Skip to main content

Signal Transduction Networks

Ras as a Paradigm

  • Chapter
Oncogene-Directed Therapies

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 124 Accesses

Abstract

Research in signal transduction has changed radically in recent years. Attention has shifted from functions of individual proteins to relationships between proteins and pathways. As pathways have been elucidated, it has become evident that these pathways form complex interactive networks, in which boundaries between pathways become blurred. This chapter discusses some of the implications of this emerging view in terms of understanding the biology and also the prospects for therapy based on signaling networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pacold ME, Suire S, Perisic O, Lara-Gonzalez S, Davis CT, Walker EH, et al. Crystal structure and functional analysis of Ras binding to its effector phosphoinositide 3-kinase gamma. Cell 2000; 103: 931–943.

    Article  PubMed  CAS  Google Scholar 

  2. Campbell SL, Khosravi-Far R, Rossman KL, Clark GJ, Der CJ. Increasing complexity of Ras signaling. Oncogene 1998; 17: 1395–1413.

    Article  PubMed  CAS  Google Scholar 

  3. Pal S, Datta K, Khosravi-Far R, Mukhopadhyay D. Role of protein kinase Czeta in Ras-mediated transcriptional activation of vascular permeability factor/vascular endothelial growth factor expression. J Biol Chem 2001; 276: 2395–2403.

    Article  PubMed  CAS  Google Scholar 

  4. Avruch J, Khokhlatchev A, Kyriakis JM, Luo Z, Tzivion G, Vavvas D, et al. Ras activation of the Raf kinase: tyrosine kinase recruitment of the MAP kinase cascade. Recent Prog Horm Res 2001; 56: 127–155.

    Article  PubMed  CAS  Google Scholar 

  5. Schulze A, Lehmann K, Jefferies HB, McMahon M, Downward J. Analysis of the transcriptional program induced by Raf in epithelial cells. Genes Dev 2001; 15: 981–984.

    Article  PubMed  CAS  Google Scholar 

  6. Sicinski P, Weinberg RA. A specific role for cyclin D1 in mammary gland development. J Mammary Gland Biol Neoplasia 1997; 2: 335–342.

    Article  PubMed  CAS  Google Scholar 

  7. Robles AI, Rodriguez-Puebla ML, Glick AB, Trempus C, Hansen L, Sicinski P, et al. Reduced skin tumor development in cyclin D I -deficient mice highlights the oncogenic ras pathway in vivo. Genes Dev 1998; 12: 2469–2474.

    Article  PubMed  CAS  Google Scholar 

  8. Yu Q, Geng Y, Sicinski P. Specific protection against breast cancers by cyclin D1 ablation. Nature 2001; 411: 1017–1021.

    Article  PubMed  CAS  Google Scholar 

  9. Diehl JA, Cheng M, Roussel MF, Sherr CJ. Glycogen synthase kinase-3beta regulates cyclin D l proteolysis and subcellular localization. Genes Dev 1998; 12: 3499–3511.

    Article  PubMed  CAS  Google Scholar 

  10. McMahon M, Woods D. Regulation of the p53 pathway by Ras, the plot thickens. Biochim Biophys Acta 2001; 2: M63–71.

    Google Scholar 

  11. Mamillapalli R, Gavrilova N, Mihaylova VT, Tsvetkov LM, Wu H, Zhang H, et al. PTEN regulates the ubiquitin-dependent degradation of the CDK inhibitor p27(KIP1) through the ubiquitin E3 ligase SCF(SKP2). Curr Biol 2001; 11: 263–267.

    Article  PubMed  CAS  Google Scholar 

  12. Qiu RG, Chen J, McCormick F, Symons M. A role for Rho in Ras transformation. Proc Natl Acad Sci USA 1995; 92: 11781–11785.

    Article  PubMed  CAS  Google Scholar 

  13. Gille H, Downward J. Multiple ras effector pathways contribute to G(1) cell cycle progression. J Biol Chem 1999; 274: 22033–22040.

    Article  PubMed  CAS  Google Scholar 

  14. Sahai E, Olson MF, Marshall CJ. Cross-talk between Ras and Rho signalling pathways in transformation favours proliferation and increased motility. EMBO J 2001; 20: 755–766.

    Article  PubMed  CAS  Google Scholar 

  15. Hansen SH, Zegers MM, Woodrow M, Rodriguez-Viciana P, Chardin P, Mostov KE, et al. Induced expression of Rnd3 is associated with transformation of polarized epithelial cells by the Raf-MEKextracellular signal-regulated kinase pathway. Mol Cell Biol 2000; 20: 9364–9375.

    Article  PubMed  CAS  Google Scholar 

  16. Lehmann K, Janda E, Pierreux CE, Rytomaa M, Schulze A, McMahon M, et al. Raf induces TGFbeta production while blocking its apoptotic but not invasive responses: a mechanism leading to increased malignancy in epithelial cells. Genes Dey 2000; 14: 2610–2622.

    Article  CAS  Google Scholar 

  17. Khwaja A, Rodriguez-Viciana P, Wennstrom S, Warne PH, Downward J. Matrix adhesion and Ras transformation both activate a phosphoinositide 3-OH kinase and protein kinase B/Akt cellular survival pathway. EMBO J 1997; 16: 2783–2793.

    Article  PubMed  CAS  Google Scholar 

  18. Tsao H, Zhang X, Fowlkes K, Haluska FG. Relative reciprocity of NRAS and PTEN/MMAC1 alterations in cutaneous melanoma cell lines. Cancer Res 2000; 60: 1800–1804.

    PubMed  CAS  Google Scholar 

  19. Ikeda T, Yoshinaga K, Suzuki A, Sakurada A, Ohmori H, Horii A. Anticorresponding mutations of the KRAS and PTEN genes in human endometrial cancer. Oncol Rep 2000; 7: 567–570.

    PubMed  CAS  Google Scholar 

  20. Levine AJ. P53, the cellular gatekeeper for growth and division. Cell 1997; 88: 323–331.

    Article  PubMed  CAS  Google Scholar 

  21. Zindy F, Eischen CM, Randle DH, Kamijo T, Cleveland JL, Sherr CJ, et al. Myc signaling via the ARF tumor suppressor regulates p53-dependent apoptosis and immortalization. Genes Dey 1998; 12: 2424–2433.

    Article  CAS  Google Scholar 

  22. de Stanchina E, McCurrach ME, Zindy F, Shieh SY, Ferbeyre G, Samuelson AV, et al. ElA signaling to p53 involves the p19(ARF) tumor suppressor. Genes Dey 1998; 12: 2434–2442.

    Article  Google Scholar 

  23. Palmero I, Pantoja C, Serrano M. p19ARF links the tumour suppressor p53 to Ras. Nature 1998; 395: 125–126.

    Article  PubMed  CAS  Google Scholar 

  24. Bates S, Phillips AC, Clark PA, Stott F, Peters G, Ludwig RL, et al. p14ARF links the tumour suppressors RB and p53. Nature 1998; 395: 124–125.

    Article  PubMed  CAS  Google Scholar 

  25. Muller H, Bracken AP, Vernell R, Moroni MC, Christians F, Grassilli E, et al. E2Fs regulate the expression of genes involved in differentiation, development, proliferation, and apoptosis. Genes Dey 2001; 15: 267–285.

    Article  CAS  Google Scholar 

  26. Montes de Oca Luna R, Wagner DS, Lozano G. Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature 1995; 378: 203–206.

    Article  Google Scholar 

  27. Parant J, Chavez-Reyes A, Little NA, Yan W, Reinke V, Jochemsen AG, et al. Rescue of embryonic lethality in Mdm4-null mice by loss of Trp53 suggests a nonoverlapping pathway with MDM2 to regulate p53. Nat Genet 2001; 29: 92–95.

    Article  PubMed  CAS  Google Scholar 

  28. Barak Y, Gottlieb E, Juven-Gershon T, Oren M. Regulation of mdm2 expression by p53: alternative promoters produce transcripts with nonidentical translation potential. Genes Dey 1994; 8: 1739–1749.

    Article  CAS  Google Scholar 

  29. Wu X, Bayle JH, Olson D, and Levine AJ. The p53-mdm-2 autoregulatory feedback loop. Genes Dey 1993; 7: 1126–1132.

    Article  CAS  Google Scholar 

  30. Shaulian E, Resnitzky D, Shifman O, Blandino G, Amsterdam A, Yayon A, et al. Induction of Mdm2 and enhancement of cell survival by bFGF. Oncogene 1997; 15: 2717–2725.

    Article  PubMed  CAS  Google Scholar 

  31. Fambrough D, McClure K, Kazlauskas A, Lander ES. Diverse signaling pathways activated by growth factor receptors induce broadly overlapping, rather than independent, sets of genes [see comments]. Cell 1999; 97: 727–741.

    Article  PubMed  CAS  Google Scholar 

  32. Ries SJ, Brandts CH, Chung AS, Biederer CH, Hann BC, Lipner EM, et al. Loss of p14ARF in tumor cells facilitates replication of the adenovirus mutant dI1520 (ONYX-015). Nat Med 2000; 6: 1128–1133.

    Article  PubMed  CAS  Google Scholar 

  33. Mayo LD, Donner DB. A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus. Proc Natl Acad Sci USA 2001; 98: 11598–11603.

    Article  PubMed  CAS  Google Scholar 

  34. McCarthy SA, Samuels ML, Pritchard CA, Abraham JA, McMahon M. Rapid induction of heparin-binding epidermal growth factor/diphtheria toxin receptor expression by Raf and Ras oncogenes. Genes Dey 1995; 9: 1953–1964.

    Article  CAS  Google Scholar 

  35. Bienz M, Clevers H. Linking colorectal cancer to Wnt signaling. Cell 2000; 103: 311–320.

    Article  PubMed  CAS  Google Scholar 

  36. Tetsu O, McCormick F. Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 1999; 398: 422–426.

    Article  PubMed  CAS  Google Scholar 

  37. He TC, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT, et al. Identification of c-MYC as a target of the APC pathway. Science 1998; 281: 1509–1512.

    Article  PubMed  CAS  Google Scholar 

  38. Damalas A, Ben-Ze’ev A, Simcha I, Shtutman M, Leal JF, Zhurinsky J, et al. Excess beta-catenin promotes accumulation of transcriptionally active p53. EMBO J 1999; 18: 3054–3063.

    Article  PubMed  CAS  Google Scholar 

  39. Ding VW, Chen RH, McCormick F. Differential regulation of glycogen synthase kinase 3beta by insulin and Wnt signaling. J Biol Chem 2000; 275: 32475–32481.

    Article  PubMed  CAS  Google Scholar 

  40. Henry DO, Moskalenko SA, Kaur KJ, Fu M, Pestell RG, Camonis JH, et al. Ral GTPases contribute to regulation of cyclin D1 through activation of NF-kappaB. Mol Cell Biol 2000; 20: 8084–8092.

    Article  PubMed  CAS  Google Scholar 

  41. Ronchini C, Capobianco AJ. Induction of cyclin Dl transcription and CDK2 activity by Notch(ic): implication for cell cycle disruption in transformation by Notch(ic). Mol Cell Biol 2001; 21: 5925–5934.

    Article  PubMed  CAS  Google Scholar 

  42. Guillemot L, Levy A, Raymondjean M, Rothhut B. Angiotensin II-induced transcriptional activation of the cyclin Dl gene is mediated by Egr-1 in CHO-ATIA cells. J Biol Chem 2001; 13: 39394–39403.

    Article  Google Scholar 

  43. Burgering BM, Bos JL. Regulation of Ras-mediated signalling: more than one way to skin a cat. Trends Biochem Sci 1995; 20: 18–22.

    Article  PubMed  CAS  Google Scholar 

  44. Qiu RG, Chen J, Kim D, McCormick F, and Symons M. An essential role for Rac in Ras transformation. Nature 1995; 374: 457–459.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

McCormick, F. (2003). Signal Transduction Networks. In: Rak, J. (eds) Oncogene-Directed Therapies. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-313-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-313-2_3

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9738-0

  • Online ISBN: 978-1-59259-313-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics