Skip to main content

Oncogenes as Regulators of Cell Survival

The Role of Oncogenes and Tumor Suppressor Genes in the Induction of Resistance to Anoikis and Hypoxia

  • Chapter
Oncogene-Directed Therapies

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 124 Accesses

Abstract

During the past few years, it has become obvious that resistance to programmed cell death, or apoptosis, plays a major role in the process of malignant transformation and subsequent tumor progression. Molecular mechanisms of such resistance induced by the activation of various proto-oncogenes and the loss of activity of tumor suppressor genes have begun to emerge. In parallel, our knowledge of the principles governing the functioning of the intrinsic cell death machinery has expanded considerably.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hengartner H. The biochemistry of apoptosis. Nature 2000; 407: 770–776.

    Article  PubMed  CAS  Google Scholar 

  2. Reed JC. Mechanisms of apoptosis. Am J Pathol 2000; 157: 1415–1430.

    Article  PubMed  CAS  Google Scholar 

  3. Li H, Yuan J. Deciphering the pathways of life and death. Curr Opin Cell Biol 1999; 11: 261–266.

    Article  PubMed  CAS  Google Scholar 

  4. Desagher S, Martinou JC. Mitochondria as the central control point in apoptosis. Trends Cell Biol 2000; 10: 369–377.

    Article  PubMed  CAS  Google Scholar 

  5. Loeffler M, Kroemer G. The mitochondrion in cell death control: certainties and incognita. Exp Cell Res 2000; 256: 19–26.

    Article  PubMed  CAS  Google Scholar 

  6. Kroemer G, Reed JC. Mitochondrial control of cell death. Nat Med 2000; 6: 513–519.

    Article  PubMed  CAS  Google Scholar 

  7. Wang J, Lenardo MJ. Roles of caspases in apoptosis, development, and cytokine maturation revealed by homozygous gene deficiencies. J Cell Sci 2000; 113: 753–757.

    PubMed  CAS  Google Scholar 

  8. Budihardjo I, Oliver H, Lutter M, Luo X, Wang X. Biochemical pathways of caspase activation during apoptosis. Annu Rev Cell Dey Biol 1999; 15: 269–290.

    Article  CAS  Google Scholar 

  9. Salvesen GS, Dixit VM. Caspase activation: the induced-proximity model. Proc Natl Acad Sci USA 1999; 96: 10964–10967.

    Article  PubMed  CAS  Google Scholar 

  10. Antonsson B, Martinou JC. The Bcl-2 protein family. Exp Cell Res 2000; 256: 50–57.

    Article  PubMed  CAS  Google Scholar 

  11. Gross A, McDonnell JM, Korsmeyer SJ. BCL-2 family members and the mitochondria in apoptosis. Genes Dey 1999; 13: 1899–1911.

    Article  CAS  Google Scholar 

  12. Green DR. Apoptotic pathways: paper wraps stone blunts scissors. Cell 2000; 102: 1–4.

    Article  PubMed  CAS  Google Scholar 

  13. Deveraux QL, Reed JC. IAP family proteins-suppressors of apoptosis. Genes Dey 1999; 239–252.

    Google Scholar 

  14. LaCasse EC, Baird S, Korneluk RG, Mackenzie AE. The inhibitors of apoptosis (IAPs) and their emerging role in cancer. Oncogene 1998; 17: 3247–3259.

    Article  PubMed  Google Scholar 

  15. Nicholson DW. Baiting death inhibitors. Nature 2001; 410: 33–34.

    Article  PubMed  CAS  Google Scholar 

  16. Chai J, Du C, Wu JW, Kyin S, Wang X, Shi Y. Structural and biochemical basis of apoptotic activation by Smac/Diablo. Nature 2000; 406: 855–862.

    Article  PubMed  CAS  Google Scholar 

  17. Ekert PG, Silke J, Hawkins CJ, Verhagen AM, Vaux DL. DIABLO promotes apoptosis by removing MIHA/XIAP from processed caspase 9. J Cell Biol 2001; 152: 483–490.

    Article  PubMed  CAS  Google Scholar 

  18. Locksley RM, Killeen N, Lenardo MJ. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 2001; 104: 487–501.

    Article  PubMed  CAS  Google Scholar 

  19. Walczak H, Krammer PH. The CD95(APO-1/Fas) and the TRAIL (APO-2L) apoptosis systems. Exp Cell Res 2000; 256: 58–66.

    Article  PubMed  CAS  Google Scholar 

  20. Nagata S. Biddable death. Nat Cell Biol 1999; 1: E143 - E145.

    Article  PubMed  CAS  Google Scholar 

  21. Lowe SW, Lin AW. Apoptosis in cancer. Carcinogenesis 2000; 21: 485–495.

    Article  PubMed  CAS  Google Scholar 

  22. Kaufmann SH, Gores GJ. Apoptosis in cancer: cause and cure. Bioessays 2000; 22: 1007–1017.

    Article  PubMed  CAS  Google Scholar 

  23. Shields JM, Pruitt K, McFall A, Shaub A, Der CJ. Understanding Ras: `it ain’t over ‘til it’s over’. Trends Cell Biol 2000; 10: 147–154.

    Article  PubMed  CAS  Google Scholar 

  24. McCormick F. How receptors turn ras on. Nature 1993; 363: 15–16.

    Article  PubMed  CAS  Google Scholar 

  25. Katz ME, McCormick F. Signal transduction from multiple Ras effectors. Curr Opin Genet Dey 1997; 7: 75–79.

    Article  CAS  Google Scholar 

  26. Vojtek AB, Der O. Increasing complexity of the ras signaling pathway. J Biol Chem 1998; 273: 19925–19928.

    Article  PubMed  CAS  Google Scholar 

  27. Downward J. Ras signaling and apoptosis. Curr Opin Genet Dey 1998; 8: 49–54.

    Article  CAS  Google Scholar 

  28. Sy MS, Guo YJ, Stamenkovic I. Distinct effects of two CD44 isoforms on tumor growth in vivo. J Exp Med 1991; 174: 859–866.

    Article  PubMed  CAS  Google Scholar 

  29. Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 1997; 91: 231–241.

    Article  PubMed  CAS  Google Scholar 

  30. Scheid MP, Schubert KM, Duronio V. Regulation of Bad phosphorylation and association with Bch XL by the MAPK/Erk kinase. J Biol Chem 1999; 274: 31108–31113.

    Article  PubMed  CAS  Google Scholar 

  31. Downward J. How BAD phosphorylation is good for survival. Nat Cell Biol 1999; 1: E33 - E35.

    Article  PubMed  CAS  Google Scholar 

  32. Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, et al. Akt promotes cell survival by phosphorylating and inhibiting a forkhead transcription factor. Cell 1999; 96: 857–868.

    Article  PubMed  CAS  Google Scholar 

  33. Wang JM, Chao JR, Chen W, Kuo ML, Yen JJY, Yen HFY. The antiapoptotic gene mcl-1 is up-regulated by the phosphatidylinositol 3-kinase/Akt signaling pathway through a transcription fator complex containing CREB. Mol Cell Biol 1999; 19: 6195–6206.

    PubMed  CAS  Google Scholar 

  34. Rosen K, Rak J, Jin J, Kerbel RS, Newman MJ, Filmus J. Downregulation of the pro-apoptotic protein Bak is required for the ras-induced transformation of intestinal epithelial cells. Curr Biol 1998; 8: 1331–1334.

    Article  PubMed  CAS  Google Scholar 

  35. Karni R, Jove R, Levitzki A. Inhibition of pp60c-s« reduces Bel-XL expression and reverses the transformed phenotype of cells overexpressing EGF and HER-2 receptors. Oncogene 1999; 18: 4654–4662.

    Article  PubMed  CAS  Google Scholar 

  36. Bromberg JF, Wrzeszczynska MH, Devgan G, Zhao Y, Pestell RG, Albanese C, et al. STAT3 as an oncogene. Cell 1999; 98: 295–303.

    Article  PubMed  CAS  Google Scholar 

  37. Vogelstein B, Kinzler KW. p53 function and disfunction. Cell 1992; 70: 523–526.

    Article  PubMed  CAS  Google Scholar 

  38. Miyashita T, Reed JC. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 1995; 80: 293–299.

    Article  PubMed  CAS  Google Scholar 

  39. Stambolic V, Suzuki A, de la Pompa JL, Brothers GM, Mirtsos C, Sasaki T, et al. Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell 1998; 95: 29–39.

    Article  PubMed  CAS  Google Scholar 

  40. Cantley L, Neel BG. New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc Natl Acad Sci USA 1999; 96: 4240–4245.

    Article  PubMed  CAS  Google Scholar 

  41. Di Cristofano A, Pandolfi PP. The multiple roles of PTEN in tumor suppression. Cell 2000; 100: 387–390.

    Article  PubMed  Google Scholar 

  42. Krajewska M, Moss SF, Krajewski S, Song K, Holt PR, Reed JC. Elevated expression of Bel-X and reduced Bak in primary colorectal adenocarcinomas. Cancer Res 1996; 56: 2422–2427.

    PubMed  CAS  Google Scholar 

  43. Liu JR, Fletcher B, Page C, Hu C, Nunez G, Baker V. Bcl-xL is expressed in ovarian carcinoma and modulates chemotherapy-induced apoptosis. Gynecol Oncol 1998; 70: 398–403.

    Article  PubMed  CAS  Google Scholar 

  44. Marone M, Scambia G, Mozzetti S, Ferrandina G, Iacovella S, De Pasqua A, et al. bc1–2, bax, bcl-XL, and bcl-XS expression in normal and neoplastic ovarian tissues. Clin Cancer Res 1998; 4: 517–524.

    PubMed  CAS  Google Scholar 

  45. Soini Y, Paakko P, Lehto VP. Histopathological evaluation of apoptosis in cancer. Am J Pathol 1998; 153: 1041–1053.

    Article  PubMed  CAS  Google Scholar 

  46. Frisch SM, Francis H. Disruption of epithelial cell-matrix interactions induces apoptosis. J Cell Biol 1994; 124: 619–626.

    Article  PubMed  CAS  Google Scholar 

  47. Dang CV, Semenza GL. Oncogenic alterations of metabolism. Trends Biochem Sci 1999; 24: 68–72.

    Article  PubMed  CAS  Google Scholar 

  48. Eguchi H, Ikuta T, Tachibana T, Yoneda Y, Kawajiri K. A nuclear localization signal of human aryl hydrocarbon receptor nuclear translocator/hypoxia-inducible factor 1 beta is a novel bipartite type recognized by the two components of nuclear pore-targeting complex. J Biol Chem 1997; 272: 17640–17647.

    Article  PubMed  CAS  Google Scholar 

  49. Shimizu S, Eguchi Y, Kosaka H, Kamiike W, Matsuda H, Tsujimoto Y. Prevention of hypoxiainduced cell death by Bcl-2 and Bcl-xL. Nature 1995; 374: 811–813.

    Article  PubMed  CAS  Google Scholar 

  50. Frisch SM, Ruoslahti E. Integrins and anoikis. Curr Opin Cell Biol 1997; 9: 701–706.

    Article  PubMed  CAS  Google Scholar 

  51. Meredith JE, Fazeli B, Schwartz MA. The extracellular matrix as a cell survival factor. Mol Biol Cell 1993; 4: 953–961.

    PubMed  CAS  Google Scholar 

  52. Wiesen J, Werb Z. Proteinases, cell cycle regulation, and apoptosis during mammary gland involution. Mol Reprod Dey 2000; 56: 534–540.

    Article  CAS  Google Scholar 

  53. Jacobson MD, Weil M, Raff MC. Programmed cell death in animal development. Cell 1997; 88: 347–354.

    Article  PubMed  CAS  Google Scholar 

  54. Meredith JE, Schwartz MA. Integrins, adhesion and apoptosis. Trends Cell Biol 1997; 7: 147–150.

    Article  Google Scholar 

  55. Giancotti FG, Ruoslahti E. Integrin signaling. Science 1999; 285: 1028–1032.

    Article  PubMed  CAS  Google Scholar 

  56. Howe A, Aplin AE, Alahari SK, Juliano RL. Integrin signaling and cell growth control. Curr Opin Cell Biol 1998; 10: 220–231.

    Article  PubMed  CAS  Google Scholar 

  57. Giancotti F. Integrin signaling: specificity and control of cell survival and cell cycle progression. Curr Opin Cell Biol 1997; 9: 691–700.

    Article  PubMed  CAS  Google Scholar 

  58. Aplin AE, Juliano RL. Integrin and cytoskeletal regulation of growth factor signaling to the MAP kinase pathway. J Cell Sci 1999; 112: 695–706.

    PubMed  CAS  Google Scholar 

  59. Renshaw MW, Price LS, Schwartz MA. Focal adhesion kinase mediates the integrin signaling requirement for growth factor activation of MAPK kinase. J Cell Biol 1999; 147: 611–618.

    Article  PubMed  CAS  Google Scholar 

  60. Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE. Geometric control of cell life and death. Science 1997; 276: 1425–1428.

    Article  PubMed  CAS  Google Scholar 

  61. Huang S, Ingber DE. The structural and mechanical complexity of cell-growth control. Nat Cell Biol 1999; 1: E131 - E138

    Article  PubMed  CAS  Google Scholar 

  62. Renshaw MW, Ren XD, Schwartz MA. Growth factor activation of MAP kinase requires cell adhesion. EMBO J 1997; 16: 5592–5599.

    Article  PubMed  CAS  Google Scholar 

  63. Moro L, Venturino M, Bozzo C, Silengo L, Altruda F, Beguinot L, et al. Integrins induce activation of EGF receptor: role in MAP kinase induction and adhesion-dependent cell survival. EMBO J 1998; 17: 6622–6632.

    Article  PubMed  CAS  Google Scholar 

  64. Miyamoto S, Teramoto H, Gutkind JS, Yamada KM. Integrins can collaborate with growth factors for phosphorylation of receptor tyrosine kinases and MAP kinase activation: roles of integrin aggregation and occupancy of receptors. J Cell Biol 1996; 135: 1633–1642.

    Article  PubMed  CAS  Google Scholar 

  65. Farrelly N, Lee YJ, Oliver J, Dive C, Streuli CH. Extracellular matrix regulates apoptosis in mammary epithelium through a control on insulin signaling. J Cell Biol 1999; 144: 1337–1347.

    Article  PubMed  CAS  Google Scholar 

  66. Khwaja A, Rodriguez-Viciana P, Wennstrom S, Warne PH, Downward J. Matrix adhesion and ras transformation both activate a phosphoinositide 3-OH kinase and protein kinase B/Akt cellular survival pathway. EMBO J 1997; 16: 2783–2793.

    Article  PubMed  CAS  Google Scholar 

  67. Xia Z, Dickens J, Raingeaud J, Davis RJ, Greenberg ME. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 1995; 270: 1326–1331.

    Article  PubMed  CAS  Google Scholar 

  68. Bonni A, Brunet A, West AE, Datta SR, Takasu MA, Greenberg ME. Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and-independent mechanisms. Science 1999; 286: 1358–1362.

    Article  PubMed  CAS  Google Scholar 

  69. Gire V, Marshall C, Wynford-Thomas D. PI-3-kinase is an essential anti-apoptotic effector in the proliferative response of primary human epithelial cells to mutant RAS. Oncogene 2000; 19: 2269–2276.

    Article  PubMed  CAS  Google Scholar 

  70. Rytomaa M, Lehman K, Downward J. Matrix detachment induces caspase-dependent cytocrome c release from mitochondria: inhibition by PKB/Akt but not Raf signalling. Oncogene 2000; 19: 4461–4468.

    Article  PubMed  CAS  Google Scholar 

  71. Schlaepfer DD. Hunter T. Integrin signalling and tyrosine phosphorylation: just the FAKs? Trends Cell Biol 1998; 8: 151–157.

    Article  PubMed  CAS  Google Scholar 

  72. Frisch SM, Vuori K, Ruoslahti E, Chan-Hui PY. Control of adhesion-dependent cell survival by focal adhesion kinase. J Cell Biol 1996; 134: 793–799.

    Article  PubMed  CAS  Google Scholar 

  73. Plath T, Detjen K, Welzel M, von Marschall Z, Murphy D, Schimer M, et al. A novel function for the tumor suppressor pl 6INK4a: induction of anoikis via upregulation of the a5131 fibronectin receptor. J Cell Biol 2000; 150: 1467–1477.

    Article  PubMed  CAS  Google Scholar 

  74. Rodeck U, Jost M, DuHadaway J, Kari C, Jensen PJ, Risse B, et al. Regulation of Bcl-xL expression in human keratinocytes by cell-substratum adhesion and the epidermal growth factor receptor. Proc Natl Acad Sci USA 1997; 94: 5067–5072.

    Article  PubMed  CAS  Google Scholar 

  75. Rosen K, Rak J, Leung T, Dean NM, Kerbel RS, Filmus J. Activated ras prevents downregulation of Bcl-XL triggered by detachment from the extracellular matrix: a mechanism of ras-induced resistance to anoikis in intestinal epithelial cells. J Cell Biol 2001; 149: 447–455.

    Article  Google Scholar 

  76. Adams JM, Cory S. The Bcl-2 protein family: arbiters of cell survival. Science 1998; 281: 1322–1326.

    Article  PubMed  CAS  Google Scholar 

  77. Gilmore AP, Metcalfe AD, Romer LH, Streuli CH. Integrin-mediated survival signals regulate the apoptotic function of Bax through its conformation and subcellular localization. J Cell Biol 2000; 149: 431–445.

    Article  PubMed  CAS  Google Scholar 

  78. Frisch SM. Evidence for a function of death-receptor-related, death-domain-containing proteins in anoikis. Curr Biol 1999; 9: 1047–1049.

    Article  PubMed  CAS  Google Scholar 

  79. Rytomaa M, Martins LM, Downward J. Involvement of FADD and caspase-8 signaling in detachment-induced apoptosis. Curr Biol 1999; 9: 1043–1046.

    Article  PubMed  CAS  Google Scholar 

  80. Aoudjit F, Vuori K. Matrix attachment regulates Fas-induced apoptosis in endothelial cells: a role for c-flip and implications for anoikis. J Cell Biol 2001; 152: 633–643.

    Article  PubMed  CAS  Google Scholar 

  81. Guadagno TM, Ohtsubo M, Roberts JM, Assoian RK. A link between cyclin A expression and adhesion-dependent cell cycle progression. Science 1993; 262: 1572–1575.

    Article  PubMed  CAS  Google Scholar 

  82. Fang F, Orend G, Watanabe N, Hunter T, Ruoslahti E. Dependence of cyclin E-CDK2 kinase activity on cell anchorage. Science 1996; 271: 499–502.

    Article  PubMed  CAS  Google Scholar 

  83. Rak J, Mitsuhashi Y, Erdos V, Huang S-N, Filmus J, Kerbel RS. Massive programmed cell death in intestinal epithelial cells induced by three-dimensional growth conditions: suppression by mutant CH-rasoncogene. J Cell Biol 1995; 131: 1587–1598.

    Article  PubMed  CAS  Google Scholar 

  84. Bos JL, Fearon ER, Hamilton SR, Verlaan-de Vries M, van Boom JH, van der Eb AJ, et al. Prevalence of ras gene mutations in human colorectal cancers. Nature 1987; 327: 293–297.

    Article  PubMed  CAS  Google Scholar 

  85. Barbacid M. ras Genes. Annu Rev Biochem 1987; 56: 779–827.

    Article  PubMed  CAS  Google Scholar 

  86. Davies MA, Lu Y, Sano T, Fang X, Tang P, Lapushin R, et al. Adenoviral transgene expression of MMAC/PTEN in human glioma cells inhibits Akt activation and induces anoikis. Cancer Res 1998; 58: 5285–5290.

    PubMed  CAS  Google Scholar 

  87. Lu Y, Lin YZ, LaPushi R, Cuevas B, Fang X, Yu SX, et al. The PTEN/MMAC1/TEP tumor suppressor gene decreases cell growth and induces apoptosis and anoikis in breast cancer cells. Oncogene 1999; 18: 7034–7045.

    Article  PubMed  CAS  Google Scholar 

  88. Polakis P. Wnt signaling and cancer. Genes Dey 2000; 14: 1837–1851.

    CAS  Google Scholar 

  89. van Es JH, Giles RH, Clevers HC. The many faces of the tumor suppressor gene APC. Exp Cell Res 2001; 264: 126–134.

    Article  PubMed  CAS  Google Scholar 

  90. Orford K, Orford CC, Byers SW. Exogenous expression of (3-catenin regulates contact inhibition, anchorage-independent growth, anoikis, and radiation-induced cell cycle arrest. J Cell Biol 1999; 146: 855–867.

    Article  PubMed  CAS  Google Scholar 

  91. Kolligs FT, Kolligs B, Hajra KM, Hu G, Tani M, Cho KR, et al. y-catenin is regulated by the APC tumor suppressor and its oncogenic activity is distinct from the 13-catenin. Genes Dey 2000; 14: 1319–1331.

    CAS  Google Scholar 

  92. Rak J, Mitsuhashi Y, Sheehan C, Krestow JK, Florenes VA, Filmus J, et al. Collateral expression of proangiogenic and tumorigenic properties in intestinal epithelial cell variants selected for resistance to anoikis. Neoplasia 1999; 1: 23–30.

    Article  PubMed  CAS  Google Scholar 

  93. Frankel AD, Rosen K, Filmus J, Kerbel RS. Induction of anoikis and suppression of human ovarian tumor growth in vivo by downregulation of andI-XL. Cancer Res 2001, in 61: 4837–4841.

    Google Scholar 

  94. Helmlinger G, Yuan F, Dellian M, Jain RK. Interstitial pH and p02 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation. Nat Med 1997; 3: 177–182.

    Article  PubMed  CAS  Google Scholar 

  95. Jozsa L, Reify A, Demel S, Szilagyi I. Ultrastructural changes in human liver cells due to reversible acute hypoxia. Hepatogastroenterology 1981; 28: 23–26.

    PubMed  CAS  Google Scholar 

  96. Muschel RJ, Bernhard EJ, Garza L, McKenna WG, Koch CJ. Induction of apoptosis at different oxygen tensions: evidence that oxygen radicals do not mediate apoptotic signaling. Cancer Res 1995; 55: 995–998.

    PubMed  CAS  Google Scholar 

  97. Tanaka M, Ito H, Adachi S, Akimoto H, Nishikawa T, Kasajima T, et al. Hypoxia induces apoptosis with enhanced expression of Fas antigen messenger RNA in cultured neonatal rat cardiomyocytes. Circ Res 1994; 75: 426–433.

    Article  PubMed  CAS  Google Scholar 

  98. Warburg O. The Metabolism of Tumors. Constable, London, England, 1930.

    Google Scholar 

  99. Wang GL, Semenza GL. General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia. Proc Natl Acad Sci USA 1993; 90: 4304–4308.

    Article  PubMed  CAS  Google Scholar 

  100. Wang GL, Semenza GL. Characterization of hypoxia-inducible factor 1 and regulation of DNA binding activity by hypoxia. J Biol Chem 1993; 268: 21513–21518.

    PubMed  CAS  Google Scholar 

  101. Wang GL, Jiang BH, Rue EA, Semenza GL. Hypoxia-inducible factor 1 is a basic-helix-loop-helixPAS heterodimer regulated by cellular 02 tension. Proc Natl Acad Sci USA 1995; 92: 5510–5514.

    Article  PubMed  CAS  Google Scholar 

  102. Salceda S, Caro J. Hypoxia-inducible factor lalpha (HIF-lalpha) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes. J Biol Chem 1997; 272: 22642–22647.

    Article  PubMed  CAS  Google Scholar 

  103. Jiang BH, Agani F, Passaniti A, Semenza GL. V-SRC induces expression of hypoxia-inducible factor 1 (HIF-1) and transcription of genes encoding vascular endothelial growth factor and enolase 1: involvement of HIF-1 in tumor progression. Cancer Res 1997; 57: 5328–5335.

    PubMed  CAS  Google Scholar 

  104. Mazure NM, Chen EY, Yeh P, Laderoute KR, Giaccia AJ. Oncogenic transformation and hypoxia synergistically act to modulate vascular endothelial growth factor expression. Cancer Res 1996; 56: 3436–3440.

    PubMed  CAS  Google Scholar 

  105. Lewis BC, Shim H, Li Q, Wu CS, Lee LA, Maity A, et al. Identification of putative c-Myc-responsive genes: characterization of rcl, a novel growth-related gene. Mol Cell Biol 1997; 17: 4967–4978.

    PubMed  CAS  Google Scholar 

  106. Firth JD, Ebert BL, Ratcliffe PJ. Hypoxic regulation of lactate dehydrogenase A. Interaction between hypoxia-inducible factor 1 and cAMP response elements. J Biol Chem 1995; 270: 21021–21027.

    Article  PubMed  CAS  Google Scholar 

  107. Semenza GL, Jiang BH, Leung SW, Passantino R, Concordet JP, Maire P, et al. Hypoxia response elements in the alsolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1. J Biol Chem 1996; 271: 32529–32537.

    Article  PubMed  CAS  Google Scholar 

  108. Valera A, Pujol A, Gregori X, Riu E, Visa J, Bosch F. Evidence from transgenic mice that myc regulates hepatic glycolysis. FASEB J 1995; 9: 1067–1078.

    PubMed  CAS  Google Scholar 

  109. Shim H, Dolde C, Lewis BC, Wu CS, Dang G, Jungmann RA, et al. c-Myc transactivation of LDH-A: implications for tumor metabolism and growth. Proc Natl Acad Sci USA 1997; 94: 6658–6663.

    Article  PubMed  CAS  Google Scholar 

  110. Gnarra JR, Zhou S, Merrill MJ, Wagner JR, Krumm A, Papavassiliou E, et al. Post-transcriptional regulational of vascular endothelial growth factor mRNA by the product of the VHL tumor suppressor gene. Proc Natl Acad Sci USA 1996; 93: 10589–10594.

    Article  PubMed  CAS  Google Scholar 

  111. Zundel W, Schindler C, Haas-Kogan D, Koong A, Kaper F, Chen E, et al. Loss of PTEN facilitates HIF-1-mediated gene expression. Genes Dey 2000; 14: 391–396.

    CAS  Google Scholar 

  112. Willecke K, Schafer R. Human oncogenes. Hum Genet 1984; 66: 132–142.

    Article  PubMed  CAS  Google Scholar 

  113. Schmaltz C, Hardenbergh PH, Wells A, Fisher DE. Regulation of proliferation-survival decisions during tumor cell hypoxia. Mol Cell Biol 1998; 18: 2845–2854.

    PubMed  CAS  Google Scholar 

  114. Goossens V, Grooten J, Fiers W. The oxidative metabolism of glutamine. A modulator of reactive oxygen intermediate-mediated cytotoxicity of tumor necrosis factor in L929 fibrosarcoma cells. J Biol Chem 1996; 271: 192–196.

    Article  PubMed  CAS  Google Scholar 

  115. Graeber TG, Peterson JF, Tsai M, Monica K, Fornace AJ, Giaccia AJ. Hypoxia induces accumulation of p53 protein, but activation of a GI-phase checkpoint by low-oxygen conditions is independent of p53 status. Mol Cell Biol 1994; 14: 6264–6277.

    Article  PubMed  CAS  Google Scholar 

  116. An WG, Kanekal M, Simon MC, Maltepe E, Blagosklonny MV, Neckers LM. Stabilization of wild-type p53 by hypoxia-inducible factor 1 alpha. Nature 1998; 392: 405–408.

    Article  PubMed  CAS  Google Scholar 

  117. Bruick RK. Expression of the gene encoding the proapoptotic Nip3 protein is induced by hypoxia. Proc Natl Acad Sci USA 2000; 97: 9082–9087.

    Article  PubMed  CAS  Google Scholar 

  118. Kinzler KW, Vogelstein B. Life (and death) in a malignant tumour. Nature 1996; 379: 19–20.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Rosen, K., Filmus, J. (2003). Oncogenes as Regulators of Cell Survival. In: Rak, J. (eds) Oncogene-Directed Therapies. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-313-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-313-2_9

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9738-0

  • Online ISBN: 978-1-59259-313-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics