Skip to main content

Bcl-2 Antisense Oligonucleotides Therapy for Cancer

Targeting the Mitochondria

  • Chapter
Oncogene-Directed Therapies

Abstract

Programmed cell death, also termed apoptosis, is the final biochemical pathway underlying the therapeutic efficacy of several cytotoxic therapies for cancer, both in vitro (1,2) and in vivo (3–7). Susceptibility to apoptosis is associated with curability (8,9),whereas resistance to apoptotic stimuli significantly reduces efficacy. Neoplastic cells aquire their growth advantage through somatic evolution arising from genome instability (10),a process that results in the expression of anti-death proteins, including those of the Bc1-2 family such as Bc1-2, Bc1-X1, Mcl-1, Bcl-W, and Survivin (11–16).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kaufmann SH. Induction of endonucleolytic DNA cleavage in human acute myelogenous leukemia cells by etoposide, camptothecin, and other cytotoxic anticancer drugs: a cautionary note. Cancer Res 1989; 49: 5870–5878.

    PubMed  CAS  Google Scholar 

  2. Eastman A. Activation of programmed cell death by anticancer agents: cisplatin as a model system. Cancer Cells 1990; 2: 275–280.

    PubMed  CAS  Google Scholar 

  3. Su IJ, Cheng AL, Tsai TF, Lay JD. Retinoic acid-induced apoptosis and regression of a refractory Epstein-Barr virus-containing T cell lymphoma expressing multidrug-resistance phenotypes. Br J Haematol 1993; 85: 826–828.

    Article  PubMed  CAS  Google Scholar 

  4. Midgley CA, Owens B, Briscoe CV, Thomas DB, Lane DP, Hall PA. Coupling between gamma irradiation, p53 induction and the apoptotic response depends upon cell type in vivo. J Cell Sci 1995; 108: 1843–1848.

    PubMed  CAS  Google Scholar 

  5. Potten CS. The significance of spontaneous and induced apoptosis in the gastrointestinal tract of mice. Cancer Metastasis Rev 1992; 11: 179–195.

    Article  PubMed  CAS  Google Scholar 

  6. Meyn RE, Stephens LC, Hunter NR, Milas L. Apoptosis in murine tumors treated with chemotherapy agents. Anticancer Drugs 1995; 6: 443–450.

    Article  PubMed  CAS  Google Scholar 

  7. Gorczyca W, Bigman K, Mittelman A, Ahmed T, Gong J, Melamed MR, et al. Induction of DNA strand breaks associated with apoptosis during treatment of leukemias. Leukemia 1993; 7: 659–670.

    PubMed  CAS  Google Scholar 

  8. Langley RE, Palayoor ST, Coleman CN, Bump EA. Radiation-induced apoptosis in F9 teratocarcinoma cells. Int J Radiat Biol 1994; 65: 605–610.

    Article  PubMed  CAS  Google Scholar 

  9. Lutzker SG, Barnard NJ. Testicular germ cell tumors: molecular understanding and clinical implications. Mol Med Today 1998; 4: 404–411.

    Article  PubMed  CAS  Google Scholar 

  10. Cahill DP, Kinzler KW, Vogelstein B, Lengauer C. Genetic instability and darwinian selection in tumours. Trends Cell Biol 1999; 9: M57 — M60.

    Article  PubMed  CAS  Google Scholar 

  11. Krajewski S, Tanaka S, Takayama S, Schibler MJ, Fenton W, Reed JC. Investigation of the subcellular distribution of the bcl-2 oncoprotein: residence in the nuclear envelope, endoplasmic reticulum, and outer mitochondrial membranes. Cancer Res 1993; 53: 4701–4714.

    PubMed  CAS  Google Scholar 

  12. Chen-Levy Z, Nourse J, Cleary ML. The bcl-2 candidate proto-oncogene product is a 24–kilodalton integral-membrane protein highly expressed in lymphoid cell lines and lymphomas carrying the t(14:18) translocation. Mol Cell Biol 1989; 9: 701–710.

    PubMed  CAS  Google Scholar 

  13. Hockenbery D, Nunez G, Milliman C, Schreiber RD, Korsmeyer SJ. Bcl-2 is an inner mitochondria] membrane protein that blocks programmed cell death. Nature 1990; 348: 334–336.

    Article  PubMed  CAS  Google Scholar 

  14. Boise LH, Gonzalez-Garcia M, Postema CE, Ding L, Lindsten T, Turka LA, et al. Bel-X, a Bcl-2 related gene that functions as a dominant regulator of apoptotic cell death. Cell 1993; 74: 597–608.

    Article  PubMed  CAS  Google Scholar 

  15. Reynolds JE, Li J, Craig RW, Eastman A. BCL-2 and MCL-1 expression in Chinese hamster ovary cells inhibits intracellular acidification and apoptosis induced by staurosporine. Exp Cell Res 1996; 225: 430–436.

    Google Scholar 

  16. Gibson L, Holmgreen SP, Huang DC, Bernard O, Copeland NG, Jenkins NA, et al. bel-w, a novel member of the bc1–2 family, promotes cell survival. Oncogene 1996; 13: 665–675.

    PubMed  CAS  Google Scholar 

  17. Tsujimoto Y, Cossman J, Jaffe E, Croce CM. Involvement of the bc1–2 gene in human follicular lymphoma. Science 1985; 228: 1440–1443.

    Article  PubMed  CAS  Google Scholar 

  18. Vaux DL, Cory S, Adams JM. Bc1–2 gene promotes haemopoietic cell survival and cooperates with cmyc to immortalize pre-B cells. Nature 1988; 335: 440–442.

    Article  PubMed  CAS  Google Scholar 

  19. Chen-Levy Z, Cleary ML. Membrane topology of the Bcl-2 proto-oncogenic protein demonstrated in vitro. J Biol Chem 1990; 265: 4929–4933.

    PubMed  CAS  Google Scholar 

  20. Sentman CL, Shutter JR, Hockenbery D, Kanagawa O, Korsmeyer SJ. bc1–2 Inhibits multiple forms of apoptosis but not negative selection in thymocytes. Cell 1991; 67: 879–888.

    Article  PubMed  CAS  Google Scholar 

  21. Strasser A, Harris AW, Cory S. bcl-2 transgene inhibits T cell death and perturbs thymic self-censorship. Cell 1991; 67: 889–899.

    Article  PubMed  CAS  Google Scholar 

  22. Hockenbery DM, Oltvai ZN, Yin XM, Milliman CL, Korsmeyer SJ. Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell 1993; 75: 241–251.

    Article  PubMed  CAS  Google Scholar 

  23. Zhong LT, Sarafian T, Kane DJ, Charles AC, Mah SP, Edwards RH, et al. bc1–2 inhibits death of central neural cells induced by multiple agents. Proc Natl Acad Sci USA 1993; 90: 4533–4537.

    Article  PubMed  CAS  Google Scholar 

  24. Zamzami N, Marchetti P, Castedo M, Decaudin D, Macho A, Hirsch T, et al. Sequential reduction of mitochondrial transmembrane potential and generation of reactive oxygen species in early programmed cell death. J Exp Med 1995; 182: 367–377.

    Article  PubMed  CAS  Google Scholar 

  25. Lemasters JJ, Nieminen AL, Qian T, Trost LC, Elmore SP, Nishimura Y, et al. The mitochondrial permeability transition in cell death: A common mechanism in necrosis, apoptosis and autophagy. Biochim Biophys Acta Bioenerg 1998; 2: 177–196.

    Article  Google Scholar 

  26. Decaudin D, Geley S, Hirsch T, Castedo M, Marchetti P, Macho A, et al. Bcl-2 and Bcl-XL antagonize the mitochondrial dysfunction preceding nuclear apoptosis induced by chemotherapeutic agents. Cancer Res 1997; 57: 62–67.

    PubMed  CAS  Google Scholar 

  27. Susin SA, Zamzami N, Castedo M, Hirsch T, Marchetti P, Macho A, et al. Bc1–2 inhibits the mitochondrial release of an apoptogenic protease. J Exp Med 1996; 184: 1331–1341.

    Article  PubMed  CAS  Google Scholar 

  28. Marzo I, Brenner C, Zamzami N, Jurgensmeier JM, Susin SA, Vieira HLA, et al. Bax and adenine nucleotide translocator cooperate in the mitochondrial control of apoptosis. Science 1998; 281: 2027–2031.

    Article  PubMed  CAS  Google Scholar 

  29. Doran E, Halestrap AP. Cytochrome c release from isolated rat liver mitochondria can occur independently of outer-membrane rupture: possible role of contract sites [in process citation]. Biochem J 2000; 348: 343–350.

    Article  PubMed  CAS  Google Scholar 

  30. Halestrap AP, Doran E, Gillespie JP, O’Toole A. Mitochondria and cell death [in process citation]. FEBS Lett 2000; 473: 285–291.

    Article  Google Scholar 

  31. Pastorino JG, Tafani M, Rothman RI, Marcineviciute A, Hoek JB, Farber JL. Functional consequences of the sustained or transient activation by bax of the mitochondrial permeability transition pore [in process citation]. JBiol Chem 1999; 274: 31734–31739.

    Article  CAS  Google Scholar 

  32. Pastorino JG, Chen ST, Tafani M, Snyder JW, Farber JL. The overexpression of Bax produces cell death upon induction of the mitochondrial permeability transition. J Biol Chem 1998; 273: 7770–7775.

    Article  PubMed  CAS  Google Scholar 

  33. Shimizu S, Konishi A, Kodama T, Tsujimoto Y. BH4 domain of antiapoptotic bcl-2 family members closes voltage-dependent anion channel and inhibits apoptotic mitochondrial changes and cell death [in process citation]. Proc Natl Acad Sci USA 2000; 97: 3100–3105.

    Article  PubMed  CAS  Google Scholar 

  34. Shimizu S, Narita M, Tsujimoto Y. Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC [see comments]. Nature 1999; 399: 483–487.

    Article  PubMed  CAS  Google Scholar 

  35. Shimizu S, Eguchi Y, Kamiike W, Funahashi Y, Mignon A, Lacronique V, et al. Bcl-2 prevents apoptotic mitochondrial dysfunction by regulating proton flux. Proc Natl Acad Sci USA 1998; 95: 1455–1459.

    Article  PubMed  CAS  Google Scholar 

  36. Hsu YT, Wolter KG, Youle RJ. Cytosol-to-membrane redistribution of Bax and Bc1–X(L) during apoptosis. Proc Natl Acad Sci USA 1997; 94: 3668–3672.

    Article  PubMed  CAS  Google Scholar 

  37. Wolter KG, Hsu YT, Smith CL, Nechushtan A, Xi XG, Youle RJ. Movement of Bax from the cytosol to mitochondria during apoptosis. J Cell Biol 1997; 139: 1281–1292.

    Article  PubMed  CAS  Google Scholar 

  38. Korsmeyer SJ, Shutter JR, Veis DJ, Merry DE, Oltvai ZN. Bcl-2/Bax: a rheostat that regulates an anti-oxidant pathway and cell death. Semin Cancer Biol 1993; 4: 327–332.

    PubMed  CAS  Google Scholar 

  39. Sakakura C, Sweeney EA, Shirahama T, Igarashi Y, Hakomori S, Tsujimoto H, et al. Overexpression of bax sensitizes breast cancer MCF-7 cells to cisplatin and etoposide. Surg Today 1997; 27: 676–679.

    Article  PubMed  CAS  Google Scholar 

  40. Kobayashi T, Ruan S, Clodi K, Kliche KO, Shiku H, Andreeff M, et al. Overexpression of Bax gene sensitizes K562 erythroleukemia cells to apoptosis induced by selective chemotherapeutic agents. Oncogene 1998; 16: 1587–1591.

    Article  PubMed  CAS  Google Scholar 

  41. Paterson BM, Roberts BE, Kuff EL. Structural gene identification and mapping by DNA-mRNA hybrid-arrested cell-free translation. Proc Natl Acad Sci USA 1977; 74: 4370–4374.

    Article  PubMed  CAS  Google Scholar 

  42. Stephenson ML, Zamecnik PC. Inhibition of Rous sarcoma viral RNA translation by a specific oligodeoxyribonucleotide. Proc Natl Acad Sci USA 1978; 75: 285–288.

    Article  PubMed  CAS  Google Scholar 

  43. Zamecnik PC, Stephenson ML. Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proc Natl Acad Sci USA 1978; 75: 280–284.

    Article  PubMed  CAS  Google Scholar 

  44. Simons RW, Kleckner N. Translational control of IS 10 transposition. Cell 1983; 34: 683–691.

    Article  PubMed  CAS  Google Scholar 

  45. Mizuno T, Chou MY, Inouye M. A unique mechanism regulating gene expression: translational inhibition by a complementary RNA transcript (micRNA). Proc Natl Acad Sci USA 1984; 81: 1966–1970.

    Article  PubMed  CAS  Google Scholar 

  46. Izant JG, Weintraub H. Inhibition of thymidine kinase gene expression by anti-sense RNA: a molecular approach to genetic analysis. Cell 1984; 36: 1007–1015.

    Article  PubMed  CAS  Google Scholar 

  47. Khan IM, Coulson JM. A novel method to stabilise antisense oligonucleotides against exonuclease degradation [published erratum appears in Nucleic Acids Res 1993 Sep 11; 21 (18):4433].

    Google Scholar 

  48. Khan IM, Coulson JM. A novel method to stabilise antisense oligonucleotides against exonuclease degradation [published erratum appears in Nucleic Acids Res 1993 Nucleic Acids Res 1993; 21: 2957–2958.

    Article  Google Scholar 

  49. Fresco JR. ABM. Nature 1960; 188: 98.

    Article  PubMed  CAS  Google Scholar 

  50. Zuker M. On finding all suboptimal foldings of an RNA molecule. Science 1989; 244: 48–52.

    Article  PubMed  CAS  Google Scholar 

  51. Stull RA, Zon G, Szoka FC Jr. An in vitro messenger RNA binding assay as a tool for identifying hybridization-competent antisense oligonucleotides. Antisense Nucleic Acid Drug Dey 1996; 6: 221–228.

    Article  CAS  Google Scholar 

  52. Gewirtz AM, Sokol DL, Ratajczak MZ. Nucleic acid therapeutics: state of the art and future prospects. Blood 1998; 92: 712–736.

    PubMed  CAS  Google Scholar 

  53. Ho SP, Bao Y, Lesher T, Malhotra R, Ma LY, Fluharty SJ, et al. Mapping of RNA accessible sites for antisense experiments with oligonucleotide libraries [see comments]. Nat Biotechnol 1998; 16: 59–63.

    Article  PubMed  CAS  Google Scholar 

  54. Ho SP, Britton DH, Stone BA, Behrens DL, Leffet LM, Hobbs FW, et al. Potent antisense oligonucleotides to the human multidrug resistance-1 mRNA are rationally selected by mapping RNA-accessible sites with oligonucleotide libraries. Nucleic Acids Res 1996; 24: 1901–1907.

    Article  PubMed  CAS  Google Scholar 

  55. Milner N, Mir KU, Southern EM. Selecting effective antisense reagents on combinatorial oligonucleotide arrays. Nat Biotechnol 1997; 15: 537–541.

    Article  PubMed  CAS  Google Scholar 

  56. Southern EM, Milner N, Mir KU. Discovering antisense reagents by hybridization of RNA to oligonucleotide arrays. Ciba Found Symp 1997; 209: 38–44;

    PubMed  CAS  Google Scholar 

  57. Southern EM, Milner N, Mir KU. Discovering antisense reagents by hybridization of RNA to oligonucleotide arrays. Ciba Found Symp 1997; 44–46.

    Google Scholar 

  58. Monia BP, Johnston JF, Geiger T, Muller M, Fabbro D. Antitumor activity of a phosphorothioate anti-sense oligodeoxynucleotide targeted against C-raf kinase. Nat Med 1996; 2: 668–675.

    Article  PubMed  CAS  Google Scholar 

  59. Gee JE, Robbins I, van der Laan AC, van Boom JH, Colombier C, Leng M, et al. Assessment of high-affinity hybridization, RNase H cleavage, and covalent linkage in translation arrest by antisense oligonucleotides. Cell 1997; 90: 405–413.

    Article  Google Scholar 

  60. Tidd DM. Ribonuclease H-mediated antisense effects in intact human leukaemia cells. Biochem Soc Trans 1996; 24: 619–623.

    PubMed  CAS  Google Scholar 

  61. Giles RV, Spiller DG, Tidd DM. Detection of ribonuclease. H-generated mRNA fragments in human leukemia cells following reversible membrane permeabilization in the presence of antisense oligodeoxynucleotides. Antisense Res Dey 1995; 5: 23–31.

    CAS  Google Scholar 

  62. Wu H, Lima WF, Crooke ST. Molecular cloning and expression of eDNA for human RNase H. Antisense Nucleic Acid Drug Dey 1998; 8: 53–61.

    Article  CAS  Google Scholar 

  63. Crooke ST. Molecular mechanisms of action of antisense drugs. Biochim Biophys Acta 1999; 1489: 31–44.

    Article  PubMed  CAS  Google Scholar 

  64. Donis-Keller H. Site specific enzymatic cleavage of RNA. Nucleic Acids Res 1979; 7: 1233–1246.

    Article  Google Scholar 

  65. Eder PS, Walder JA. Ribonuclease H from K562 human erythroleukemia cells. Purification, characterization, and substrate specificity. J Biol Chem 1991; 266: 23204–23214.

    PubMed  Google Scholar 

  66. Kawasaki AM, Casper MD, Freier SM, Lesnik EA, Zounes MC, Cummins LL, et al. Uniformly modified 2’-deoxy-2’-fluoro phosphorothioate oligonucleotides as nuclease-resistant antisense corn-pounds with high affinity and specificity for RNA targets. Diabetologia 1993; 36: 696–706.

    Article  PubMed  Google Scholar 

  67. Sproat BS, Lamond AI, Beijer B, Neuner P, Ryder U. Highly efficient chemical synthesis of 2’-Omethyloligoribonucleotides and tetrabiotinylated derivatives; novel probes that are resistant to degradation by RNA or DNA specific nucleases. Nucleic Acids Res 1989; 17: 8967–8978.

    Article  PubMed  Google Scholar 

  68. Mirabelli CK, Bennett CF, Anderson K, Crooke ST. In vitro and in vivo pharmacologic activities of antisense oligonucleotides. Nucleic Acids Res 1989; 17: 2517–2527.

    Article  Google Scholar 

  69. Cazenave C, Stein CA, Loreau N, Thuong NT, Neckers LM, Subasinghe C, et al. Comparative inhibition of rabbit globin mRNA translation by modified antisense oligodeoxynucleotides. Nucleic Acids Res 1989; 17: 8207–8219.

    Article  PubMed  Google Scholar 

  70. Maher LJd, Wold B, Dervan PB. Inhibition of DNA binding proteins by oligonucleotide-directed triple helix formation. Nucleic Acids Res 1989; 17: 4255–4273.

    Article  Google Scholar 

  71. Monia BP, Lesnik EA, Gonzalez C, Lima WF, McGee D, Guinosso CJ, et al. Evaluation of 2’-modified oligonucleotides containing 2’-deoxy gaps as antisense inhibitors of gene expression. J Biol Chem 1993; 268: 14514–14522.

    PubMed  CAS  Google Scholar 

  72. Giles RV, Tidd DM. Increased specificity for antisense oligodeoxynucleotide targeting of RNA cleavage by RNase H using chimeric methylphosphonodiester/phosphodiester structures. J Am Coll Cardiol 1992; 20: 3–16.

    Article  Google Scholar 

  73. Chin DJ, Green GA, Zon G, Szoka FC Jr, Straubinger RM. Rapid nuclear accumulation of injected oligodeoxyribonucleotides. New Biol 1990; 2: 1091–1100.

    Google Scholar 

  74. Zabner J, Fasbender Ai, Moninger T, Poellinger KA, Welsh MJ. Cellular and molecular barriers to gene transfer by a cationic lipid. J Biol Chem 1995; 270: 18997–19007.

    Article  PubMed  CAS  Google Scholar 

  75. Shoeman RL, Hartig R, Huang Y, Grub S, Traub P. Fluorescence microscopic comparison of the binding of phosphodiester and phosphorothioate (antisense) oligodeoxyribonucleotides to subcellular structures, including intermediate filaments, the endoplasmic reticulum, and the nuclear interior. Anti-sense Nucleic Acid Drug Dey 1997; 7: 291–308.

    Article  CAS  Google Scholar 

  76. Stein CA, Cohen JS. Oligodeoxynucleotides as inhibitors of gene expression: a review. Cancer Res 1988; 48: 2659–2668.

    PubMed  CAS  Google Scholar 

  77. Bennett CF, Chiang MY, Chan H, Shoemaker JEE, Mirabelli CK. Cationic lipids enhance cellular uptake and activity of phosphorothioate antisense oligonucleotides. Mol Phannacol 1992; 41: 1023–1033.

    CAS  Google Scholar 

  78. Marcusson EG, Bhat B, Manoharan M, Bennett CF, Dean NM. Phosphorothioate oligodeoxyribonucleotides dissociate from cationic lipids before entering the nucleus. Nucleic Acids Res 1998; 26: 2016–2023.

    Article  PubMed  CAS  Google Scholar 

  79. Lorenz P, Misteli T, Baker BF, Bennett CF, Spector DL. Nucleocytoplasmic shuttling: a novel in vivo property of antisense phosphorothioate oligodeoxynucleotides. Nucleic Acids Res 2000; 28: 582–592.

    Article  PubMed  CAS  Google Scholar 

  80. Legendre JY, Szoka FC Jr. Delivery of plasmid DNA into mammalian cell lines using pH-sensitive liposomes: comparison with cationic liposomes. Pharm Res 1992; 9: 1235–1242.

    Article  PubMed  CAS  Google Scholar 

  81. Giles RV, Grzybowski J, Spiller DG, Tidd DM. Enhanced antisense effects resulting from an improved streptolysin-0 protocol for oligodeoxynucleotide delivery into human leukaemia cells. Nucleosides Nucleotides 1997; 16: 7–9.

    Google Scholar 

  82. Giles RV, Spiller DG, Grzybowski J, Clark RE, Nicklin P, Tidd DM. Selecting optimal oligonucleotide composition for maximal antisense effect following streptolysin 0–mediated delivery into human leukaemia cells. Nucleic Acids Res 1998; 26: 1567–1575.

    Article  PubMed  CAS  Google Scholar 

  83. Spiller DG, Tidd DM. Nuclear delivery of antisense oligodeoxynucleotides through reversible permeabilization of human leukemia cells with streptolysin O. Antisense Res Dey 1995; 5: 13–21.

    CAS  Google Scholar 

  84. Broughton CM, Spiller DG, Pender N, Komorovskaya M, Grzybowski J, Giles RV, et al. Preclinical studies of streptolysin-0 in enhancing antisense oligonucleotide uptake in harvests from chronic myeloid leukaemia patients. Leukemia 1997; 11: 1435–1441.

    Article  PubMed  CAS  Google Scholar 

  85. Bielinska A, Kukowska-Latallo JF, Johnson J, Tomalia DA, Baker JR Jr. Regulation of in vitro gene expression using antisense oligonucleotides or antisense expression plasmids transfected using star-burst PAMAM dendrimers. Nucleic Acids Res 1996; 24: 2176–2182.

    Article  PubMed  CAS  Google Scholar 

  86. Leonetti JP, Degols G, Lebleu B. Biological activity of oligonucleotide-poly(L-lysine) conjugates: mechanism of cell uptake. Biocorijug Chem 1990; 1: 149–153.

    Article  CAS  Google Scholar 

  87. Krieg AM, Tonkinson J, Matson S, Zhao Q, Saxon M, Zhang LM, et al. Modification of antisense phosphodiester oligodeoxynucleotides by a 5’ cholesteryl moiety increases cellular association and improves efficacy. Proc Natl Acad Sci USA 1993; 90: 1048–1052.

    Article  PubMed  CAS  Google Scholar 

  88. Bongartz JP, Aubertin AM, Milhaud PG, Lebleu B. Improved biological activity of antisense oligonucleotides conjugated to a fusogenic peptide. Nucleic Acids Res 1994; 22: 4681–4688.

    Article  PubMed  CAS  Google Scholar 

  89. Wu GY, Wu CH. Specific inhibition of hepatitis B viral gene expression in vitro by targeted antisense oligonucleotides. J Biol Chem 1992; 267: 12436–12439.

    PubMed  CAS  Google Scholar 

  90. Watson PH, Pon RT, Shiu RP. Inhibition of cell adhension to plastic substratum by phosphorothioate oligonucleotide Exp cell Res 1992; 202: 391–397.

    Article  PubMed  CAS  Google Scholar 

  91. Benimetskaya L, Takle GB, Vilenchik M, Lebedeva I, Miller P, Stein CA. Cationic porphyrins: novel delivery vehicles for antisense oligodeoxynucleotides. Nucleic Acids Res 1998; 26: 5310–5317.

    Article  PubMed  CAS  Google Scholar 

  92. Graham MJ, Crooke ST, Monteith DK, Cooper SR, Lemonidis KM, Stecker KK, et al. In vivo distribution and metabolism of a phosphorothioate oligonucleotide within rat liver after intravenous administration. J Pharmacol Exp Ther 1998; 286: 447–458.

    PubMed  CAS  Google Scholar 

  93. Bijsterbosch MK, Manoharan M, Rump ET, De Vrueh RL, van Veghel R, Tivel KL, et al. In vivo fate of phosphorothioate antisense oligodeoxynucleotides: predominant uptake by scavenger receptors on endothelial liver cells. Nucleic Acids Res 1997; 25: 3290–3296.

    Article  PubMed  CAS  Google Scholar 

  94. Butler M, Crooke RM, Graham MJ, Lemonidis KM, Lougheed M, Murray SF, et al. Phosphorothioate oligodeoxynucleotides distribute similarly in class A scavenger receptor knockout and wild-type mice. J Pharmacol Exp Ther 2000; 292: 489–496.

    PubMed  CAS  Google Scholar 

  95. Reed JC, Stein C, Subasinghe C, Haldar S, Croce CM, Yum S, et al. Antisense-mediated inhibition of BCL2 protooncogene expression and leukemic cell growth and survival: comparisons of phosphodiester and phosphorothioate oligodeoxynucleotides. Cancer Res 1990; 50: 6944–6948.

    Google Scholar 

  96. Kitada S, Takayama S, De Riel K, Tanaka S, Reed JC. Reversal of chemoresistance of lymphoma cells by antisense-mediated reduction of bc1–2 gene expression. Antisense Res Dev 1994; 4: 71–79.

    PubMed  CAS  Google Scholar 

  97. Campos L, Sabido O, Rouault JP, Guyotat D. Effects of BCL-2 antisense oligodeoxynucleotides on in vitro proliferation and survival of normal marrow progenitors and leukemic cells. Blood 1994; 84: 595–600.

    PubMed  CAS  Google Scholar 

  98. Cotter FE, Johnson P, Hall P, Pocock C, al Mandi N, Cowell JK, et al. Antisense oligonucleotides suppress B-cell lymphoma growth in a SCID-hu mouse model. Oncogene 1994; 9: 3049–3055.

    PubMed  CAS  Google Scholar 

  99. Jansen B, Schlagbauer-Wadl H, Brown BD, Bryan RN, van Elsas A, Muller M, et al. bcl-2 antisense therapy chemosensitizes human melanoma in SCID mice. Nat Med 1998; 4: 232–234.

    Article  PubMed  CAS  Google Scholar 

  100. Klasa RJ, Bally MB, Ng R, Goldie JH, Gascoyne RD, Wong FM. Eradication of human non-Hodgkin’s lymphoma in SCID mice by BCL-2 antisense oligonucleotides combined with low-dose cyclophosphamide [in process citation]. Clin Cancer Res 2000; 6: 2492–2500.

    PubMed  CAS  Google Scholar 

  101. Schlagbauer-Wadl H, Klosner G, Heere-Ress E, Waltering S, Moll I, Wolff K, et al. Bcl-2 antisense oligonucleotides (G3139) inhibit Merkel cell carcinoma growth in SCID mice. J Invest Dermatol 2000; 114: 725–730.

    Article  PubMed  CAS  Google Scholar 

  102. Miyake H, Monia BP, Gleave ME. Inhibition of progression to androgen-independence by combined adjuvant treatment with antisense BCL-XL and antisense Bcl-2 oligonucleotides plus taxol after castration in the Shionogi tumor model. Int J Cancer 2000; 86: 855–862.

    Article  PubMed  CAS  Google Scholar 

  103. Webb A, Cunningham D, Cotter F, Clarke PA, di Stefano F, Ross P, et al. BCL-2 antisense therapy in patients with non-Hodgkin lymphoma. Lancet 1997; 349: 1137–1141.

    Article  PubMed  CAS  Google Scholar 

  104. Waters JS, Webb A, Cunningham, D, Clarke PA, Raynaud F, di Stefano F, et al. Phase I clinical and pharmacokinetic study of bcl-2 antisense oligonucleotide therapy in patients with non-Hodgkin’s lymphoma [see comments]. J Clin Oncol 2000; 18: 1812–1823.

    PubMed  CAS  Google Scholar 

  105. Benimetskaya L, Loike JD, Khaled Z, Loike G, Silverstein SC, Cao L, et al. Mac-1 (CD1 lb/CD18) is an oligodeoxynucleotide-binding protein [see comments]. Nat Med 1997; 3: 414–420.

    Article  PubMed  CAS  Google Scholar 

  106. Wellstein A, Zugmaier G, Califano JAd, Kern F, Paik S, Lippman ME. Tumor growth dependent on Kaposi’s sarcoma-derived fibroblast growth factor inhibited by pentosan polysulfate. J Natl Cancer Inst 1991; 83: 716–720.

    Article  PubMed  CAS  Google Scholar 

  107. Zugmaier G, Lippman ME, Wellstein A. Inhibition by pentosan polysulfate (PPS) of heparin-binding growth factors released from tumor cells and blockage by PPS of tumor growth in animals. J Natl Cancer Inst 1992; 84: 1716–1724.

    Article  PubMed  CAS  Google Scholar 

  108. Stein CA, Krieg AM. Problems in interpretation of data derived from in vitro and in vivo use of anti-sense oligodeoxynucleotides [editorial]. Antisense Res Dev 1994; 4: 67–69.

    PubMed  CAS  Google Scholar 

  109. Jansen B, Wadl H, Inoue SA, Trulzsch B, Selzer E, Duchene M, et al. Phosphorothioate oligonucleotides reduce melanoma growth in a SCID-hu mouse model by a nonantisense mechanism. Antisense Res Dev 1995; 5: 271–277.

    PubMed  CAS  Google Scholar 

  110. Yaswen P, Stampfer MR, Ghosh K, Cohen JS. Effects of sequence of thioated oligonucleotides on cultured human mammary epithelial cells. Antisense Res Dey 1993; 3: 67–77.

    CAS  Google Scholar 

  111. Higgins KA, Perez JR, Coleman TA, Dorshkind K, McComas WA, Sarmiento UM, et al. Antisense inhibition of the p65 subunit of NF-kappa B blocks tumorigenicity and causes tumor regression. Proc Natl Acad Sci USA 1993; 90: 9901–9905.

    Article  PubMed  CAS  Google Scholar 

  112. Ballas ZK, Rasmussen WL, Krieg AM. Induction of NK activity in murine and human cells by CpG motifs in oligodeoxynucleotides and bacterial DNA. Blood 1996; 88: 1788–1795.

    Google Scholar 

  113. Krieg AM, Yi AK, Matson S, Waldschmidt Ti, Bishop GA, Teasdale R, et al. CpG motifs in bacterial DNA trigger direct B-cell activation. J Clin Immunol 1995; 15: 284–292.

    Article  PubMed  CAS  Google Scholar 

  114. Vaerman JL, Moureau P, Deldime F, Lewalle P, Lammineur C, Morschhauser F, et al. Antisense oligodeoxyribonucleotides suppress hematologic cell growth through stepwise release of deoxyribonucleotides. Arthritis Rheum 1985; 28: 341–344.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Cotter, F.E., Fennell, D.A. (2003). Bcl-2 Antisense Oligonucleotides Therapy for Cancer. In: Rak, J. (eds) Oncogene-Directed Therapies. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-313-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-313-2_22

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9738-0

  • Online ISBN: 978-1-59259-313-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics