Skip to main content

Neural Regulation of Colonic Motor Function

  • Chapter
Book cover Colonic Diseases

Abstract

Colonic motility is complex, consisting of storage, mixing, and propulsive functions. The tunica muscularis of the colon consists of a longitudinal muscle layer at the serosal aspect and a circular muscle layer at the submucosal aspect. The longitudinal muscle layer in the human is primarily organized into three muscular cables known as the taenia coli. These are spaced at equal intervals around the colon, and between the taenia is a thin layer of muscle cells arranged in the longitudinal direction. The taenia converge towards the end of the sigmoid colon to form the continuous longitudinal muscle coat of the rectum and internal anal sphincter (IAS). The circular muscle layer is continuous along the length of the colon and near the anus to form the IAS. The smooth muscle layers, by the actions of pacemaker cells and by intrinsic excitability of smooth muscle cells can generate spontaneous mechanical activity. However, this activity could not accomplish the tasks necessary for productive colonic motility without the superimposition of enteric neural activity, which, in turn, is modulated by the autonomic nervous system. Together these nerves control, to a large extent, the contractile behavior of muscles and produce normal motility. In this chapter, the basic anatomy and physiology of the neurons and postjunctional mechanisms that regulate colonic motor function are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barbiers M, Timmermans JP, Adriansen D, De Groodt-Lasseel MH, Scheuermann DW. Projections of neurochemically specified neurons in the porcine colon. Histochem. Cell Biol., 1039 (1995) 115–126.

    Article  Google Scholar 

  2. Domoto T, Bishop AE, Oki M, Polak JM. An in vitro study of the projections of the enteric vasoactive intestinal polypeptide immunoreactive neurons in the human colon. Gastroenterology, 98 (1990) 819–827.

    Article  PubMed  CAS  Google Scholar 

  3. Lomax AE, Furness JB. Neurochemical classification of enteric neurons in the guineapig distal colon. Cell Tissue Res., 302 (2000) 59–72.

    Article  PubMed  CAS  Google Scholar 

  4. Lomax AE, Sharkey KA, Bertrand PP, Low AM, Bornstein JC, Furness JB. Correlation of morphology, electrophysiology and chemistry of neurons in the myenteric plexus of the guineapig distal colon. J. Anton. Nerv. Syst., 76 (1999) 45–61.

    Article  CAS  Google Scholar 

  5. Lomax AE, Zhang JY, Furness JB. Origins of cholinergic inputs to the cell bodies of intestinofugal neurons in the guinea pig distal colon. J. Comp. Neurol., 416 (2000) 451–460.

    Article  PubMed  CAS  Google Scholar 

  6. Neunlist M, Dobreva G, Schemann M. Characteristics of mucosally projecting myenteric neurons in the guineapig proximal colon. J. Physiol. (Lond), 517 (1999) 533–546.

    Article  CAS  Google Scholar 

  7. Tamura K, Ito H, Wade PR. Morphology, electrophysiology, and calbindin immunoreactivity of myenteric neurons in the guinea pig distal colon. J. Comp. Neurol., 437 (2001) 423–437.

    Article  PubMed  CAS  Google Scholar 

  8. Brookes SJH, Ewart WR, Wingate DL. Intracellular recordings from myenteric neurones in the human colon. J. Physiol. (Lond), 390 (1987) 305–318.

    CAS  Google Scholar 

  9. Furukawa K, Taylor GS, Bywater RAR. An intracellular study of myenteric neurons in the mouse colon. J. Neurophys., 55 (1986) 1395–1406.

    CAS  Google Scholar 

  10. Smith TK. Myenteric AH neurons are sensory neurons in the guineapig proximal colon: an electrophysiological analysis in intact preparations. Gastroenterology,862 (1994) A-216.

    Google Scholar 

  11. Smith TK. An electrophysiological identification of intrinsic sensory neurons responsive to 5-HT applied to the mucosa that underly peristalsis in the guineapig proximal colon. J. Physiol. (Lond), 495 (1996) 102.

    Google Scholar 

  12. Vogalis F, Hillsley K, Smith TK. Recording ionic events from cultured, DiI-labelled myenteric neurons in the guineapig proximal colon. J. Neurosci. Methods, 96 (2000) 25–34.

    Article  PubMed  CAS  Google Scholar 

  13. Furness JB, Kunze WA, Bertrand PP, Clerc N, Bornstein JC. Intrinsic primary afferent neurons of the intestine. Prog. Neurobiol., 54 (1998) 1–18.

    Article  PubMed  CAS  Google Scholar 

  14. Hillsley K, Kenyon JL, Smith TK. Ryanodine-sensitive stores regulate the excitability of AH neurons in the myenteric plexus of guineapig ileum. J. Neurophysiol., 84 (2000) 2777–2785.

    PubMed  CAS  Google Scholar 

  15. Alex G, Kunze WA, Furness JB, Clerc N. Comparison of the effects of neurokinin-3 receptor blockade on two forms of slow synaptic transmission in myenteric AH neurons. Neuroscience, 104 (2001) 263–269.

    Article  PubMed  CAS  Google Scholar 

  16. Smith TK, Sanders KM. Motility of the large intestine. In Textbook of Gastroenterology I. Yamada T, Alpers DH, Owyang C, Powell DW, Silverstein FE. (eds.) JB Lippincott Co., Philadelphia, PA, 1994, 234–261.

    Google Scholar 

  17. Sanders KM. G protein-coupled receptors in gastrointestinal physiology. IV. Neural regulation of gastrointestinal smooth muscle. Am. J. Physiol., 275(1) (1998) 1: G1 - G7.

    Google Scholar 

  18. Shuttleworth CW, Keef KD. Roles of peptides in enteric neuromuscular transmission. Regal. Pept., 56 (1995) 101–120

    Article  CAS  Google Scholar 

  19. Koh SD, Sanders KM. Stretch-dependent potassium channels in murine colonic smooth muscle cells. J. Physiol., 533 (2001) 155–163.

    Article  PubMed  CAS  Google Scholar 

  20. Bayguinov O, Hagen B, Bonev AD, Nelson MT, Sanders KM. Intracellular calcium events activated by ATP in murine colonic myocytes. Am. J. Physiol. Cell Physiol., 279 (2000) C126 - C135.

    PubMed  CAS  Google Scholar 

  21. Ward SM, Sanders KM. Interstitial cells of Cajal: primary targets of enteric motor innervation. Anat. Rec., 262 (2001) 125–135

    Article  PubMed  CAS  Google Scholar 

  22. Daniel EE, Posey-Daniel V. Neuromuscular structures in opossum esophagus: role of interstitial cells of Cajal. Am. J. Physiol., 246 (1984) G305 - G315.

    PubMed  CAS  Google Scholar 

  23. Wang XY, Sanders KM, Ward SM. Relationship between interstitial cells of Cajal and enteric motor neurons in the murine proximal colon. Cell Tissue Res., 302 (2000) 331–342.

    Article  PubMed  CAS  Google Scholar 

  24. Costa M, Furness JB. Nervous control of motility. In Mediators and Drugs in Gastrointestinal Motility I. Bertaccini G (ed.), Springer-Verlag, Berlin, Germany, 1981, pp. 279–306.

    Google Scholar 

  25. Elliott TR, Barclay-Smith E. Antiperistalsis and other muscular activities of the colon. J. Physiol. (Lond), 31 (1904) 272–304.

    CAS  Google Scholar 

  26. D’Antona G, Hennig GW, Costa M, Humphreys CM, Brookes SJ. Analysis of motor patterns in the isolated guineapig large intestine by spatio-temporal maps. Neurogastroenterol Motil., 13 (2001) 483–492.

    Article  PubMed  Google Scholar 

  27. Costa M, Furness JB. The peristaltic reflex: an analysis of the nerve pathways and their pharmacology. Naunyn Schmiedeberg’s Arch. Pharmacol., 294 (1976) 47–60.

    Article  PubMed  CAS  Google Scholar 

  28. Foxx-Orenstein AE and Grider JR Regulation of colonic propulsion by enteric excitatory and inhibitory neurotransmitters. Am. J. Physiol., 271 (1996) G433 - G437.

    CAS  Google Scholar 

  29. Mackenna BR, McKirdy HC. Peristalsis in the rabbit distal colon.. 1. Physiol. (Lond), 220 (1972) 33–54.

    CAS  Google Scholar 

  30. Sarna SK. Myoelectric correlates of colonic motor complexes and contractile activity. Am. J. Physiol., 250 (1986) G213–220.

    PubMed  CAS  Google Scholar 

  31. Christensen J, Anuras S, Hauser RL. Migrating spike bursts and electrical slow waves in the cat colon: effect of sectioning. Gastroenterology, 66 (1974) 240–247.

    PubMed  CAS  Google Scholar 

  32. Bush TG, Spencer NJ, Watters N, Sanders KM, Smith, TK. Spontaneous migrating motor complexes occur in both the terminal ileum and colon of the C57BL/6 mouse in vitro. Auton. Neurosci., 84 (2000) 162–168.

    Article  PubMed  CAS  Google Scholar 

  33. Bywater RA, Small RC, Taylor GS Neurogenic slow depolarizations and rapid oscillations in the membrane potential of circular muscle of mouse colon. J. Physiol. (Lond), 413 (1989) 505–519.

    CAS  Google Scholar 

  34. Bywater RA, Spencer NJ, Fida R, Taylor GS. Second-, minute-and hour-metronomes of intestinal pacemakers. Clin. Exp. Pharmacol. Physiol., 25 (1998) 857–861.

    Article  PubMed  CAS  Google Scholar 

  35. Basotti G, Gaburri M. Manometric investigation of high-amplitude propagated contractile activity of the human colon. Am. J. Physiol., 255 (1988) G660 - G664.

    Google Scholar 

  36. Wood JD, Brann LR, Vermillion DL Electrical and contractile behaviour of large intestinal musculature of piebald mouse model for hirschsprung’s disease. Dig. Dis. Sci., 31 (1986) 638–650.

    Article  PubMed  CAS  Google Scholar 

  37. Bush TG, Spencer NJ, Watters N, Sanders KM, Smith TK Effects of alosetron on spontaneous migrating motor complexes in murine small and large bowel in vitro. Amer. J. Physiol., 281 (2001) G974 - G983.

    CAS  Google Scholar 

  38. Karaus M, Sarna SK. Giant migrating contractions during defecation in the dog colon. Gastroenterology, 92 (1987) 925–933.

    PubMed  CAS  Google Scholar 

  39. Powell AK, Bywater RA. Endogenous nitric oxide release modulates the direction and frequency of colonic migrating motor complexes in the isolated mouse colon. Neurogastroenterol. Motil., 13 (2001) 221–228.

    Article  PubMed  CAS  Google Scholar 

  40. Spencer NJ, Bywater RAR, Taylor GS Disinhibition during myoelectric complexes in the mouse colon. J. Auton. Nerv. Syst., 71 (1998) 37–47.

    Article  PubMed  CAS  Google Scholar 

  41. Smith TK, McCarron S Nitric oxide modulates cholinergic reflex pathways to the longitudinal and circular muscle in the isolated guineapig distal colon. J. Physiol. (Lond), 512 (1998) 893–906.

    Article  CAS  Google Scholar 

  42. Spencer N, McCarron SL, Smith TK Sympathetic inhibition of ascending and descending interneurons during the peristaltic reflex in the isolated guineapig distal colon. J. Physiol. (Lond), 519 (1999) 539–550.

    Article  CAS  Google Scholar 

  43. Smith TK, Robertson WJ. Synchronous movements of the longitudinal and circular muscle during peristalsis in the guineapig distal colon. J. Physiol. (Lond), 506 (1998) 563–577.

    Article  CAS  Google Scholar 

  44. Alvarez WC. Ch. 1, In An Introduction to Gastro-enterology, 3rd ed., Wm. Heinmann, London, UK, 1940, pp. 28–30.

    Google Scholar 

  45. Bayliss W, Starling EH The movements and innervation of the small intestine. J. Physiol. (Lond), 24 (1899) 99–143.

    CAS  Google Scholar 

  46. Bayliss W, Starling EH. The movements and innervation of the large intestine. J. Physiol. (Lond), 26 (1900) 107–118.

    CAS  Google Scholar 

  47. Jule Y Nerve mediated descending inhibition in the proximal colon of the rabbit. J. Physiol. (Lond), 309 (1980) 487–498.

    CAS  Google Scholar 

  48. Smith TK, Bywater RAR, Holman ME, Taylor GS. Electrical responses of the muscularis externa to distension of the isolated guineapig distal colon. J. Gastrointest. Motil., 4 (1992) 145–156.

    Google Scholar 

  49. Hirst GDS, Holman ME and McKirdy HC Two descending nerve pathways activated by distension of guineapig small intestine. J. Physiol. (Lond), 244 (1975) 113–127.

    CAS  Google Scholar 

  50. Spencer N, Walsh M, Smith TK Purinergic and cholinergic neuro-neuronal transmission underlying reflexes evoked by mucosal stimulation in the guineapig small intestine. J. Physiol. (Lond), 522 (2000) 321–31.

    Article  CAS  Google Scholar 

  51. Kottegoda SR An analysis of the possible nervous mechanisms involved in the peristaltic reflex. J. Physiol. (Lond), 200 (1969) 687–712.

    CAS  Google Scholar 

  52. Wood JD Mixing and moving in the gut. Gut, 45 (1999) 333–334.

    Google Scholar 

  53. Stevens RJ, Publicover NG, Smith TK Propagation and neural regulation of calcium waves in circular and longitudinal muscle layers of guineapig small intestine. Gastroenterology, 118 (2000) 1–15.

    Article  Google Scholar 

  54. Stevens RJ, Publicover NG, Smith TK Induction and regulation of Cat+ waves by enteric neural reflexes. Nature, 399 (1999) 62–66.

    Article  PubMed  CAS  Google Scholar 

  55. Smith TK, Reed JB, Sanders KM Interaction of two electrical pacemakers in the circular muscle of the canine proximal colon. Am. J. Physiol., 252 (1987) C290 - C299.

    PubMed  CAS  Google Scholar 

  56. Spencer N, Smith TK Simultaneous intracellular recordings from longitudinal and circular muscle during the peristaltic reflex in guineapig colon. J. Physiol. (Lond), 533 (2001) 787–799.

    Article  CAS  Google Scholar 

  57. Pehlivanov N, Liu J, Kassab GS, Puckett JL, Mittal RK. Relationship between esophageal muscle thickness and intraluminal pressure: an ultrasonographic study. Am. J. Physiol., 280 (2001) G1093 - G1098.

    CAS  Google Scholar 

  58. McKirdy HC Functional relationship of longitudinal and circular layers of the muscularis externa of the rabbit large intestine. J. Physiol. (Lond), 227 (1972) 839–853.

    CAS  Google Scholar 

  59. Sanders KM, Smith TK. Motor neurons of the submucous plexus regulate electrical activity of the circular muscle of the canine proximal colon. J. Physiol. (Lond), 380 (1986) 293–310.

    CAS  Google Scholar 

  60. Sanders KM, Smith TK (1986). Enteric neural regulation of slow waves in the circular muscle of the canine proximal colon. J. Physiol. (Lond), 377 (1986) 297–313.

    CAS  Google Scholar 

  61. Smith TK, Reed JB, Sanders KM. Electrical pacemakers of the canine proximal colon are functionally innervated by inhibitory motor neurons. Am. J. Physiol., 256 (1989) C466 — C477.

    PubMed  CAS  Google Scholar 

  62. Spencer NJ, Smith TK Electrical reflex responses of myenteric neurons, longitudinal and circular muscle to mucosal stimulation in the isolated guineapig distal colon. Gastroenterology, 118 (2000) 3664.

    Google Scholar 

  63. Spence NJ, Smith TK. Simultaneous intracellular recordings from myenteric neurons and circular muscle cells during spontaneously discharging peristaltic reflex pathways in guineapig colon. Neurogastroenterol. Motil., 13 (2001) 433.

    Google Scholar 

  64. Kunze WAA, Furness JB, Bertrand PP, Bornstein, JC Intracellular recording from myenteric neurons that respond to stretch. J. Physiol. (Lond), 506 (1998) 827–842.

    Article  CAS  Google Scholar 

  65. Grider JR. Tachykinins as transmitters of the ascending contractile component of the peristaltic reflex. Am. J. Physiol., 257 (1989) G709 — G714.

    PubMed  CAS  Google Scholar 

  66. Grider JR, Makhlouf GM. Regulation of the peristaltic reflex by peptides of the myenteric plexus. Arch Int. Pharmacodyn. Ther., 303 (1990) 232–251.

    PubMed  CAS  Google Scholar 

  67. Grider JR, Makhlouf GM. Colonic peristalsis: identification of vasoactive intestinal peptide as a mediator of descending relaxation. Am. J. Physiol., 253 (1987) G7.

    PubMed  CAS  Google Scholar 

  68. Grider JR, Makhlouf GM. Colonic peristalsis: identification of vasoactive intestinal peptide as a mediator of descending relaxation. Am. J. Physiol., 251 (1987) G40 — G45.

    Google Scholar 

  69. Green JT, Richardson C, Marshall RW, Rhodes J, McKirdy HC, Thomas GA, Williams GT. Nitric oxide mediates a therapeutic effect of nicotine in ulcerative colitis. Aliment. Pharmacol. Ther., 14 (2000) 1429–1434.

    Article  PubMed  CAS  Google Scholar 

  70. Brann L, Wood JD. Motility of the large intestine of piebald-lethal mice. Dig. Dis. Sci., 21 (1976) 633–640.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Sanders, K.M., Smith, T.K. (2003). Neural Regulation of Colonic Motor Function. In: Koch, T.R. (eds) Colonic Diseases. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-314-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-314-9_3

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9740-3

  • Online ISBN: 978-1-59259-314-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics