Skip to main content

Absorption—Secretion and Epithelial Cell Function

  • Chapter
Colonic Diseases

Abstract

Under normal physiological conditions, the mammalian colon absorbs Na+, Cl, and water and secretes K+ and HCO 3 . In diarrheal disorders, disturbances in ion transport result in excessive secretion of electrolytes and water. In recent years, a number of reviews have addressed the mechanisms of ion transport in mammalian intestine. Also, the recent molecular cloning of several electrolyte transporters has dramatically advanced our knowledge of molecular mechanisms of the electrolyte transport in the mammalian intestine. This chapter reviews the role of various absorptive and secretory processes in colonic physiology with special emphasis on the human colon. Current advances in molecular mechanisms of absorption of Na+, Cl, short chain fatty acids (SCFA), Hp, sulfate, oxalate, and bacterially synthesized water soluble vitamins, as well as mechanisms of secretion of Cl, HCO 3 and K+ are discussed. Lastly, the regulation of these transporters under physiological and pathophysiological conditions and the importance of these transport mechanisms to the colonocyte integrity and function is evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Montrose MH, Keely SJ, Barrett KE. Electrolyte secretion and absorption: small intestine and colon. In Textbook of Gastroenterology, 3rd ed. Yamada T, Alpers DH, Laine L, Owyang C, Powell DW (eds.), Lippincott Williams & Wilkins, Philadelphia, PA, 1999, pp. 320–355.

    Google Scholar 

  2. Rao M. Absorption and secretion of water and electrolytes. In Small Bowel Disorders. Ratricke RN, (ed.), Arnold Press, London, UK, 2000, pp. 116–133.

    Google Scholar 

  3. Fujimoto T. Cell biology of caveolae and its implication for clinical medicine. Nagoya J. Med. Sci., 63 (2000) 9–18.

    PubMed  CAS  Google Scholar 

  4. Binder HJ, Sandle GI. Electrolyte transport in the mammalian colon. In Physiology of the Gastrontestinal Tract, 3rd ed., Johnson LR (ed.), Raven Press, New York, NY, 1994, pp. 2133–2171.

    Google Scholar 

  5. Ramaswamy K, Hang JM, Kleinman JG, Harris MS. Characteristics of Na+/H+ and C1–1HCO3 antiport systems in human ileal brush border membrane vesicles. NYAcad. Sci., 574 (1989) 128–130.

    Google Scholar 

  6. Dudeja PK, Honig JM, Baldwin ML, Cragoe JEJ, Ramaswamy K, Brasitus TA. Na+ transport in human proximal colonic apical membrane vesicles. Gastroenterology, 106 (1994) 125–133.

    PubMed  CAS  Google Scholar 

  7. Dudeja PK, Baldwin ML, Honig JM, Cragoe EJ Jr, Ramaswamy K, Brasitus TA. Mechanisms of Na transport in human distal colonic apical membrane vesicles. Biochim. Biophys. Acta, 1193 (1994) 67–76.

    Article  PubMed  CAS  Google Scholar 

  8. Dudeja PK, Rao DD, Syed I, et al. Intestinal distribution of human Na+/H+ exchanger isoforms NHE 1, NHE2, and NHE3 mRNA. Am. J. Physiol. Gastrointest. Liver Physiol., 271 (1996) G483 - G493.

    CAS  Google Scholar 

  9. Malakooti J, Dandal RY, Schmidt L, Layden TJ, Dudeja PK, Ramaswamy K. Molecular cloning, tissue distribution, and functional expression of the human Na(+)/H(+) exchanger NHE2. Am. J. Physiol.,277 (1999) G383- G390.

    Google Scholar 

  10. Malakooti J, Memark VC, Dudeja PK, Ramaswamy K. Transcriptional regulation of the human Na+/H+ exchanger NHE3 isoform. Gastroenterology, 118 (2000) A607.

    Google Scholar 

  11. Malakooti J, Dandal RY, Dudeja PK, Layden TJ, Ramaswamy K. The human Na(+)/H(+) exchanger NHE2 gene: genomic organization and promoter characterization. Am. J. Physiol. Gastrointest. Liver Physiol., 280 (2001) G763 - G773.

    PubMed  CAS  Google Scholar 

  12. Sellin JH, De Soignie R. Ion transport in human colon in vitro. Gastroenterology, 93 (1987) 441–448.

    PubMed  CAS  Google Scholar 

  13. Devroede GJ, Phillips SF. Conservation of sodium, chloride, and water by the human colon. Gastroenterology, 56 (1969) 101–109.

    PubMed  CAS  Google Scholar 

  14. Devroede GJ, Phillips SF, Code CF, Lind JF. Regional differences in rates of insorption of sodium and water from the human large intestine. Can. J. Physiol. Pharmacol., 49 (1971) 1023–1029.

    Article  PubMed  CAS  Google Scholar 

  15. Edmonds CJ, Godfrey RC. Measurement of electrical potentials of the human rectum and pelvic colon in normal and aldosterone-treated patients. Gut, 11 (1970) 330–337.

    Article  PubMed  CAS  Google Scholar 

  16. Levitan R, Fordtran JS, Burrows BA, Ingelfinger FJ. Water and salt absorption in the human colon. J. Clin. Invest., 41 (1962) 1754–1759.

    Article  PubMed  CAS  Google Scholar 

  17. Grady GF, Duhamel RC, Moore EW. Active transport of sodium by human colon in vitro. Gastroenterology, 59 (1972) 583–588.

    Google Scholar 

  18. Hawker PC, Mashiter KE, Turnberg LA. Mechanisms of transport of Na+, Cl-and K+ in the human colon. Gastroenterology, 74 (1978) 1241–1247.

    PubMed  CAS  Google Scholar 

  19. Rask-Madsen J, Hjelt K. Effect of amiloride on electrical activity and electrolyte transport in human colon. Scand. J. Gastroenterol., 12 (1977) 1–6.

    PubMed  CAS  Google Scholar 

  20. Sandle GI, Wills NK, Alles W, Binder HJ. Electrophysiology of the human colon: evidence of segmental heterogeneity. Gut, 27 (1986) 999–1005.

    Article  PubMed  CAS  Google Scholar 

  21. Sandle GI, Mcglone F. Segmental variability of membrane conductances in rat and human colonic epithelia. Pflugers Arch., 410 (1987) 173–180.

    Article  PubMed  CAS  Google Scholar 

  22. Schiller LR, Santa Ana CA, Morawski SG, Fordtran JS. Effect of amiloride on sodium transport in the proximal, distal, and entire human colon in vivo. Dig. Dis. Sci., 33 (1988) 969–976.

    Article  PubMed  CAS  Google Scholar 

  23. Frizzell RA, Koch MJ, Schultz SG. Ion transport by rabbit colon. I. Active and passive components. J. Membr. Biol., 27 (1976) 297–316.

    Article  PubMed  CAS  Google Scholar 

  24. Schultz SG. A cellular model for active sodium absorption by mammalian colon. Annu. Rev. Physiol., 46 (1984) 435–451.

    Article  PubMed  CAS  Google Scholar 

  25. Mahajan RJ, Baldwin ML, Harig JM, Ramaswamy K, Dudeja PK. Chloride transport in human proximal colonic apical membrane vesicles. Biochim. Biophys. Acta, 1280 (1996) 12–18.

    Article  PubMed  Google Scholar 

  26. Dudeja PK, Harig JM, Ramswamy K, Prell M, Brasitus TA. Evidence for a carrier mediated Cl-/HCO3exchange process in human distal colonic apical membrane vesicles. Gastroenterology, 102 (1992) A208.

    Google Scholar 

  27. Dudeja PK, Foster ES, Brasitus TA. Na+/H+ antiporter of rat colonic basolateral membrane vesicles. Am. J. Physiol., 257 (1989) G624 - G632.

    PubMed  CAS  Google Scholar 

  28. Knickelbein RG, Aronson PS, Dobbins JW. Membrane distribution of sodium-hydrogen and chloride-bicarbonate exchangers in crypt and villus cell membranes from rabbit ileum. J. Clin. Invest., 82 (1988) 2158–2163.

    Article  PubMed  CAS  Google Scholar 

  29. Haggerty JG, Agarwal N, Reilly RF, Adelberg EA, Slayman CW. Pharmacologically different Na+/H+ antiporters on the apical and basolateral surfaces of cultured porcine kidney cells (LLC-PK1). Proc. Natl. Acad. Sci. USA, 85 (1988) 6797–6801.

    Article  PubMed  CAS  Google Scholar 

  30. Tyagi S, Joshi V, Alrefai WA, Gill RA, Ramaswamy K, Dudeja PK. Evidence for a Na+-H+ exchange across human colonic basolateral plasma membranes purified from organ donor colons. Dig. Dis. Sci., 45 (2000) 2282–2289.

    Article  PubMed  CAS  Google Scholar 

  31. Yun CHC, Tse CM, Nath SK, Levine SK, Brant SR, Donowitz M. Mammalian Na+-H+ exchanger gene family: structure and function studies. Am. J. Physiol., 269 (1995) G1 - G11.

    PubMed  CAS  Google Scholar 

  32. Orlowski J, Grinstein S. Na+/H+Exchangers of Mammalian Cells. J. Biol. Chem.,272 (1997) 22,373–22,376.

    Google Scholar 

  33. Szaszi K, Grinstein S, Orlowski J, Kapus A. Regulation of the epithelial Na(+) /H(+) exchanger isoform by the cytoskeleton. Cell Physiol. Biochem., 10 (2000) 265–272.

    Article  PubMed  CAS  Google Scholar 

  34. Counillon L, Pouyssegur J. The expanding family of eucaryotic Na(+)/H(+) exchangers. J. Biol. Chem., 275 (2000) 1–4.

    Article  PubMed  CAS  Google Scholar 

  35. Noel J, Pouyssegur J. Hormonal regulation, pharmacology, and membrane sorting of vertebrate Na+/H+ exchanger isoforms. Am. J. Physiol., 268 (1995) C283 - C296.

    PubMed  CAS  Google Scholar 

  36. -Baird NR, Orlowski J, Szabo EZ, et al. Molecular cloning, genomic organization, and functional expression of Na+/H+ exchanger isoform 5 (NHE5) from human brain. J.Biol. Chem.,274 (1999) 4377–4382.

    Google Scholar 

  37. Donowitz M, Janecki A, Akhter S, et al. Short-term regulation of NHE3 by EGF and protein kinase C but not protein kinase A involves vesicle trafficking in epithelial cells and fibroblasts. Ann. NY Acad. Sci., 915 (2000) 30–42.

    Article  PubMed  CAS  Google Scholar 

  38. Minkoff C, Shenolikar S, Weinman EJ. Assembly of signaling complexes by the sodium-hydrogen exchanger regulatory factor family of PDZ-containing proteins. Curr. Opin. Nephrol. Hypertens., 8 (1999) 603–608.

    Article  PubMed  CAS  Google Scholar 

  39. Shenolikar S, Weinman EJ. NHERF: targeting and trafficking membrane proteins. Am. J. Physiol. Renal Physiol., 280 (2001) F389 - F395.

    PubMed  CAS  Google Scholar 

  40. Khurana S. Role of actin cytoskeleton in regulation of ion transport: examples from epithelial cells. J. Membr. Biol., 178 (2000) 73–87.

    Article  PubMed  CAS  Google Scholar 

  41. Tse CM, Brant SR, Walker MS, Pouyssegur J, Donowitz M. Cloning and sequencing of a rabbit cDNA encoding an intestinal and kidney-specific Na+/H+ exchanger isoform (NHE3). J. Biol. Chem., 267 (1992) 9340–9346.

    PubMed  CAS  Google Scholar 

  42. Orlowski J, Kandasamy RA, Shull GE. Molecular cloning of putative members of the Na+/H+ exchanger gene family. J. Biol. Chem., 267 (1992) 9331–9339.

    PubMed  CAS  Google Scholar 

  43. Bookstein C, DePaoli AM, Xie Y, et al. Na+/H+ exchangers, NHE1 and NHE3, of rat intestine. Expression and localization. J. Clin. Invest., 93 (1994) 106–113.

    Article  PubMed  CAS  Google Scholar 

  44. Hoogerwerf S, Tsao SC, Devuyst O, et al. NHE2 and NHE3 are human and rabbit intestinal brush-border proteins. Am. J. Physiol., 270 (1996) G29 - G41.

    PubMed  CAS  Google Scholar 

  45. Tse CM, Ma AI, Yang VW, et al. Molecular cloning and expression of a cDNA encoding the rabbit ileal villus cell basolateral membrane Na+/H+ exchanger. EMBO J., 10 (1991) 1957–1967.

    CAS  Google Scholar 

  46. Wormmeester L, Sanchez de Medina F, Kokke F, et al. Quantitative contribution of NHE2 and NHE3 to rabbit ileal brush-border Na+/H+ exchange. Am. J. Physiol., 274 (1998) C1261 - C1272.

    PubMed  CAS  Google Scholar 

  47. Donowitz M. Cat+ in the control of active intestinal Na and Cl transport and involvement of neurohumoral action. Am. J. Physiol., 245 (1983) G165 - G177.

    PubMed  CAS  Google Scholar 

  48. Donowitz M, Welsh MJ. Ca2+ and cyclic AMP in regulation of intestinal Na, K and Cl transport. Annu. Rev. Physiol., 48 (1986) 135–150.

    Article  PubMed  CAS  Google Scholar 

  49. Pouyssegur J. Molecular biology and hormonal regulation of vertebrate Na+/H+ exchanger isoforms. Renal Physiol. Biochem., 17 (1994) 190–203.

    PubMed  CAS  Google Scholar 

  50. Bookstein C, Musch MW, Dudeja PK, et al. Inverse relationship between membrane lipid fluidity and activity of Na+-H+ exchangers, NHE1 and NHE3, in transfected fibroblasts. J. Membr. Biol., 160 (1997) 183–192.

    Article  PubMed  CAS  Google Scholar 

  51. Gill R, Tyagi S, Syed I, et al. Regulation of NHE3 by nitric oxide in Caco-2 cells. Am. J. Physiol. Gastrointest. Liver Physiol., 283 (2002) G747 - G756.

    PubMed  CAS  Google Scholar 

  52. Janecki AJ, Montrose MH, Zimniak P, et al. Subcellular redistribution is involved in acute regulation of the brush border Na+/H+ exchanger isoform 3 in human colon adenocarcinoma cell line Caco-2. J. Biol. Chem., 273 (1998) 8790–8798.

    Article  PubMed  CAS  Google Scholar 

  53. Yang W, Dyck JR, Fliegel L. Regulation of NHE1 expression in L6 muscle cells. Biochim. Biophys. Acta, 1306 (1996) 107–113.

    Article  PubMed  Google Scholar 

  54. Wang H, Singh D, Yang W, Dyck JR, Fliegel L. Structure and analysis of the mouse Na+/H+ exchanger (NHEI) gene: homology and conservation of splice sites. Mol. Cell. Biochem., 165 (1996) 155–159.

    Article  PubMed  CAS  Google Scholar 

  55. Facanha AL, dos Reis MC, Montero-Lomeli M. Structural study of the porcine Na+/H+ exchanger NHE1 gene and its 5’- flanking region. Mol. Cell. Biochem., 210 (2000) 91–99.

    Article  PubMed  CAS  Google Scholar 

  56. Blaurock MC, Reboucas NA, Kusnezov JL, Igarashi P. Phylogenetically conserved sequences in the promoter of the rabbit sodium-hydrogen exchanger isoform 1 gene (NHEI/SLC9A1). Biochim. Biophy. Acta, 1262 (1995) 159–163.

    Article  Google Scholar 

  57. Muller YL, Collins JF, Bai L, Xu H, Ghishan FK. Molecular cloning and characterization of the rat NHE2 gene promoter. Biochim. Biophy. Acta, 1442 (1998) 314–319.

    Article  CAS  Google Scholar 

  58. Cano A. Characterization of the rat NHE3 promoter. Am. J. Physiol., 271 (1996) F629 - F636.

    PubMed  CAS  Google Scholar 

  59. Miller RT, Counillon L, Pages G, Lifton RP, Sardet C, Pouyssegur J. Structure of the 5’-flanking regulatory region and gene for the human growth factor-activatable Na/H exchanger NHE-1. J. Biol. Chem., 266 (1991) 10813–10819.

    PubMed  CAS  Google Scholar 

  60. Kandasamy RA, Orlowski J. Genomic organization and glucocorticoid transcriptional activation of the rat Na+/H+ exchanger NHE3 gene. J. Biol. Chem., 271 (1996) 10551–10559.

    Article  PubMed  CAS  Google Scholar 

  61. Cano A, Baum M, Moe OW. Thyroid hormone stimulates the renal Na/H exchanger NHE3 by transcriptional activation [in process citation]. Am. J. Physiol., 276 (1999) C102 - C108.

    PubMed  CAS  Google Scholar 

  62. Besson P, Fernandez-Rachubinski F, Yang W, Fliegel L. Regulation of Na+/H+ exchanger gene expression: mitogenic stimulation increases.NHE1 promoter activity. Am. J. Physiol., 274 (1998) C831–0839.

    PubMed  CAS  Google Scholar 

  63. Bai L, Collins JF, Muller YL, Xu H, Kiela PR, Ghishan FK. Characterization of cis-elements required for osmotic response of rat Na(+)/H(+) exchanger-2 (NHE2) gene. Am. J. Physiol., 277 (1999) R1112 - R1119.

    PubMed  CAS  Google Scholar 

  64. Kiela PR, Guner YS, Xu H, Collins JF, Ghishan FK. Age-and tissue-specific induction of NHE3 by glucocorticoids in the rat small intestine. Am. J. Physiol. Cell Physiol., 278 (2000) C629 - C637.

    PubMed  CAS  Google Scholar 

  65. Alvarez de la Rosa D, Canessa CM, Fyfe GK, Zhang P. Structure and regulation of amiloride-sensitive sodium channels. Annu. Rev. Physiol., 62 (2000) 573–594.

    Article  Google Scholar 

  66. Benos DJ, Stanton BA. Functional domains within the degenerin/epithelial sodium channel (Deg/ENaC) superfamily of ion channels. J. Physiol., 520 (1999) 631–644.

    Article  PubMed  CAS  Google Scholar 

  67. Tyagi S, Ramaswamy K, Dudeja PK. Evidence for the existence of a Cl−-HCO3 exchange process in the human colonic basolateral membrane vesicles. Gastroenterology, 110 (1996) A369.

    Article  Google Scholar 

  68. Rajendran VM, Binder HJ. Cl−-HCO3 and Cl−-OH exchanges mediate Cl uptake in apical membrane vesicles of rat distal colon. Am. J. Physiol., 264 (1993) G874 - G879.

    PubMed  CAS  Google Scholar 

  69. Lohi H, Kujala M, Kerkela E, Saarialho-Kere U, Kestila M, Kere J. Mapping of five new putative anion transporter genes in human and characterization of SLC26A6, a candidate gene for pancreatic anion exchanger. Genomics, 70 (2000) 102–112.

    Article  PubMed  CAS  Google Scholar 

  70. Waldegger S, Moschen I, Ramirez A, et al. Cloning and characterization of slc26a6, a novel member of the solute carrier 26 gene family. Genomics, 72 (2001) 43–50.

    Article  PubMed  CAS  Google Scholar 

  71. Alper SL. The band 3-related AE anion exchanger gene family. Cell Physiol. Biochem., 4 (1994) 265–281.

    Article  CAS  Google Scholar 

  72. Tsuganezawa H, Kobayashi K, Iyori M, et al. A new member of the HCO3transporter superfamily is an apical anion exchanger of beta-intercalated cells in the kidney. J. Biol. Chem., 1 (2000) 1.

    Google Scholar 

  73. Kopito RR. Molecular Biology of the anion exchanger gene family. Int. Rev. Cytol., 123 (1990) 177–199.

    Article  PubMed  CAS  Google Scholar 

  74. Chow A, Zhou W, Jacobson R. Regulation of AE2 C1-/HCO3 exchanger during intestinal development. Am. J. Physiol., 271 (1996) G330 - G337.

    PubMed  CAS  Google Scholar 

  75. Cox KH, Adair-Kirk TL, Cox JV. Variant AE2 anion exchanger transcripts accumulate in multiple cell types in the chicken gastric epithelium. J. Biol. Chem., 271 (1996) 8895–8902.

    Article  PubMed  CAS  Google Scholar 

  76. Medina JF, Lecanda J, Acin A, Ciesielczyk P, Prieto J. Tissue-specific N-terminal isoforms from overlapping alternate promoters of the human AE2 anion exchanger gene. Biochem. Biophys. Res. Commun., 267 (2000) 228–235.

    Article  PubMed  CAS  Google Scholar 

  77. Alrefai WA, Tyagi S, Nazir TM, et al. Human intestinal anion exchanger isoforms: expression, distribution, and membrane localization. Biochim. Biophys. Acta, 1511 (2001) 17–27.

    Article  PubMed  CAS  Google Scholar 

  78. Chow A, Dobbins JW, Aronson PS, Igarashi P. cDNA cloning and localization of a band 3 related protein from ileum. Am. J. Physiol., 263 (1992) G345 - G352.

    PubMed  CAS  Google Scholar 

  79. Stuart-Tilley AK, Shmukler BE, Brown D, Alper SL. Immunolocalization and tissue-specific splicing of AE2 anion exchanger in mouse kidney [in process citation]. J. Am. Soc. Nephrol., 9 (1998) 946–959.

    PubMed  CAS  Google Scholar 

  80. Alper SL, Rossmann H, Wilhelm S, Stuart-Tilley AK, Shmukler BE, Seidler U. Expression of AE2 anion exchanger in mouse intestine. Am. J. Physiol., 277 (1999) G321 - G32.

    PubMed  CAS  Google Scholar 

  81. Lubman RL, Danto SI, Chao DC, Fricks CE, Crandall ED. Cl−-HCO3 exchanger isoform AE2 is restricted to the basolateral surface of alveolar epithelial cell monolayers. Am. J. Respir. Cell Mol. Biol., 12 (1995) 211–219.

    PubMed  CAS  Google Scholar 

  82. Stuart-Tilley A, Sardet C, Pouyssegur J, Schwartz MA, Brown D, Alper SL. Immunolocalization of anion exchanger AE2 and cation exchanger NHEI in distinct adjacent cells of gastric mucosa. Am. J. Physiol., 266 (1994) C559–0568.

    PubMed  CAS  Google Scholar 

  83. Rossmann H, Nader M, Seidler U, Classen M, Alper S. Basolateral membrane localization of the AE2 isoform of the anion exchanger family in both stomach and ileum. Gastroenterology, 108 (1995) A319.

    Google Scholar 

  84. Kere J, Lohi H, Hoglund P. Genetic disorder of membrane transport III. Congenital chloride diarrhea. Am. J. Physiol., 276 (1999) G7 - G13.

    PubMed  CAS  Google Scholar 

  85. Moseley RH, Hoglund P, Wu GD, et al. Downregulated in adenoma gene encodes a chloride transporter defective in congenital chloride diarrhea. Am. J. Physiol., 267 (1999) G185 - G192.

    Google Scholar 

  86. Bieberdorf FA, Gordon P, Fordtran JS. Pathogenesis of congenital alkalosis with diarrhea: implications for the physiology of normal ileal electrolyte absorption and secretion. J. Clin. Invest., 51 (1972) 1958–1968.

    Article  PubMed  CAS  Google Scholar 

  87. Silberg DG, Wang W, Moseley RH, Traber PG. The down-regulated in adenoma (dra) gene encodes an intestine-specific membrane sulfate transport protein. J. Biol. Chem., 270 (1995) 11897–11902.

    Article  PubMed  CAS  Google Scholar 

  88. Melvin JE, Park K, Richardson L, Schultheis PJ, Shull GE. Mouse down-regulated in adenoma (DRA) is an intestinal Cl(1/HCO(3)(1 exchanger and is up-regulated in colon of mice lacking the NHE3 Na(+)/H(+) exchanger. J. Biol. Chem., 274 (1999) 22855–22861.

    Article  PubMed  CAS  Google Scholar 

  89. Rajendran VM, Binder HJ. Characterization and molecular localization of anion transporters in colonic epithelial cells. Ann. NYAcad. Sci., 915 (2000) 15–29.

    Article  CAS  Google Scholar 

  90. Rajendran VM, Black J, Ardito TA, et al. Regulation of DRA and AE1 in rat colon by dietary Na depletion. Am. J. Physiol. Gastrointest. Liver Physiol., 279 (2000) G931 - G942.

    PubMed  CAS  Google Scholar 

  91. Alrefai WA, Tyagi S, Mansour F, et al. Sulfate and chloride transport in Caco-2 cells: differential regulation by thyroxine and the possible role of DRA gene. Am. J. Physiol. Gastrointest. Liver Physiol., 280 (2001) G603 - G613.

    PubMed  CAS  Google Scholar 

  92. Hadjiagapiou C, Hausman A, Schmidt L, et al. Developmental and tissue distribution studies of anion exchanger AE2 in the human intestine. Gastroenterology, 111 (1997) A367.

    Google Scholar 

  93. Fejes-Toth G, Rusvai E, Cleaveland ES, Naray-Fejes-Toth A. Regulation of AE2 mRNA expression in the cortical collecting duct by acid/base balance. Am. J. Physiol., 274 (1998) F596 - F601.

    PubMed  CAS  Google Scholar 

  94. Humphreys BD, Jiang L, Chernova MN, Alper SL. Hypertonic activation of AE2 anion exchanger in xenopus oocytes via NHE-mediated intracellular alkalization. Am. J. Physiol., 268 (1995) C201 - C209.

    PubMed  CAS  Google Scholar 

  95. Saksena S, Gill R, Tyagi S, et al. Modulation of C1-/OH-exchange activity in Caco-2 cells by nitric oxide. Am. J. Physiol. Gastrointest. Liver Physiol., 283 (2002) G626 - G633.

    PubMed  CAS  Google Scholar 

  96. Saksena, S., Gill, R.K., Syed, I.A., et al. Inhibition of the apical CI-OH- exchange activity in Caco2 cells by phorbol esters is mediated by protein kinase Cr. Am. J. Physiol. Cell Physiol. 283 (2002) C1492 - C1500.

    PubMed  CAS  Google Scholar 

  97. Cook SI, Sellin JH. Review article: short chain fatty acids in health and disease. Aliment Pharmacol. Ther., 12 (1998) 499–507.

    CAS  Google Scholar 

  98. Ramakrishna BS, Mathan VI. Colonic dysfunction in acute diarrhoea: the role of luminal short chain fatty acids. Gut, 34 (1993) 1215–1218.

    Article  PubMed  CAS  Google Scholar 

  99. Velazquez OC, Lederer HM, Rombeau JL. Butyrate and the colonocyte. Production, absorption, metabolism, and therapeutic implications. Adv. Exp. Med. Biol., 427 (1997) 123–134.

    Article  PubMed  CAS  Google Scholar 

  100. von Engelhardt W, Bartels J, Kirschberger S, Meyer zu Duttingdorf HD, Busche R. Role of short-chain fatty acids in the hind gut. Vet. Q., 20 (Suppl 3) (1998) S52 - S59.

    Article  Google Scholar 

  101. Zhang J, Lupton JR. Dietary fibers stimulate colonic cell proliferation by different mechanisms at different sites. Nutr. Cancer, 22 (1994) 267–276.

    Article  PubMed  CAS  Google Scholar 

  102. Breuer RI, Soergel KH, Lashner BA, et al. Short chain fatty acid rectal irrigation for left-sided ulcerative colitis: a randomised, placebo controlled trial. Gut, 40 (1997) 485–491.

    PubMed  CAS  Google Scholar 

  103. Kim YI. Short-chain fatty acids in ulcerative colitis. Nutr. Rev., 56 (1998) 17–24.

    Article  PubMed  CAS  Google Scholar 

  104. Pouillart PR. Role of butyric acid and its derivatives in the treatment of colorectal cancer and hemoglobinopathies. Life Sci., 63 (1998) 1739–1760.

    Article  PubMed  CAS  Google Scholar 

  105. Bugaut M. Occurrence, absorption and metabolism of short chain fatty acids in the digestive tract of mammals. Comp. Biochem. Physiol., 86B (1987) 439–472.

    Article  CAS  Google Scholar 

  106. Mortensen PB, Clausen MR. Short-chain fatty acids in the human colon: relation to gastrointestinal health and disease. Scand. J. Gastroenterol. Suppl., 216 (1996) 132–148.

    Article  PubMed  CAS  Google Scholar 

  107. Harig JM, Soergel KH, Barry JA, Ramaswamy K. Transport of propionate by human ileal brush-border membrane vesicles. Am. J. Physiol.,260 (1991) G776- G782.

    Google Scholar 

  108. Harig JM, NG EK, Dudeja PK, Brasitus TA, Ramaswamy K. Transport of n-butyrate into human colonic luminal membrane vesicles. Am. J. Physiol., 271 (1996) G415 - G422.

    Google Scholar 

  109. Charney AN, Micic L, Egnor RW. Nonionic diffusion of short-chain fatty acids across rat colon. Am. J. Physiol., 274 (1998) G518 - G524.

    PubMed  CAS  Google Scholar 

  110. Chu S, Montrose MH. Non-ionic diffusion and carrier-mediated transport drive extracellullar pH regulation of mouse colonic crypts.. 1. Physiol. (Lond), 494 (1996) 783–793.

    CAS  Google Scholar 

  111. von Engelhardt W, Gros G, Burmester M, Hansen K, Becker G, Rechkemmer G. Functional role of bicarbonate in propionate transport across guinea-pig isolated caecum and proximal colon. J. Physiol. (Lond), 477 (1994) 365–371.

    CAS  Google Scholar 

  112. Reynolds DA, Rajendran VM, Binder HJ. Bicarbonate-stimulated [14Cbutyrate uptake in basolateral membrane vesicles of rat distal colon. Gastroenterology, 105 (1993) 725–732.

    PubMed  CAS  Google Scholar 

  113. Venugopalakrishnan J, Tyagi S, Ramaswamy K, Dudeja PK. Mechanism of n-butyrate transport across the human colonic basolateral membrane. Gastroenterology, 116 (1999) A941.

    Google Scholar 

  114. Musch MW, Bookstein C, Xie Y, Sellin JH, Chang EB. SCFA increase intestinal Na absorption by induction of NHE3 in rat colon and human intestinal C2/bbe cells. Am. J. Physiol. Gastrointest. Liver Physiol., 280 (2001) G687 - G693.

    PubMed  CAS  Google Scholar 

  115. Hadjiagapiou C, Schmidt L, Dudeja PK, Layden TJ, Ramaswamy K. Mechanism(s) of butyrate transport in caco-2 cells: role of monocarboxylate transporter 1. Am. J. Physiol. Gastrointest. Liver Physiol., 279 (2000) G775 - G780.

    PubMed  CAS  Google Scholar 

  116. Ritzhaupt A, Wood IS, Ellis A, Hosie KB, Shirazi-Beechey SP. Identification and characterization of a monocarboxylate transporter (MCTI) in pig and human colon: its potential to transport L-lactate as well as butyrate. J. Physiol. (Lond), 513 (1998) 719–732.

    Article  CAS  Google Scholar 

  117. Stein J, Zores M, Schroder O. Short-chain fatty acid (SCFA) uptake into Caco-2 cells by a pH-dependent and carrier mediated transport mechanism. Eur. J. Nutr., 39 (2000) 121–125.

    Article  PubMed  CAS  Google Scholar 

  118. Alrefai WA, Tyagi S, Gill R, et al. Regulation of butyrate uptake in Caco2 cells: involvement of monocarboxylate transporter MCT1. Gastroenterology, 120 (2001) A528.

    Google Scholar 

  119. Halestrap AP, Price NT. The proton-linked monocarboxylate transporter (MCT) family: structure, function and regulation. Biochem. J., 343 (1999) 281–299.

    Article  PubMed  CAS  Google Scholar 

  120. Price NT, Jackson VN, Halestrap AP. Cloning and sequencing of four new mammalian monocarboxylate transporter (MCT) homologues confirms the existence of a transporter family with an ancient past. Biochem.J., 329 (1998) 321–328.

    PubMed  CAS  Google Scholar 

  121. Tiruppathi C, Balkovetz DF, Ganapathy V, Miyamoto Y, Leibach FH. A proton gradient, not a sodium gradient, is the driving force for active transport of lactate in rabbit intestinal brush-border membrane vesicles. Biochem. J., 256 (1988) 219–223.

    PubMed  CAS  Google Scholar 

  122. Lamers JM. Some characteristics of monocarboxylic acid transfer across the cell membrane of epithelial cells from rat small intestine. Biochim. Biophys. Acta, 413 (1975) 465–476.

    PubMed  CAS  Google Scholar 

  123. Foster ES, Jones WJ, Hayslett JP, Binder HJ. Role of aldosterone and dietary potassium in potassium adaptation in the distal colon of the rat. Gastroenterology, 88 (1985) 41–46.

    PubMed  CAS  Google Scholar 

  124. Agarwal R, Afzalpurkar R, Fordtran JS. Pathophysiology of potassium absorption and secretion by the human intestine. Gastroenterology, 107 (1994) 548–571.

    PubMed  CAS  Google Scholar 

  125. Binder HJ, Sandle GI, Rajenderan VM. Colonic fluid and electrolyte transport in health and disease. In The Large Intestine: Physiology, Pathophysiology, and Disease. Phillips SF (ed.), Raven, New York, NY, 1991, pp. 141–168.

    Google Scholar 

  126. Binder HJ, Sangan P, Rajendran VM. Physiological and molecular studies of colonic H+/K+ ATPase. Semin. Nephrol., 19 (1999) 405–414.

    PubMed  CAS  Google Scholar 

  127. Gill R, Kunhiraman BP, Saksena S, Tyagi S, Dudeja PK. Expression of K+-activated ATPase in apical membranes of the human distal colon. Gastroenterology, 120 (2001) A531.

    Google Scholar 

  128. Frederic J, Ahmed TB. The nongastric H+-/K+-ATPases: molecular and functional properties. Am. J. Physiol., 276 (1999) F812 - F824.

    Google Scholar 

  129. Sangan P, Kolla SS, Rajendran VM, Kashgarian M, Binder HJ. Colonic H-K-ATPase beta-subunit: identification in apical membranes and regulation by dietary K depletion. Am. J. Physiol., 276 (1999) C350–0360.

    PubMed  CAS  Google Scholar 

  130. Sangan P, Thevananther S, Sangan S, Rajendran VM, Binder HJ. Colonic H-K-ATPase alpha-and beta-subunits express ouabain-insensitive H-K-ATPase. Am. J. Physiol. Cell Physiol., 279 (2000) C182 - C189.

    Google Scholar 

  131. Pandiyan V, Rajendran VM, Binder HJ. Mucosal ouabain and Na+ inhibit active Rb+(K+) absorption in normal and sodium-depleted rat distal colon. Gastroenterology, 102 (1992) 1846–1853.

    PubMed  CAS  Google Scholar 

  132. Wang KS, Ma T, Filiz F, Verkman AS, Bastidas JA. Colon water transport in transgenic mice lacking aquaporin-4 water channels. Am. J. Physiol. Gastrointest. Liver Physiol., 279 (2000) G463 - G470.

    PubMed  CAS  Google Scholar 

  133. Wright EM, Loo DD. Coupling between Na+, sugar, and water transport across the intestine. Ann. NYAcad. Sci., 915 (2000) 54–66.

    Article  CAS  Google Scholar 

  134. Ma T, Verkman AS. Aquaporin water channels in gastrointestinal physiology. J. Physiol., 517 (1999) 317–326.

    Article  PubMed  CAS  Google Scholar 

  135. Naftalin RJ, Pedley KC. Regional crypt function in rat large intestine in relation to fluid absorption and growth of the pericryptal sheath. J. Physiol., 514 (1999) 211–227.

    Article  PubMed  CAS  Google Scholar 

  136. Dudeja PK, Torania SA, Said HM. Evidence for a pH-dependent, DIDS-sensitive carrier mediated folate uptake mechanism in the human colonic luminal membrane vesicles. Am. J. Physiol., 272 (1997) G1408 - G1415.

    PubMed  CAS  Google Scholar 

  137. Dudeja PK, Kode A, Alnounou M, Tyagi S, Torania S, Said HM. Mechanism of folate transport in the human colonic basolateral membranes. Am. J. Physiol. Gastrointest. Liver Physiol, 281 (2001) G54 - G60.

    PubMed  CAS  Google Scholar 

  138. Kumar CK, Moyer MP, Dudeja PK, Said HM. A protein tyrosine kinase regulated, pH dependent, caniermediated uptake system for folate in human normal colonic epithelial cell line. J. Biol. Chem., 272 (1997) 6226–6231.

    Article  PubMed  CAS  Google Scholar 

  139. Said HM, Rose R, Seetharam B. Intestinal Absorption of Water Soluble Vitamins: Cellular and Molecular Aspects. Academic Press, New York, NY, 2000.

    Google Scholar 

  140. Dudeja PK, Tyagi S, Jhandiya F, Said HM. Existence of a carrier mediated biotin uptake process in the human colonic apical membrane vesicles. FASEB J.,10(1996) Al21.

    Google Scholar 

  141. Barrett KE, Keely SJ. Chloride secretion by the intestinal epithelium: molecular basis and regulatory aspects. Annu. Rev. Physiol., 62 (2000) 535–572.

    Article  PubMed  CAS  Google Scholar 

  142. Morris AP. The regulation of epithelial cell cAMP- and calcium-dependent chloride channels. Adv. Pharmacol., 46 (1999) 209–251.

    Article  PubMed  CAS  Google Scholar 

  143. Trezise AE, Buchwald M. In vivo cell-specific expression of the cystic fibrosis transmembrane conductance regulator. Nature, 353 (1991) 434–437.

    Article  PubMed  CAS  Google Scholar 

  144. Kirk KL. Chloride channels and tight junctions. Focus on “Expression of the chloride channel C1C-2 in the murine small intestine epithelium”. Am. J. Physiol. Cell Physiol., 279 (2000) C1675 - C1676.

    PubMed  CAS  Google Scholar 

  145. Vandewalle A, Cluzeaud F, Peng KC, et al. Tissue distribution and subcellular localization of the CIC-5 chloride channel in rat intestinal cells. Am. J. Physiol. Cell Physiol, 280 (2001) C373 - C381.

    PubMed  CAS  Google Scholar 

  146. Greger R, Mall M, Bleich M, et al. Regulation of epithelial ion channels by the cystic fibrosis transmembrane conductance regulator. J. Mol. Med., 74 (1996) 527–534.

    Article  PubMed  CAS  Google Scholar 

  147. Greger R. Role of CFTR in the colon. Annu. Rev. Physiol., 62 (2000) 467–491.

    Article  PubMed  CAS  Google Scholar 

  148. Lee MG, Wigley WC, Zeng W, et al. Regulation of Cl-/ HCO3 exchange by cystic fibrosis transmembrane conductance regulator expressed in NIH 3T3 and HEK 293 cells. J. Biol. Chem., 274 (1999) 3414–3421.

    Article  PubMed  CAS  Google Scholar 

  149. Wheat VJ, Shumaker H, Burnham C, Shull GE, Yankaskas JR, Soleimani M. CFTR induces the expression of DRA along with Cl(-)/HCO(3)(-) exchange activity in tracheal epithelial cells. Am. J. Physiol. Cell Physiol., 279 (2000) C62 - C71.

    PubMed  CAS  Google Scholar 

  150. Welsh MJ, Smith AE. Molecular mechanisms of CFTR chloride channel dysfunction in cystic fibrosis. Cell, 73 (1993) 1251–1254.

    Article  PubMed  CAS  Google Scholar 

  151. Gabriel SE, Brigman KN, Koller BH, Boucher RC, Stutts MJ. Cystic fibrosis heterozygote resistance to cholera toxin in the cystic fibrosis mouse model. Science, 266 (1994) 107–109.

    Article  PubMed  CAS  Google Scholar 

  152. Rozmahel R, Gyomorey K, Plyte S, et al. Incomplete rescue of cystic fibrosis transmembrane conductance regulator deficient mice by the human CFTR cDNA. Hum. Mol. Genet., 6 (1997) 1153–1162.

    Article  PubMed  CAS  Google Scholar 

  153. Jia Y, Mathews CJ, Hanrahan JW. Phosphorylation by protein kinase C is required for acute activation of cystic fibrosis transmembrane conductance regulator by protein kinase A. J. Biol. Chem., 272 (1997) 4978–4984.

    Article  PubMed  CAS  Google Scholar 

  154. Vaandrager AB, Bot AG, Ruth P, Pfeifer A, Hofmann F, De Jonge HR. Differential role of cyclic GMPdependent protein kinase II in ion transport in murine small intestine and colon. Gastroenterology, 118 (2000) 108–114.

    Article  PubMed  CAS  Google Scholar 

  155. Hayslett JP, Binder HJ. Mechanism of potassium adaptation. Am. J. Physiol., 243 (1982) F103 - F112.

    PubMed  CAS  Google Scholar 

  156. Edmonds CJ, Willis CL. The effect of dietary sodium and potassium intake on potassium secretion and kinetics in rat distal colon. J. Physiol., 424 (1990) 317–327.

    PubMed  CAS  Google Scholar 

  157. Halm DR, Halm ST. Aldosterone stimulates K secretion prior to onset of Na absorption in guinea pig distal colon. Am. J. Physiol., 266 (1994) C552–0558.

    PubMed  CAS  Google Scholar 

  158. Quigley EM, Turnberg LA. pH of the microclimate lining human gastric and duodenal mucosa in vivo. Studies in control subjects and in duodenal ulcer patients. Gastroenterology, 92 (1987) 1876–1884.

    PubMed  CAS  Google Scholar 

  159. Illek B, Fischer H, Machen TE. Genetic disorders of membrane transport. II. Regulation of CFTR by small molecules including HCO3. Am. J. Physiol., 275 (1998) G1221 - G1226.

    PubMed  CAS  Google Scholar 

  160. Hogan DL, Crombie DL, Isenberg JI, Svendsen P, Schaffalitzky de Muckadell OB, Ainsworth MA. CFTR mediates cAMP- and Cat+-activated duodenal epithelial HCO3 secretion. Am. J. Physiol., 272 (1997) G872 - G878.

    PubMed  CAS  Google Scholar 

  161. Clarke LL, Harline MC. Dual role of CFTR in cAMP-stimulated HCO3 secretion across murine duodenum. Am. J. Physiol., 274 (1998) G718 - G726.

    PubMed  CAS  Google Scholar 

  162. Tabcharani JA, Rommens JM, Hou YX, et al. Multi-ion pore behaviour in the CFTR chloride channel. Nature, 366 (1993) 79–82.

    Article  PubMed  CAS  Google Scholar 

  163. Pratha VS, Hogan DL, Martensson BA, Bernard J, Zhou R, Isenberg JI. Identification of transport abnormalities in duodenal mucosa and duodenal enterocytes from patients with cystic fibrosis. Gastroenterology, 118 (2000) 1051–1060.

    Article  PubMed  CAS  Google Scholar 

  164. Isenberg JI, Ljungstrom M, Safsten B, Flemstrom G. Proximal duodenal enterocyte transport: evidence for Na(+)-H+ and Cl(−)- HCO3 exchange and NaHCO3 cotransport. Am. J. Physiol., 265 (1993) G677 - G685.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Dudeja, P.K., Gill, R., Ramaswamy, K. (2003). Absorption—Secretion and Epithelial Cell Function. In: Koch, T.R. (eds) Colonic Diseases. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-314-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-314-9_1

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9740-3

  • Online ISBN: 978-1-59259-314-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics