Skip to main content

Oxidative Stress

  • Chapter
Colonic Diseases
  • 286 Accesses

Abstract

The electrons in an atom are arranged in pairs on shells or orbits that surround the nucleus where protons and neutrons coexist. In a stable atom, the number of protons in the nucleus is equal to the number of electrons on the shells, each of which can have no more than eight electrons. The chemical reactivity of a molecule is dependent upon the conformation of electrons on the outer shell. This conformation determines the ease with which the molecule can accept or donate one or more electrons. When a molecule has an unpaired or odd number of electrons in its atomic structure, it is referred to as a free radical, which is relatively unstable and, therefore, very reactive. For example, molecular oxygen (O2) has two unpaired electrons in its outer shell, which makes it makes it possible for it to accept up to two electrons (one at a time) from another compound. When a single electron is added to O2, it becomes the superoxide molecule (O −2 ), which is a free radical with an unpaired electron (Fig. 1). Other molecules, such as hydrogen peroxide (H2O2), are not necessarily free radicals, but are certainly very reactive. Such molecules along with free radicals are generally referred to as reactive oxygen species (ROS) (1). H2O2 is formed when the superoxide radical accepts another electron and two hydrogen ions (2H+). A combination of H2O2 with O −2 results in the formation of the hydroxyl (OH−) radical, the most toxic free radical in biological systems (1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Machlin LJ, Bendich A. Free radical tissue damage: protective role of antioxidant nutrients. FASEB J., 1 (1987) 441–445.

    CAS  Google Scholar 

  2. Pacifici RE, Davies KJ. Protein, lipid and DNA repair systems in oxidative stress: the free radical theory of aging revisited. Gerontology, 37 (1991) 166–180.

    Article  PubMed  CAS  Google Scholar 

  3. Cross CE, Halliwell B, Borish ET, et al. Oxygen radicals and human disease. Ann. Intern. Med., 107 (1987) 526–545.

    PubMed  CAS  Google Scholar 

  4. Halliwell B, Chirico S. Lipid peroxidation: its mechanism, measurement, and significance. Am. J. Clin. Nutr., 57 (Suppl) (1993) 158–25S.

    Google Scholar 

  5. Ames BN, Shigenaga MK. Oxidants, antioxidants, and the degenerative diseases of aging. Proc. Natl. Acad. Sci. USA, 90 (1993) 7915–7922.

    Article  PubMed  CAS  Google Scholar 

  6. Traber MG. Vitamin E, Oxidative stress and healthy aging. Eur. J. Clin. Invest.,27 (1997) 822–824.

    Article  PubMed  CAS  Google Scholar 

  7. Julius M, Lang CA, Gleiberman L, Harburg E, DiFranceisco W, Schork A. Glutathione and morbidity in a community-based sample of elderly. J. Clin. Epidemiol., 47 (1994) 1021–1026.

    Article  PubMed  CAS  Google Scholar 

  8. Bales CW, Opara EC, Currie KL, Peterson BL, Lin PH. Interactions of age with oxidative stress and nutrient status. FASEB J., 13 (1999) A701.

    Google Scholar 

  9. White AC, Thannickal VJ, Fanburg BL. Glutathione deficiency in human disease. J. Nutr. Biochem., 5 (1994) 218–226.

    Article  CAS  Google Scholar 

  10. Masters CJ. Cellular signaling: the role of the peroxisome. Cell Signal, 8 (1996) 197–208.

    Article  PubMed  CAS  Google Scholar 

  11. Gopalakrishna R, Jaken S. Protein kinase C signalling and oxidative stress. Free Radic. Biol. Med., 28 (2000) 1349–1361.

    Article  PubMed  CAS  Google Scholar 

  12. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem., 95 (1979) 351–358.

    Article  PubMed  CAS  Google Scholar 

  13. Janero DR. Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radic. Biol. Med., 9 (1990) 515–540.

    Article  PubMed  CAS  Google Scholar 

  14. Morrow JD, Roberts Li. The isoprostanes: unique bioactive products of lipid peroxidation. Prog. Lipid Res., 36 (1997) 1–21.

    Article  PubMed  CAS  Google Scholar 

  15. Alary J, Debrauwer L, Fernadez Y, et al. Identification of novel urinary metabolites of the lipid peroxidation product 4-hydroxy-2-nonenal in rats. Chem. Res. Toxicol., 11 (1998) 1368–1376:

    Google Scholar 

  16. Montuschi P, Corradi M, Ciabattoni G, Nightingale J, Kharitonov SA, Barnes PJ. Increased 8-isoprostane, a marker of oxidative stress in exhaled condensate of asthma patients. Am. J. Respir. Crit. Care. Med., 160 (1999) 216–220.

    PubMed  CAS  Google Scholar 

  17. Chen JJ, Yu BP. Alterations in mitochodrial membrane fluidity by lipid peroxidation products. Free Radic. Biol. Med., 17 (1994) 411–418.

    Article  PubMed  CAS  Google Scholar 

  18. Opara EC, Abdel-Rahman E, Soliman S, et al. Depletion of total antioxidant capacity in type 2 diabetes. Metabolism, 48 (1999) 1414–1417.

    Article  PubMed  CAS  Google Scholar 

  19. Murdeach R, Delanty N, Lawson JA, FitzGerald GA. Modulation of oxidant stress in vivo in chronic cigarette smokers. Circulation, 94 (1996) 19–25.

    Article  Google Scholar 

  20. Giulivi C, Hochstein P, Davies KJA. Hydrogen peroxide production by red blood cells. Free Radic. Biol. Med., 16 (1994) 123–129.

    Article  PubMed  CAS  Google Scholar 

  21. Brown KM, Morrice PC, Duthie GG. Erythrocyte vitamin E and plasma ascorbate concentrations in relation to erythrocyte peroxidation in smokers and nonsmokers: dose response to vitamin E supplementation. Am. J. Clin. Nutr., 65 (1997) 496–502.

    CAS  Google Scholar 

  22. Prieme H, Loft S, Nyyssonen K, Salonen JT, Poulsen HE. No effect of supplementation with vitamin E, ascorbic acid, or coenzyme Q10 on oxidative DNA damage estimated by 8-oxo-7,8-dihydro-2’-deoxyguanosine excretion in smokers. Am. J. Clin. Nutr., 65 (1997) 503–507.

    PubMed  CAS  Google Scholar 

  23. Grinberg-Funes RA, Singh VN, Perera FP, et al. Polycyclic aromatic hydrocarbon-DNA adducts in smokers and their relationship to micronutrient levels and the glutathione-S-transferase M1 genotype. Carcino gene sis, 15 (1994) 2449–2454.

    Article  CAS  Google Scholar 

  24. Koch TR, Yuan L-X, Stryker SJ, Ratliff P, Telford GL, Opara EC. Total antioxidant capacity of colon in patients with chronic ulcerative colitis. Dig. Dis. Sci., 45 (2000) 1814–1819.

    Article  PubMed  CAS  Google Scholar 

  25. Wayner DDM, Burton GW, Ingold KU, Barclay LRC, Locke SJ. The relative contributions of vitamin E, urate,ascorbate and proteins to the total peroxyl radical-trapping antioxidant activity of human blood plasma. Biochem. Biophys. Acta, 924 (1987) 408–419.

    Article  PubMed  CAS  Google Scholar 

  26. Benzie IFF, Chung WY, Strain JJ. Antioxidant (reducing) efficiency of ascorbate in plasma is not affected by concentration. J. Nutr. Biochem., 10 (1999), 146–150.

    Article  PubMed  CAS  Google Scholar 

  27. McKay DL, Perrone G, Rasmussen H, et al. The effects of a multivitamin/mineral supplement on micronutrient status, antioxidant capacity and cytokine production in healthy older adults consuming a fortified diet. J. Am. Coll. Nutr., 19 (2000) 613–621.

    PubMed  CAS  Google Scholar 

  28. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med., 26 (1999) 1231–1237.

    Article  PubMed  CAS  Google Scholar 

  29. Van den Berg R, Haenen GRMM, van den Berg H, Bast A. Applicability of an improved trolox equivalent antioxidant capacity measurements of mixtures. Food Chem, 66 (1999) 511–517.

    Article  Google Scholar 

  30. Ballard TC, Farag A, Branum GD, Akwari 0E, Opara EC. Effect of L-glutamine on impaired glucose regulation during intravenous lipid administration. Nutrition, 12 (1996) 349–354.

    Article  PubMed  CAS  Google Scholar 

  31. Ruan EA, Rao S, Burdick JS, et al. Glutathione levels in chronic inflammatory disorders of the human colon. Nutr. Res., 17 (1997) 463–473.

    Article  CAS  Google Scholar 

  32. Koch TR, Fink JG, Ruan E, Petro A, Opara EC. Chronic glutathione depletion alters expression of enteric inhibitory neurochemicals in the mouse. Neurosci. Lett., 235 (1997) 77–80.

    Article  PubMed  CAS  Google Scholar 

  33. Miralles-Barrachina O, Savoye G, Belmonte-Zalar L, et al. Low levels of glutathione in endoscopic biopsies of patients with Crohns colitis: role of malnutrition. Clin. Nutr., 18 (1999) 313–317.

    Article  PubMed  CAS  Google Scholar 

  34. Beutler E. Red Cell Metabolism. A Manual of Biochemical Methods. Grune & Stratton, New York, NY, 1984.

    Google Scholar 

  35. Stein HJ, Oosthuizien MMJ, Hinder RA, Lamprechts H. Oxygen free radicals and glutathione in hepatic ischemia/reperfusion injury. J. Surg. Res., 50 (1991) 398–402.

    Article  PubMed  CAS  Google Scholar 

  36. Bulkley GB. Free radicals and other reactive oxygen metabolites: clinical relevance and the therapeutic efficacy of antioxidant therapy. Surgery, 113 (1993) 479–483.

    PubMed  CAS  Google Scholar 

  37. Halliwell B. Free radicals, antioxidants, and human disease: curiosity, cause or consequence? Lancet, 344 (1994) 721–724.

    Article  PubMed  CAS  Google Scholar 

  38. Rice-Evans CA, Diplock AT. Current status of antioxidant therapy. Free Radic. Biol. Med., 15 (1993) 77–96.

    Article  PubMed  CAS  Google Scholar 

  39. Otamiri T, Sjodahl. Oxygen radicals: their role in selected gastrointestinal disorders. Dig. Dis., 9 (1991) 133–141.

    Article  PubMed  CAS  Google Scholar 

  40. Zimmerman BJ, Granger DN. Oxygen free radicals and the gastrointestinal tract: role in ischemia-reperfusion injury. Hepatogastroenterology, 41 (1994) 337–342.

    PubMed  CAS  Google Scholar 

  41. Church DF, Pryor WA. Free radical chemistry of cigarette smoke and its toxicological implications. Environ. Health Perspect., 64 (1985) 111–126.

    Article  PubMed  CAS  Google Scholar 

  42. Lane JD, Opara EC, Rose JE, Behm F. Quitting smoking raises whole blood glutathione. Physiol. Behay., 60 (1996) 1379–1381.

    Article  CAS  Google Scholar 

  43. Babbs CF. Oxygen radicals in ulcerative colitis. Free Radic. Biol. Med., 13 (1992) 169–181.

    Article  PubMed  CAS  Google Scholar 

  44. Iantomasi T, Marraccini P, Favilli F, Vincenzini MT, Ferretti P, Tonelli F. Glutathione metabolism in Crohns disease. Biochem. Med. Metabol. Biol., 53 (1994) 87–91.

    Article  CAS  Google Scholar 

  45. Lih-Brody L, Powell SR, Collier KP, et al. Increased oxidative stress and decreased antioxidant defenses in mucosa of inflammatory bowel disease. Dig. Dis. Sci., 41 (1996) 2078–2086.

    Article  PubMed  CAS  Google Scholar 

  46. Thomson A, Hemphill D, Jeejeebhoy KN. Oxidative stress and antioxidants in intestinal disease. Dig. Dis., 16 (1998) 152–168.

    Article  PubMed  CAS  Google Scholar 

  47. Holmes EW, Yong SL, Eiznhamer D, Keshavarzian A. Glutathione content of colonic mucosa. Evidence for oxidative damage in active ulcerative colitis. Dig. Dis. Sci., 43 (1998) 1088–1095.

    Article  PubMed  CAS  Google Scholar 

  48. Ardite E, Sans M, Panes J, Romero FJ, Pique JM, Fernandez-Checa JC. Replenishment of glutathione levels improves mucosal function in experimental acute colitis. Lab. Invest., 80 (2000) 735–744.

    Article  PubMed  CAS  Google Scholar 

  49. Koch TR, Schulte-Bockholt A, Otterson MF, et al. Decreased vasoactive intestinal peptide levels and glutathione depletion in acquired megacolon. Dig. Dis. Sci., 41 (1996) 1409–1416.

    Article  PubMed  CAS  Google Scholar 

  50. Martensson J, Jain A, Meister A. Glutathione is required for intestinal function. Proc. Natl. Acad. Sci. USA, 87 (1990) 1715–1719.

    Article  PubMed  CAS  Google Scholar 

  51. Loguercio C, Di Pieno M. The role of glutathione in the gastrointestinal tract: a review. Ital. J. Gastroenterol. Hepatol., 31 (1999) 401–407.

    PubMed  CAS  Google Scholar 

  52. Barranco SC, Perry RR, Durm ME, et al. Relationship between colorectal cancer glutathione levels and patient survival. Early results. Dis. Colon. Rectum., 43 (2000) 1133–1140.

    Article  PubMed  CAS  Google Scholar 

  53. Babbs CF. Free radicals and the etiology of colon cancer. Free Radic. Biol. Med., 8 (1990) 191–200.

    Article  PubMed  CAS  Google Scholar 

  54. Mandell GL, Sande MA. Antimicrobial agents—sulfonamides, trimethoprim-sulfamethoxazole and urinary tract antiseptics. In Goodman and Gilman’s: The Pharmacological Basis of Therapeutics. 6th ed., Gilman AG (ed.), Macmillan, New York, NY, 1980, pp. 1112–1113.

    Google Scholar 

  55. Mulder T, Verspaget H, Janssens A, de Bruin P, Pena A, Lamers C. Decrease in two intestinal copper/zinc containing proteins with antioxidant function in inflammatory bowel disease. Gut, 32 (1991) 1146–1150.

    Article  PubMed  CAS  Google Scholar 

  56. Niwa Y, Somiya K, Michelson A, Puget K. Effect of liposomal-encapsulated superoxide dismutase on active oxygen-related human disease. A preliminary study. Free Radic. Res. Commun., 1 (1985) 137–153.

    Article  PubMed  CAS  Google Scholar 

  57. Keshavarzian A, Mobarhan S. Inflammatory bowel disease in the elderly. In Digestive Diseases and the Elderly. Vellas BJ, Russel R, Dyard F, Garry PJ, Albarede JL (eds.), Springer, New York, NY, 1996, pp. 35–52.

    Google Scholar 

  58. Schreiber S, Halstensen TS, Brandtzaeg P, MacDermott RP. Role of B-cell-dependent effect or mechanisms in inflammatory bowel disease. In Inflammatory Bowel Disease from Bench to Bedside. Targan SR, Shanahan F (eds.), Williams & Wilkins, Baltimore, MD, 1994, pp. 89–105.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Opara, E.C. (2003). Oxidative Stress. In: Koch, T.R. (eds) Colonic Diseases. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-314-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-314-9_12

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9740-3

  • Online ISBN: 978-1-59259-314-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics