complexes in human colon carcinoma cells. Proc. Natl. Acad. Sci. USA, 95 (1998) 3122–3127.

    Article  PubMed  CAS  Google Scholar 

  86. Mack DR, Neumann AW, Policova Z, Sherman PM. Surface hydrophobicity of the intestinal tract. Am. J. Physiol., 262 (1992) G171 - G177.

    PubMed  CAS  Google Scholar 

  87. Schacter M, Peret MW, Billing AG, Wheeler GD. Immunolocalization of the protease kallikrein in the colon. J. Histochem. Cytochem., 31 (1983) 1255–1260.

    Article  Google Scholar 

  88. Beyer EC, Tokuyasu KT, Barondes SA. Localization of an endogenous lectin in chick liver, intestine, and pancreas. J. Cell. Biol., 82 (1979) 565–571.

    Article  PubMed  CAS  Google Scholar 

  89. Kudo H, Inada M, Ohshio G, et al. Immunohistochemical localization of vitamin B12 R-binder in the human digestive tract. Gut, 28 (1987) 339–345.

    Article  PubMed  CAS  Google Scholar 

  90. Nexo E, Poulsen SS, Hansen SN, Kirkegaard P, Olsen PS. Characterization of a novel proteolytic enzyme localized to goblet cells in rat and man. Gut, 25 (1984) 656–664.

    Article  PubMed  CAS  Google Scholar 

  91. Ogata H, Inoue N, Podolsky DK. Identification of a goblet cell-specific enhancer element in the rat intestinal trefoil factor gene promoter bound by a goblet cell nuclear protein. J. Biol. Chem., 273 (1998) 3060–3067.

    Article  PubMed  CAS  Google Scholar 

  92. Itoh H, Inoue N, Podolsky DK. Goblet-cell specific transcription of mouse intestinal trefoil factor gene results from collaboration of distinctive positive and negative regulatory elements. Biochem. J. 341 (1999) 461–472.

    Article  PubMed  CAS  Google Scholar 

  93. Itoh H, Beck PL, Inoue N, Xavier R, Podolsky DK. A paradoxical reduction in susceptibility to colonic injury upon targeted transgenic ablation of goblet cells. J. Clin. Invest., 104 (1999) 1539–1547.

    Article  PubMed  CAS  Google Scholar 

  94. Tornita M, Itoh H, Ishikawa N, et al. Molecular cloning of mouse intestinal trefoil factor and its expression during goblet cell changes. Biochem. J., 311 (1995) 293–297.

    Google Scholar 

  95. Itoh H, Tornita M, Uchino H, et al. cDNA cloning of rat pS2 peptide and expression of trefoil peptides in acetic acid-induced colitis. Biochem. J. 318 (1996) 939–944.

    PubMed  CAS  Google Scholar 

  96. Tytgat KMAJ, Opdam FJM, Einerhand AWC, Buller HA, Dekker J. MUC2 is the prominent colonic mucin expressed in ulcerative colitis. Gut, 38 (1996) 554–563.

    Article  PubMed  CAS  Google Scholar 

  97. Weiss AA, Babyatsky MW, Ogata S, Chen A, Itzkowitz SH. Expression of MUC2 and MUC3 mRNA in human normal, malignant, and inflammatory intestinal tissues. J. Histochem. Cytochem., 44 (1996) 1161–1166.

    Article  PubMed  CAS  Google Scholar 

  98. Spicer AP, Rowse GJ, Lidner TK, Gendler SJ. Delayed mammary tumor progression in Mud 1 null mice. J. Biol. Chem.,270 (1995) 30,093–30,101.

    Google Scholar 

  99. Parmley RR, Gendler SJ. Cystic fibrosis mice lacking Muc1 have reduced amounts of intestinal mucus. J. Clin. Invest., 102 (1998) 1798–1806.

    Article  PubMed  CAS  Google Scholar 

  100. Velcich A, Yang WC, Heyer J, et al. Colorectal cancer in mice genetically deficient in the mucin Muc2. Sci., 295 (2002) 1726–1729.

    Article  CAS  Google Scholar 

  101. Ho SB, Kim YS. Carbohydrate antigens on cancer-associated mucin-like molecules. Semin. CancerBiol., 2 (1991) 389–400.

    CAS  Google Scholar 

  102. Hakomori SI. Aberrant glycosylation in tumors and tumor-associated carbohydrate antigens. Adv. Cancer Res., 52 (1989) 257–331.

    Article  PubMed  CAS  Google Scholar 

  103. Bartman AE, Sanderson SJ, Ewing SL, et al. Aberrant expression of MUCSAC and MUC6 gastric mucin genes in colorectal polyps. Int. J. Cancer, 80 (1999) 210–218.

    Article  PubMed  CAS  Google Scholar 

  104. Devine PL, McKenzie IFC. Mucins: structure, function, and associations with malignancy. BioEssays, 14 (1992) 619–625.

    Article  PubMed  CAS  Google Scholar 

  105. Jass JR, Roberton AM. Colorectal mucin histochemistry in health and disease:a critical review. Pathol. Int., 44 (1994) 487–504.

    Article  PubMed  CAS  Google Scholar 

  106. Ho SB. The use of mucosal biopsy markers to predict colon cancer risk. Gastroenterol. Clin. N. Am.,3 (1 993) 623–638.

    Google Scholar 

  107. Karlen P, Young E, Brostrom O, et al. Sialyl-Tn antigen as a marker of colon cancer risk in ulcerative colitis: relation to dysplasia and DNA aneuploidy. Gastroenterology, 115 (1998) 1395–1404.

    Article  PubMed  CAS  Google Scholar 

  108. Podolsky DK. Role of mucins in inflammatory bowel disease. In Inflammatory Bowel Disease. MacDermott RP, Stenson WF (eds.), Elsevier, New York, NY, 1992, pp. 311–322.

    Google Scholar 

  109. Boland CR, Lance P, Levin B, Riddell RH, Kim YS. Abnormal goblet cell glycoconjugates in rectal biopsies associated with an increased risk for neoplasia in patients with ulcerative colitis. Early results of a prospective study. Gut, 25 (1984) 1364–1371.

    Article  PubMed  CAS  Google Scholar 

  110. Jacobs LR, Huber PW. Regional distribution and alterations of lectin binding to colorectal mucin in mucosal biopsies from controls and subjects with inflammatory bowel disease. J. Clin. Invest. 75 (1985) 112–118.

    Article  PubMed  CAS  Google Scholar 

  111. Filipe M. Mucins in the gastrointestinal epithelium. A review. Invest. Cell Pathol. 2 (1979) 195–216.

    PubMed  CAS  Google Scholar 

  112. Culling CFA, Reid PE, Dunn WL, Clay MG. Histochemical comparison of the epithelial mucins in the ileum in Crohn’s disease and in normal controls. J. Clin. Pathol., 30 (1977) 1063–1067.

    Article  PubMed  CAS  Google Scholar 

  113. Ehsanullah M, Filipe MI, Gazzard B. Mucin secretion in inflammatory bowel disease: correlation with disease activity and dysplasia. Gut, 23 (1982) 485–489.

    Article  PubMed  CAS  Google Scholar 

  114. Clamp JR, Fraser G, Read AE. Study of the carbohydrate content of mucus glycoproteins from normal and diseased colons. Clin. Sci., 61 (1981) 229–234.

    PubMed  CAS  Google Scholar 

  115. Boland CR, Deshmukh GD. The carbohydrate composition of mucin in colonic cancer. Gastroenterology, 98 (1990) 1170–1177.

    PubMed  CAS  Google Scholar 

  116. Podolsky D, Isselbacher K. Composition of human colonic mucin. Selective alteration in inflammatory bowel disease. J. Clin. Invest. 72 (1983) 142–153.

    Article  PubMed  CAS  Google Scholar 

  117. Podolsky DK, Isselbacher KJ. Glycoprotein composition of colonic mucosa. Specific alterations in ulcerative colitis. Gastroenterology, 87 (1984) 991–998.

    PubMed  CAS  Google Scholar 

  118. Tysk C, Riedesel H, Lindberg E, Panzini B, Podolsky D, Jarnerot G. Colonic glycoproteins in monozygotic twins with inflammatory bowel disease. Gastroenterology, 100 (1991) 419–423.

    PubMed  CAS  Google Scholar 

  119. Podolsky DK, Madara JL, King N, Sehgal P, Moore R, Winter HS. Colonic mucin composition in primates. Gastroenterology, 88 (1985) 20–25.

    PubMed  CAS  Google Scholar 

  120. Podolsky D. Oligosaccharide structures of human colonic mucin. J. Biol. Chem., 260 (1985) 8262–8271.

    PubMed  CAS  Google Scholar 

  121. Podolsky D. Oligosaccharide structures of isolated human colonic mucin species. J. Biol. Chem.,260 (1985) 15,510–15,515.

    Google Scholar 

  122. Raouf A, Parker N, Idden D, et al. Ion exchange chromatography of purified colonic mucus glycoproteins in inflammatory bowel disease: absence of a selective sublcass defect. Gut, 32 (1991) 1139–1145.

    Article  PubMed  CAS  Google Scholar 

  123. Gendler SJ, Burchell JM, Duhig T, et al. Cloning of partial cDNA encoding differentiation and tumor-associated mucin glycoproteins expressed by human mammary epithelium. Proc. Natl. Acad. Sci. USA, 84 (1987) 6060–6064.

    Article  PubMed  CAS  Google Scholar 

  124. Gum JR, Byrd JC, Hicks JW, Toribara NW, Lamport DTA, Kim YS. Molecular cloning of human intestinal mucin cDNAs. Sequence analysis and evidence for genetic polymorphism. J. Biol. Chem., 264 (1989) 6480–6487.

    PubMed  CAS  Google Scholar 

  125. Gum JR, Hicks JW, Swallow DM, et al. Molecular cloning of cDNAs derived from a novel human intestinal mucin gene. Biochem. Biophys. Res. Commun., 171 (1990) 407–415.

    Article  PubMed  CAS  Google Scholar 

  126. Porchet N, Cong NV, Dufosse J,et al. Molecular cloning and chromosomal localization of a novel human tracheo-bronchial mucin eDNA containing tandemly repeated sequences of 48 base pairs. Biochem. Biophys. Res. Communo., 175 (1991) 414–422.

    Article  CAS  Google Scholar 

  127. Ho SB, Roberton AM, Shekels LL, Lyftogt CT, Niehans GA, Toribara NW. Expression cloning of gastric mucin complementary DNA and localization of mucin gene expression. Gastroenterology, 109 (1995) 735–747.

    Article  PubMed  CAS  Google Scholar 

  128. Dufosse J, Porchet N, Aubert J-P, et al. Degenerate 87-base-pair tandem repeats create hydrophilic/hydrophobic alternating domains in human mucin peptides mapped to l 1p15. Biochem. J., 293 (1993) 329–337.

    PubMed  CAS  Google Scholar 

  129. Toribara NW, Roberton AM, Ho SB, et al. Human gastric mucin; identification of a unique species by expression cloning. J. Biol. Chem., 268 (1993) 5879–5885.

    PubMed  CAS  Google Scholar 

  130. Bobek LA, Tsai H, Biesbrock AR, Levine MJ. Molecular cloning, sequence, and specificity of expression of the gene encoding the low molecular weight human salivary mucin (MUC7). J. Biol. Chem.,268 (1993) 20,563–20,569.

    Google Scholar 

  131. Shankar V, Gilmore MS, Elkins RC, Sachdev GP. A novel human airway mucin cDNA encodes a protein with unique tandem-repeat organization. Biochem. J., 300 (1994) 295–298.

    PubMed  CAS  Google Scholar 

  132. Lapensee L, Paquette Y, Bleau G. Allelic polymorphism and chromosomal localization of the human oviductin gene (MUC9). Fertil. Steril., 68 (1997) 702–708.

    Article  PubMed  CAS  Google Scholar 

  133. Ho SB, Niehans GA, Lyftogt C, et al. Heterogeneity of mucin gene expression in normal and neoplastic tissues. Cancer Res., 53 (1993) 641–651.

    PubMed  CAS  Google Scholar 

  134. Carrato C, Balague C, De Bolos C, et al. Differential apomucin expression in normal and neoplastic human gastrointestinal tissues. Gastroenterology, 107 (1994) 160–172.

    PubMed  CAS  Google Scholar 

  135. Balague C, Gambus G, Carrato C, et al. Altered expression of MUC2, MUC4, and MUC5 mucin genes in pancreas tissues and cancer cell lines. Gastroenterology, 106 (1994) 1054–1061.

    PubMed  CAS  Google Scholar 

  136. Gipson IK, Ho SB, Spurr-Michaud SJ, et al. Mucin genes expressed by human female reproductive tract epithelia. Biol. Reprod., 56 (1997) 999–1011.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Ho, S.B., Shekels, L.L. (2003). Mucin and Goblet Cell Function. In: Koch, T.R. (eds) Colonic Diseases. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-314-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-314-9_4

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9740-3

  • Online ISBN: 978-1-59259-314-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics