Skip to main content

Targeting Oncogenes in Pediatric Malignancies

  • Chapter
Oncogene-Directed Therapies

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 122 Accesses

Abstract

Pediatric malignancies are markedly different from adult tumors, and the differences, along with a more concerted treatment network than typical for adult oncology, account for the significantly better survival rates and outcomes. The first reason is probably the different type of tumors which occurs in pediatrics. The solid malignancies of childhood are typically rapidly proliferating noncarcinomatous tumors, and the leukemias are clonal proliferation of early lymphoid progenitors. Both typically, harbor few if any genetic abnormalities. The slow-growing carcinomatous neoplasms, so characteristic of adulthood, are uncommon in pediatric oncology, and viruses, environmental toxins, and carcinogens appear, in general, to play a lesser role. Accordingly, when a child presents with a tumor where the accumulation of genetic changes rekindles a clonal carcinogenesis model reminiscent of adult carcinoma (1), the prognosis is usually very poor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell 1990; 61: 759–767.

    Article  PubMed  CAS  Google Scholar 

  2. Bader P, Schilling F, Schlaud M, Girgert R, Handgretinger R, Klingebiel T, et al. Expression analysis of multidrug resistance associated genes in neuroblastomas. Oncol Rep 1996; 6: 1143–1146.

    Google Scholar 

  3. Knudson AG Jr. Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci USA 1971; 68: 820–823.

    Article  PubMed  Google Scholar 

  4. Knudson AG Jr, Strong LC. Mutation and cancer: a model for Wilm’s tumor of the kidney. J Natl Cancer Inst 1972; 48: 313–324.

    PubMed  Google Scholar 

  5. Knudson AG Jr, Strong LC. Mutation and cancer: neuroblastoma and pheochromocytoma. Am J Hum Genet 1972; 24: 514–532.

    PubMed  Google Scholar 

  6. Lee WH, Bookstein R, Hong F, Young LJ, Shew JY, Lee EY. Human retinoblastoma susceptibility gene: cloning, identification, and sequence. Science 1987; 235: 1394–1399.

    Article  PubMed  CAS  Google Scholar 

  7. Lele KP, Penrose LS, Stallard HB. Chromosome deletion in a case of retinoblastoma. Ann Hum Genet 1963; 27: 171.

    Article  PubMed  CAS  Google Scholar 

  8. Chaum E, Ellsworth RM, Abramson DH, Haik BG, Kitchin FD, Chaganti RS. Cytogenetic analysis of retinoblastoma: evidence for multifocal origin and in vivo gene amplification. Cytogenet Cell Genet 1984; 38: 82–91.

    Article  PubMed  CAS  Google Scholar 

  9. Squire J, Gallie BL, Phillips RA. A detailed analysis of chromosomal changes in heritable and non-heritable retinoblastoma. Hum Genet 1985; 70: 291–301.

    Article  PubMed  CAS  Google Scholar 

  10. Francke U. Retinoblastoma and chromosome 13. Cytogenet Cell Genet 1976; 16: 131–134.

    Article  PubMed  CAS  Google Scholar 

  11. Ward P, Packman S, Loughman W, Sparkes M, Sparkes R, McMahon A, et al. Location of the retinoblastoma susceptibility gene(s) and the human esterase D locus. J Med Genet 1984; 21: 92–95.

    Article  PubMed  CAS  Google Scholar 

  12. Gallie BL, Campbell C, Devlin H, Duckett A, Squire JA. Developmental basis of retinal-specific induction of cancer by RB mutation. Cancer Res 1999; 59: 1731s - 1735s.

    PubMed  CAS  Google Scholar 

  13. Abramson DH, Ellsworth RM, Kitchin FD, Tung G. Second nonocular tumors in retinoblastoma survivors. Are they radiationinduced? Ophthalmology 1984; 91: 1351–1355.

    PubMed  CAS  Google Scholar 

  14. Hansen MF, Koufos A, Gallie BL, Phillips RA, Fodstad O, Brogger A, et al. Osteosarcoma and retinoblastoma: a shared chromosomal mechanism revealing recessive predisposition. Proc Natl Acad Sci USA 1985; 82: 6216–6220.

    Article  PubMed  CAS  Google Scholar 

  15. Dryja TP, Rapaport JM, Joyce JM, Petersen RA. Molecular detection of deletions involving band q14 of chromosome 13 in retinoblastomas. Proc Natl Acad Sci USA 1986; 83: 7391–7394.

    Article  PubMed  CAS  Google Scholar 

  16. Huang Hi, Yee JK, Shew JY, Chen PL, Bookstein R, Friedmann T, et al. Suppression of the neo-plastic phenotype by replacement of the RB gene in human cancer cells. Science 1988; 242: 1563–1566.

    Google Scholar 

  17. Landschulz WH, Johnson PF, McKnight SL. The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science 1988; 240: 1759–1764.

    Article  PubMed  CAS  Google Scholar 

  18. Lee WH, Shew JY, Hong FD, Sery TW, Donoso LA, Young LJ, et al. The retinoblastoma susceptibility gene encodes a nuclear phosphoprotein associated with DNA binding activity. Nature 1987; 329: 642–645.

    Article  PubMed  CAS  Google Scholar 

  19. Buchkovich K, Duffy LA, Harlow E. The retinoblastoma protein is phosphorylated during specific phases of the cell cycle. Cell 1989; 58: 1097–1105.

    Article  PubMed  CAS  Google Scholar 

  20. Kitchin FD, Ellsworth RM. Pleiotropic effects of the gene for retinoblastoma. J Med Genet 1974; 11: 244–246.

    Article  PubMed  CAS  Google Scholar 

  21. Lee SB, Haber DA. Wilms tumor and the WT1 gene. Exp Cell Res 2001; 264: 74–99.

    Article  PubMed  CAS  Google Scholar 

  22. Bardeesy N, Falkoff D, Petruzzi MJ, Nowak N, Zabel B, Adam M, et al. Anaplastic Wilm’s tumour, a subtype displaying poor prognosis, harbours p53 gene mutations. Nat Genet 1994; 7: 91–97.

    Article  PubMed  CAS  Google Scholar 

  23. Koesters R, Ridder R, Kopp-Schneider A, Betts D, Adams V, Niggli F, et al. Mutational activation of the beta-catenin proto-oncogene is a common event in the development of Wilm’s tumors. Cancer Res 1999; 59: 3880–3882.

    PubMed  CAS  Google Scholar 

  24. Steenman MJ, Rainier S, Dobry CJ, Grundy P, Horon IL, Feinberg AP. Loss of imprinting of IGF2 is linked to reduced expression and abnormal methylation of H19 in Wilm’s tumour. Nat Genet 1994; 7: 433–439.

    Article  PubMed  CAS  Google Scholar 

  25. Riccardi VM, Sujansky E, Smith AC, Francke U. Chromosomal imbalance in the Aniridia-Wilm’s tumor association: 1 1p interstitial deletion. Pediatrics 1978; 61: 604–610.

    PubMed  CAS  Google Scholar 

  26. Call KM, Glaser T, Ito CY, Buckler AJ, Pelletier J, Haber DA, et al. Isolation and characterization of a zinc finger polypeptide gene at the human chromosome 11 Wilm’s tumor locus. Cell 1990; 60: 509–520.

    Article  PubMed  CAS  Google Scholar 

  27. Gessler M, Poustka A, Cavenee W, Neve RL, Orkin SH, Bruns GA. Homozygous deletion in Wilms tumours of a zinc-finger gene identified by chromosome jumping. Nature 1990; 343: 774–778.

    Article  PubMed  CAS  Google Scholar 

  28. Bonetta L, Kuehn SE, Huang A, Law DJ, Kalikin LM, Koi M, et al. Wilms tumor locus on 11p13 defined by multiple CpG island-associated transcripts. Science 1990; 250: 994–997.

    Article  PubMed  CAS  Google Scholar 

  29. Diller L, Ghahremani M, Morgan J, Grundy P, Reeves C, Breslow N, et al. Constitutional WT1 mutations in Wilm’s tumor patients. J Clin Oncol 1998; 16: 3634–3640.

    PubMed  CAS  Google Scholar 

  30. Rahman N, Arbour L, Tonin P, Renshaw J, Pelletier J, Baruchel S, et al. Evidence for a familial Wilm’s tumour gene (FWT1) on chromosome 17q12-q21. Nat Genet 1996; 13: 461–463.

    Article  PubMed  CAS  Google Scholar 

  31. Koufos A, Hansen MF, Lampkin BC, Workman ML, Copeland NG, Jenkins NA, et al. Loss of alleles at loci on human chromosome 11 during genesis of Wilm’s tumour. Nature 1984; 309: 170–172.

    Article  PubMed  CAS  Google Scholar 

  32. Orkin SH, Goldman DS, Sallan SE. Development of homozygosity for chromosome l 1p markers in Wilm’s tumour. Nature 1984; 309: 172–174.

    Article  PubMed  CAS  Google Scholar 

  33. Fearon ER, Vogelstein B, Feinberg AP. Somatic deletion and duplication of genes on chromosome 11 in Wilm’s tumours. Nature 1984; 309: 176–178.

    Article  PubMed  CAS  Google Scholar 

  34. Henry I, Jeanpierre M, Couillin P, Barichard F, Serre JL, Journel H, et al. Molecular definition of the 11p15.5 region involved in Beckwith-Wiedemann syndrome and probably in predisposition to adrenocortical carcinoma. Hum Genet 1989; 81: 273–277.

    Article  PubMed  CAS  Google Scholar 

  35. Reeve AE, Sih SA, Raizis AM, Feinberg AP. Loss of allelic heterozygosity at a second locus on chromosome 11 in sporadic Wilm’s tumor cells. Mol Cell Biol 1989; 9: 1799–1803.

    PubMed  CAS  Google Scholar 

  36. Sheng WW, Soukup S, Bove K, Gotwals B, Lampkin B. Chromosome analysis of 31 Wilm’s tumors. Cancer Res 1990; 50: 2786–2793.

    PubMed  CAS  Google Scholar 

  37. Maw MA, Grundy PE, Millow LJ, Eccles MR, Dunn RS, Smith PJ, et al. A third Wilm’s tumor locus on chromosome 16q. Cancer Res 1992; 52: 3094–3098.

    PubMed  CAS  Google Scholar 

  38. Grundy RG, Pritchard J, Scambler P, Cowell JK. Loss of heterozygosity for the short arm of chromosome 7 in sporadic Wilms tumour. Oncogene 1998; 17: 395–400.

    Article  PubMed  CAS  Google Scholar 

  39. Feinberg AP. The two-domain hypothesis in Beckwith-Wiedemann syndrome. J Clin Invest 2000; 106: 739–740.

    Article  PubMed  CAS  Google Scholar 

  40. Junien C. Beckwith-Wiedemann syndrome, tumourigenesis and imprinting. Curr Opin Genet Dev 1992; 2: 431–438.

    Article  PubMed  CAS  Google Scholar 

  41. Schroeder WT, Chao LY, Dao DD, Strong LC, Pathak S, Riccardi V, et al. Nonrandom loss of maternal chromosome 11 alleles in Wilms tumors. Am J Hum Genet 1987; 40: 413–420.

    PubMed  CAS  Google Scholar 

  42. Rainier S, Johnson LA, Dobry CJ, Ping AJ, Grundy PE, Feinberg AP. Relaxation of imprinted genes in human cancer. Nature 1993; 362: 747–749.

    Article  PubMed  CAS  Google Scholar 

  43. Grundy PE, Telzerow PE, Breslow N, Moksness J, Huff V, Paterson MC. Loss of heterozygosity for chromosomes 16q and 1p in Wilm’s tumors predicts an adverse outcome. Cancer Res 1994: 54: 2331–2333.

    PubMed  CAS  Google Scholar 

  44. Perlman M, Levin M, Wittels B. Syndrome of fetal gigantism, renal hamartomas, and nephroblastomatosis with Wilm’s tumor. Cancer 1975; 35: 1212–1217.

    Article  PubMed  CAS  Google Scholar 

  45. Hersh JH, Cole TR, Bloom AS, Bertolone SJ, Hughes HE. Risk of malignancy in Sotos syndrome. J Pediatr 1992; 120: 572–574.

    Article  PubMed  CAS  Google Scholar 

  46. Patek CE, Little MH, Fleming S. Miles C, Charlieu JP, Clarke AR, et al. A zinc finger truncation of murine WT1 results in the characteristic urogenital abnormalities of Denys-Drash syndrome. Proc Natl Acad Sci USA 1999; 96: 2931–2936.

    Article  PubMed  CAS  Google Scholar 

  47. Bardeesy N, Zabel B, Schmitt K, Pelletier J. WT1 mutations associated with incomplete DenysDrash syndrome define a domain predicted to behave in a dominant-negative fashion. Genomics 1994; 21: 663–664.

    Article  PubMed  CAS  Google Scholar 

  48. Barbaux S, Niaudet P, Gubler MC, Grunfeld JP, Jaubert F, Kuttenn F, et al. Donor splice-site mutations in WT1 are responsible for Frasier syndrome. Nat Genet 1997; 17: 467–470.

    Article  PubMed  CAS  Google Scholar 

  49. Cairney AE, Andrews M, Greenberg M, Smith D, Weksberg R. Wilms tumor in three patients with Bloom syndrome. J Pediatr 1987; 111: 414–416.

    Article  PubMed  CAS  Google Scholar 

  50. Roberts WM, Jenkins JJ, Moorhead EL, Douglass EC. Incontinentia pigmenti, a chromosomal instability syndrome, is associated with childhood malignancy. Cancer 1988; 62: 2370–2372.

    Article  PubMed  CAS  Google Scholar 

  51. Li FP, Fraumeni JF Jr. Rhabdomyosarcoma in children: epidemiologic study and identification of a familial cancer syndrome. JNatl Cancer Inst 1969; 43: 1365–1373.

    CAS  Google Scholar 

  52. Li FP, Fraumeni JF Jr. Soft-tissue sarcomas, breast cancer, and other neoplasms. A familial syndrome? Ann Intern Med 1969; 71: 747–752.

    PubMed  CAS  Google Scholar 

  53. Malkin D, Li FP, Strong LC, Fraumeni JF Jr, Nelson CE, Kim DH, et al. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 1990; 250: 1233–1238.

    Article  PubMed  CAS  Google Scholar 

  54. Diller L, Sexsmith E, Gottlieb A, Li FP, Malkin D. Germline p53 mutations are frequently detected in young children with rhabdomyosarcoma. J Clin Invest 1995; 95: 1606–1611.

    Article  PubMed  CAS  Google Scholar 

  55. Scrable HJ, Witte DP, Lampkin BC, Cavenee WK. Chromosomal localization of the human rhabdomyosarcoma locus by mitotic recombination mapping. Nature 1987; 329: 645–647.

    Article  PubMed  CAS  Google Scholar 

  56. Scrable H, Witte D, Shimada H, Seemayer T, Sheng WW, Soukup S, et al. Molecular differential pathology of rhabdomyosarcoma. Genes Chromosom Cancer 1989; 1: 23–35.

    Article  PubMed  CAS  Google Scholar 

  57. Scrable H, Cavenee W, Ghavimi F, Lovell M, Morgan K, Sapienza C. A model for embryonal rhabdomyosarcoma tumorigenesis that involves genome imprinting. Proc Natl Acad Sci USA 1989; 86: 7480–7484.

    Article  PubMed  CAS  Google Scholar 

  58. El-Badry OM, Helman LJ, Chatten J, Steinberg SM, Evans AE, Israel MA. Insulin-like growth factor II-mediated proliferation of human neuroblastoma. J Clin Invest 1991; 87: 648–657.

    Article  PubMed  CAS  Google Scholar 

  59. El-Badry OM, Romanus JA, Hetman LJ, Cooper MJ, Rechler MM, Israel MA. Autonomous growth of a human neuroblastoma cell line is mediated by insulin-like growth factor II. J Clin Invest 1989; 84: 829–839.

    Article  PubMed  CAS  Google Scholar 

  60. El Badry OM, Minniti C, Kohn EC, Houghton PJ, Daughaday WH, Heiman LJ. Insulin-like growth factor II acts as an autocrine growth and motility factor in human rhabdomyosarcoma tumors. Cell Growth Differ 1990; 1: 325–331.

    PubMed  Google Scholar 

  61. Kalebic T, Tsokos M, Helman LJ. In vivo treatment with antibody against IGF-1 receptor suppresses growth of human rhabdomyosarcoma and down-regulates p34cdc2. Cancer Res 1994; 54:5531–5534.

    Google Scholar 

  62. Turc-Carel C, Lizard-Nacol S, Justrabo E, Favrot M, Philip T, Tabone E. Consistent chromosomal translocation in alveolar rhabdomyosarcoma. Cancer Genet Cytogenet 1986; 19: 361–362.

    Article  PubMed  CAS  Google Scholar 

  63. Douglass EC, Valentine M, Etcubanas E, Parham D, Webber BL, Houghton PJ, et al. A specific chromosomal abnormality in rhabdomyosarcoma. Cytogenet Cell Genet 1987; 45: 148–155.

    Google Scholar 

  64. Xu Q, Wu Z. The insulin-like growth factor-phosphatidylinositol 3-kinase-Akt signaling pathway regulates myogenin expression in normal myogenic cells but not in rhabdomyosarcoma-derived RD cells. J Biol Chem 2000; 275: 36750–36757.

    Article  PubMed  CAS  Google Scholar 

  65. Margue CM, Bernasconi M, Ban FG, Schafer BW. Transcriptional modulation of the anti-apoptotic protein BCL-XL by the paired box transcription factors PAX3 and PAX3/FKHR. Oncogene 2000; 19: 2921–2929.

    Article  PubMed  CAS  Google Scholar 

  66. Pulciani S, Santos E, Lauver AV, Long LK, Aaronson SA, Barbacid M. Oncogenes in solid human tumours. Nature 1982; 300: 539–542.

    Article  PubMed  CAS  Google Scholar 

  67. Chardin P, Yeramian P, Madaule P, Tavitian A. N-ras gene activation in the RD human rhabdomyosarcoma cell line. Int J Cancer 1985; 35: 647–652.

    Article  PubMed  CAS  Google Scholar 

  68. Stratton MR, Fisher C, Gusterson BA, Cooper CS. Detection of point mutations in N-ras and K-ras genes of human embryonal rhabdomyosarcomas using oligonucleotide probes and the polymerase chain reaction. Cancer Res 1989; 49: 6324–6327.

    PubMed  CAS  Google Scholar 

  69. Brodeur GM. Molecular basis for heterogeneity in human neuroblastomas. Eur J Cancer 1995; 31A: 505–510.

    Article  Google Scholar 

  70. Brodeur GM. Molecular pathology of human neuroblastomas. Semin Diagn Pathol 1994; 11: 118–125.

    PubMed  CAS  Google Scholar 

  71. Turkel SB, Itabashi HH. The natural history of neuroblastic cells in the fetal adrenal gland. Am J Pathol 1974; 76: 225–244.

    PubMed  CAS  Google Scholar 

  72. Ikeda Y, Lister J, Bouton JM, Buyukpamukcu M. Congenital neuroblastoma, neuroblastoma in situ, and the normal fetal development of the adrenal. J Pediatr Surg 1981; 16: 636–644.

    Article  PubMed  CAS  Google Scholar 

  73. Bessho F, Hashizume K, Nakajo T, Kamoshita S. Mass screening in Japan increased the detection of infants with neuroblastoma without a decrease in cases in older children. J Pediatr 1991; 119: 237–241.

    Article  PubMed  CAS  Google Scholar 

  74. Brodeur GM, Look AT, Shimada H, Hamilton VM, Maris JM, Hann HW, et al. Biological aspects of neuroblastomas identified by mass screening in Quebec. Med Pediatr Oncol 2001; 36: 157–159.

    Article  PubMed  CAS  Google Scholar 

  75. Woods WG, Tuchman M, Bernstein ML, Leclerc JM, Brisson L, Look T, et al. Screening for neuroblastoma in North America. 2-year results from the Quebec Project. Am J Pediatr Hematol Oncol 1992; 14: 312–319.

    Article  PubMed  CAS  Google Scholar 

  76. Woods WG, Tuchman M, Robison LL, Bernstein M, Leclerc JM, Brisson LC, et al. Screening for neuroblastoma is ineffective in reducing the incidence of unfavourable advanced stage disease in older children. Eur J Cancer 1997; 33: 2106–2112.

    Article  PubMed  CAS  Google Scholar 

  77. Baker DL, Reddy UR, Pleasure D, Thorpe CL, Evans AE, Cohen PS, et al. Analysis of nerve growth factor receptor expression in human neuroblastoma and neuroepithelioma cell lines. Cancer Res 1989; 49: 4142–4146.

    PubMed  CAS  Google Scholar 

  78. Azar C, Scavarda NJ, Reynolds CP, Brodeur GM. Multiple defects of the nerve growth factor receptorin human neuroblastomas. Prog Clin Biol Res 1991; 366: 219–226.

    PubMed  CAS  Google Scholar 

  79. Azar CG, Scavarda NJ, Nakagawara A, Brodeur GM. Expression and function of the nerve growth factor receptor (TRK-A) in human neuroblastoma cell lines. Prog Clin Biol Res 1994; 385: 169–175.

    PubMed  CAS  Google Scholar 

  80. Nakagawara A, Arima-Nakagawara M, Scavarda NJ, Azar CG, Cantor AB, Brodeur GM. Association between high levels of expression of the TRK gene and favorable outcome in human neuroblastoma. N Engl J Med 1993; 328: 847–854.

    Article  PubMed  CAS  Google Scholar 

  81. Brodeur GM, Green AA, Hayes FA, Williams KJ, Williams DL, Tsiatis AA. Cytogenetic features of human neuroblastomas and cell lines. Cancer Res 1981; 41: 4678–4686.

    PubMed  CAS  Google Scholar 

  82. Brodeur GM, Nakagawara A. Molecular basis of clinical heterogeneity in neuroblastoma. Am J Pediatr Hematol Oncol 1992; 14: 111–116.

    Article  PubMed  CAS  Google Scholar 

  83. Cheng NC, van Roy N, Chan A, Beitsma M, Westerveld A, Speleman F, et al. Deletion mapping in neuroblastoma cell lines suggests two distinct tumor suppressor genes in the 1p35–36 region, only one of which is associated with N-myc amplification. Oncogene 1995; 10: 291–297.

    PubMed  CAS  Google Scholar 

  84. Takeda O, Homma C, Maseki N, Sakurai M, Kanda N, Schwab M, et al. There may be two tumor suppressor genes on chromosome arm 1p closely associated with biologically distinct subtypes of neuroblastoma. Genes Chromosom Cancer 1994; 10: 30–39.

    Article  PubMed  CAS  Google Scholar 

  85. Schleiermacher G, Peter M, Michon J, Hugot JP, Vielh P, Zucker JM, et al. Two distinct deleted regions on the short arm of chromosome 1 in neuroblastoma. Genes Chromosom Cancer 1994; 10: 275–281.

    Article  PubMed  CAS  Google Scholar 

  86. Fong CT, Dracopoli NC, White PS, Merrill PT, Griffith RC, Housman DE, et al. Loss of heterozygosity for the short arm of chromosome 1 in human neuroblastomas: correlation with N-myc amplification. Proc Natl Acad Sci USA 1989; 86: 3753–3757.

    Article  PubMed  CAS  Google Scholar 

  87. Caron H, van SP, van HM, de KJ, Bras J, Slater R, et al. Allelic loss of chromosome 1p36 in neuroblastoma is of preferential maternal origin and correlates with N-myc amplification [comment] [see comments] [published erratum appears in Nat Genet 1993 Aug;4(4):431]. Nat Genet 1993; 4: 187–190.

    CAS  Google Scholar 

  88. Fong CT, White PS, Peterson K, Sapienza C, Cavenee WK, Kern SE, et al. Loss of heterozygosity for chromosomes 1 or 14 defines subsets of advanced neuroblastomas. Cancer Res 1992; 52: 1780–1785.

    PubMed  CAS  Google Scholar 

  89. Srivatsan ES, Ying KL, Seeger RC. Deletion of chromosome 11 and of 14q sequences in neuroblastoma. Genes Chromosom Cancer 1993; 7: 32–37.

    Article  PubMed  CAS  Google Scholar 

  90. Caron H. Allelic loss of chromosome 1 and additional chromosome 17 material are both unfavourable prognostic markers in neuroblastoma. Med Pediatr Oncol 1995; 24: 215–221.

    Article  PubMed  CAS  Google Scholar 

  91. Katzenstein HM, Bowman LC, Brodeur GM, Thorner PS, Joshi VV, Smith EI, et al. Prognostic significance of age, MYCN oncogene amplification, tumor cell ploidy, and histology in 110 infants with stage D(S) neuroblastoma: the pediatric oncology group experience-a pediatric oncology group study. J Clin Oncol 1998; 16: 2007–2017.

    PubMed  CAS  Google Scholar 

  92. Komuro H, Valentine MB, Rowe ST, Kidd VJ, Makino S, Brodeur GM, et al. Fluorescence in situ hybridization analysis of chromosome 1p36 deletions in human MYCN amplified neuroblastoma. J Pediatr Surg 1998; 33: 1695–1698.

    Article  PubMed  CAS  Google Scholar 

  93. Kong XT, Valentine VA, Rowe ST, Valentine MB, Ragsdale ST, Jones BG, et al. Lack of homozygously inactivated p73 in single-copy MYCN primary neuroblastomas and neuroblastoma cell lines. Neoplasia 1999; 1: 80–89.

    Article  PubMed  CAS  Google Scholar 

  94. Hempstead BL, Martin-Zanca D, Kaplan DR, Parada LF, Chao MV. High-affinity NGF binding requires coexpression of the trk proto-oncogene and the low-affinity NGF receptor. Nature 1991; 350: 678–683.

    Article  PubMed  CAS  Google Scholar 

  95. Kaplan DR, Hempstead BL, Martin-Zanca D, Chao MV, Parada LF. The trk proto-oncogene product: a signal transducing receptor for nerve growth factor. Science 1991; 252: 554–558.

    Article  PubMed  CAS  Google Scholar 

  96. Klein R, Jing SQ, Nanduri V, O’ Rourke E, Barbacid M. The trk proto-oncogene encodes a receptor for nerve growth factor. Cell 1991; 65: 189–197.

    Article  PubMed  CAS  Google Scholar 

  97. Klein R, Nanduri V, Jing SA, Lamballe F, Tapley P, Bryant S, et al. The trkB tyrosine protein kinase is a receptor for brain-derived neurotrophic factor and neurotrophin-3. Cell 1991; 66: 395–403.

    Article  PubMed  CAS  Google Scholar 

  98. Lamballe F, Klein R, Barbacid M. trkC, a new member of the trk family of tyrosine protein kinases, is a receptor for neurotrophin-3. Cell 1991; 66: 967–979.

    Article  PubMed  CAS  Google Scholar 

  99. Squinto SP, Stitt TN, Aldrich TH, Davis S, Bianco SM, Radziejewski C, et al. trkB encodes a functional receptor for brain-derived neurotrophic factor and neurotrophin-3 but not nerve growth factor. Cell 1991; 65: 885–893.

    Article  PubMed  CAS  Google Scholar 

  100. Klein R, Lamballe F, Bryant S, Barbacid M. The trkB tyrosine protein kinase is a receptor for neurotrophin-4.Neuron 1992; 8: 947–956.

    CAS  Google Scholar 

  101. Nakagawara A, Azar CG, Scavarda NJ, Brodeur GM. Expression and function of TRK-B and BDNF in human neuroblastomas. Mol Cell Biol 1994; 14: 759–767.

    PubMed  CAS  Google Scholar 

  102. Brodeur GM, Nakagawara A, Yamashiro DJ, Ikegaki N, Liu XG, Azar CG, et al. Expression of TrkA, TrkB and TrkC in human neuroblastomas. J Neurooncol 1997; 31: 49–55.

    Article  PubMed  CAS  Google Scholar 

  103. Scala S, Wosikowski K, Giannakakou P, Valle P, Biedler JL, Spengler BA, et al. Brain-derived neurotrophic factor protects neuroblastoma cells from vinblastine toxicity. Cancer Res 1996; 56: 3737–3742.

    PubMed  CAS  Google Scholar 

  104. Middlemas DS, Kihl BK, Zhou J, Zhu X. Brain Derived neurotropic factor promotes survival and chemoprotection of human neuroblastoma cells. J Biol Chem 1999; 274: 16451–16460.

    Article  PubMed  CAS  Google Scholar 

  105. Lucarelli E, Kaplan D, Thiele O. Activation of trk-A but not trk-B signal transduction pathway inhibits growth of neuroblastoma cells. Eur J Cancer 1997; 33: 2068–2070.

    Article  PubMed  CAS  Google Scholar 

  106. Eggert A, Ikegaki N, Kwiatkowski J, Zhao H, Brodeur GM, Himelstein BP. High-level expression of angiogenic factors is associated with advanced tumor stage in human neuroblastomas. Clin Cancer Res 2000; 6: 1900–1908.

    PubMed  CAS  Google Scholar 

  107. Donovan MJ, Lin MI, Wiegn P, Ringstedt T, Kraemer R, Hahn R, et al. Brain derived neurotrophic factor is an endothelial cell survival factor required for intramyocardial vessel stabilization. Development 2000; 127: 4531–4540.

    PubMed  CAS  Google Scholar 

  108. Yamashiro DJ, Nakagawara A, Ikegaki N, Liu XG, Brodeur GM. Expression of TrkC in favorable human neuroblastomas. Oncogene 1996; 12: 37–41.

    Google Scholar 

  109. Svensson T, Ryden M, Schilling FH, Dominici C, Sehgal R, Ibanez CF, et al. Coexpression of mRNA for the full-length neurotrophin receptor trk-C and trk-A in favourable neuroblastoma. Eur J Cancer 1997; 33: 2058–2063.

    Article  PubMed  CAS  Google Scholar 

  110. Nakagawara A, Arima M, Azar CG, Scavarda NJ, Brodeur GM. Inverse relationship between trk expression and N-myc amplification in human neuroblastomas. Cancer Res 1992; 52: 1364–1368.

    PubMed  CAS  Google Scholar 

  111. Seeger RC, Wada R, Brodeur GM, Moss TJ, Bjork RL, Sousa L, et al. Expression of N-myc by neuroblastomas with one or multiple copies of the oncogene. Prog Clin Biol Res 1988; 271: 41–49.

    PubMed  CAS  Google Scholar 

  112. Tanaka T, Slamon DJ, Shimoda H, Waki C, Kawaguchi Y, Tanaka Y, et al. Expression of Ha-ras oncogene products in human neuroblastomas and the significant correlation with a patient’s prognosis. Cancer Res 1988; 48: 1030–1034.

    PubMed  CAS  Google Scholar 

  113. Tanaka T, Sugimoto T, Sawada T. Prognostic discrimination among neuroblastomas according to Haras/trk A gene expression: a comparison of the profiles of neuroblastomas detected clinically and those detected through mass screening. Cancer 1998; 83: 1626–1633.

    Article  PubMed  CAS  Google Scholar 

  114. Ballas K, Lyons J, Janssen JW, Bartram CR. Incidence of ras gene mutations in neuroblastoma. Eur J Pediatr 1988; 147: 313–314.

    Article  PubMed  CAS  Google Scholar 

  115. Thiele CJ, McKeon C, Triche TJ, Ross RA, Reynolds CP, Israel MA. Differential protooncogene expression characterizes histopathologically indistinguishable tumors of the peripheral nervous system. J Clin Invest 1987; 80: 804–811.

    Article  PubMed  CAS  Google Scholar 

  116. Miller RW. Deaths from childhood leukemia and solid tumors among twins and other sibs in the United States, 1960–67. J Natl Cancer Inst 1971; 46: 203–209.

    PubMed  CAS  Google Scholar 

  117. Draper GJ, Heaf MM, Kinnier Wilson LM. Occurrence of childhood cancers among sibs and estimation of familial risks. J Med Genet 1977; 14: 81–90.

    Article  PubMed  CAS  Google Scholar 

  118. Hartley SE, Sainsbury C. Acute leukaemia and the same chromosome abnormality in monozygotic twins. Hum Genet 1981; 58: 408–410.

    Article  PubMed  CAS  Google Scholar 

  119. Pombo de Oliveira MS, Awadel Seed FE, Foroni L, Matutes E, Morilla R, Luzzatto L, et al. Lymphoblastic leukaemia in Siamese twins: evidence for identity. Lancet 1986; 2: 969–970.

    Article  Google Scholar 

  120. Ford AM, Ridge SA, Cabrera ME, Mahmoud H, Steel CM, Chan LC, et al. In utero rearrangements in the trithorax-related oncogene in infant leukaemias. Nature 1993; 363: 358–360.

    Article  PubMed  CAS  Google Scholar 

  121. Morton NE, Hassold TJ, Funkhouser J, McKenna PW, Lew R. Cytogenetic surveillance of spontaneous abortions. Cytogenet Cell Genet 1982; 33: 232–239.

    Article  PubMed  CAS  Google Scholar 

  122. Hassold TJ, Jacobs PA. Trisomy in man. Annu Rev Genet 1984; 18: 69–97.

    Article  PubMed  CAS  Google Scholar 

  123. Zipursky A. Susceptibility to leukemia and resistance to solid tumors in Down syndrome. Pediatr Res 2000; 47: 704.

    Article  PubMed  CAS  Google Scholar 

  124. Ferster A, Verhest A, Vamos E, De Maertelaere E, Otten J. Leukemia in a trisomy 21 mosaic: specific involvement of the trisomie cells. Cancer Genet Cytogenet 1986; 20: 109–113.

    Article  PubMed  CAS  Google Scholar 

  125. Robison LL, Nesbit ME Jr, Sather HN, Level C, Shahidi N, Kennedy A, et al. Down syndrome and acute leukemia in children: a 10-year retrospective survey from Childrens Cancer Study Group. J Pediatr 1984; 105: 235–242.

    Article  PubMed  CAS  Google Scholar 

  126. Zipursky A, Poon A, Doyle J. Leukemia in Down syndrome: a review. Pediatr Hematol Oncol 1992; 9: 139–149.

    Article  PubMed  CAS  Google Scholar 

  127. Zipursky A, Brown EJ, Christensen H, Doyle J. Transient myeloproliferative disorder (transient leukemia) and hematologic manifestations of Down syndrome. Clin Lab Med 1999; 19: 157–167.

    PubMed  CAS  Google Scholar 

  128. Doyle JJ, Thorner P, Poon A, Tanswell K, Kamel-Reid S, Zipursky A. Transient Leukemia followed by megakaryoblastic leukemia in a child with mosaic Down syndrome. Leuk Lymphoma 1995; 17: 345–350.

    Article  PubMed  CAS  Google Scholar 

  129. Zipursky A, Doyle J. Leukemia in newborn infants with Down syndrome. Leuk Res 1993; 17: 195.

    Article  PubMed  CAS  Google Scholar 

  130. Antonarakis SE. Parental origin of the extra chromosome in trisomy 21 as indicated by analysis of DNA polymorphisms. Down Syndrome Collaborative Group. N Engl J Med 1991; 324: 872–876.

    Article  PubMed  CAS  Google Scholar 

  131. Sacchi N. Genes on chromosome 21 and cancer. In: Patterson D, Epstein CJ, eds. Molecular Genetics of Chromosome 21 and Downs Syndrome. Wiley-Liss, New York, 1990, pp. 169.

    Google Scholar 

  132. Miller RW. Relation between cancer and congenital defects: an epidemiologic evaluation. J Natl Cancer Inst 1968; 40: 1079–1085.

    PubMed  CAS  Google Scholar 

  133. Thick J, Metcalfe JA, MakYF, Beatty D, Minegishi M, Dyer MJ, et al. Expression of either the TCL1 oncogene, or transcripts from its homologue MTCP1/c6.1B, in leukaemic and non-leukaemic T cells from ataxia telangiectasia patients. Oncogene 1996; 12: 379–386.

    PubMed  CAS  Google Scholar 

  134. Nakanishi K, Moran A, Hays T, Kuang Y, Fox E, Garneau D, et al. Functional analysis of patient-derived mutations in the Fanconi anemia gene, FANCG/XRCC9. Exp Hematol 2001; 29: 842–849.

    Article  PubMed  CAS  Google Scholar 

  135. Look AT. The cytogenetics of childhood leukemia: clinical and biologic implications. Pediatr Clin North Am 1988; 35: 723–741.

    PubMed  CAS  Google Scholar 

  136. Look AT, Downing JR. Molecular biology of leukemia and lymphoma. Rev Invest Clin 1994; Supp1: 124–134.

    Google Scholar 

  137. Downing JR, Higuchi M, Lenny N, Yeoh AE. Alterations of the AMLI transcription factor in human leukemia. Semin Cell Dev Biol 2000; 11: 347–360.

    Article  PubMed  CAS  Google Scholar 

  138. Nucifora G, Rowley JD. AML1 and the 8;21 and 3;21 translocations in acute and chronic myeloid leukemia. Blood 1995; 86: 1–14.

    PubMed  CAS  Google Scholar 

  139. Tighe JE, Daga A, Calabi F. Translocation breakpoints are clustered on both chromosome 8 and chromosome 21 in the t(8;21) of acute myeloid leukemia. Blood 1993; 81: 592–596.

    PubMed  CAS  Google Scholar 

  140. Meyers S, Lenny N, Hiebert SW. The t(8;21) fusion protein interferes with AML-1B-dependent transcriptional activation. Mol Cell Biol 1995; 15: 1974–1982.

    PubMed  CAS  Google Scholar 

  141. Frank R, Zhang J, Uchida H, Meyers S, Hiebert SW, Nimer SD. The AMLI/ETO fusion protein blocks transactivation of the GM-CSF promoter by AML1B. Oncogene 1995; 11: 2667–2674.

    PubMed  CAS  Google Scholar 

  142. Liu P, Tarle SA, Hajra A, Claxton DF, Marlton P, Freedman M, et al. Fusion between transcription factor CBF beta/PEBP2 beta and a myosin heavy chain in acute myeloid leukemia. Science 1993; 261: 1041–1044.

    Article  PubMed  CAS  Google Scholar 

  143. Yergeau DA, Hetherington CJ, Wang Q, Zhang P, Sharpe AH, Binder M, et al. Embryonic lethality and impairment of haematopoiesis in mice heterozygous for an AML I -ETO fusion gene. Nat Genet 1997; 15: 303–306.

    Article  PubMed  CAS  Google Scholar 

  144. Okuda T, Cai Z, Yang S, Lenny N, Lyu CJ, van Deursen JM, et al. Expression of a knocked-in AML1- ETO leukemia gene inhibits the establishment of normal definitive hematopoiesis and directly generates dysplastic hematopoietic progenitors. Blood 1998; 91: 3134–3143.

    PubMed  CAS  Google Scholar 

  145. Okuda T, van Deursen J, Hiebert SW, Grosveld G, Downing JR. AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell 1996; 84: 321–330.

    Article  PubMed  CAS  Google Scholar 

  146. Rubnitz JE, Downing JR, Pui CH, Shurtleff SA, Raimondi SC, Evans WE, et al. TEL gene rearrangement in acute lymphoblastic leukemia: a new genetic marker with prognostic significance. J Clin Oncol 1997; 15: 1150–1157.

    PubMed  CAS  Google Scholar 

  147. Shurtleff SA, Buijs A, Behm FG, Rubnitz JE, Raimondi SC, Hancock ML, et al. TEL/AMLI fusion resulting from a cryptic t(12;21) is the most common genetic lesion in pediatric ALL and defines a subgroup of patients with an excellent prognosis. Leukemia 1995; 9: 1985–1989.

    PubMed  CAS  Google Scholar 

  148. McLean TW, Ringold S, Neuberg D, Stegmaier K, Tantravahi R, Ritz J, et al. TEL/AML-I dimerizes and is associated with a favorable outcome in childhood acute lymphoblastic leukemia. Blood 1996; 88: 4252–4258.

    PubMed  CAS  Google Scholar 

  149. Romana SP, Poirel H, Leconiat M, Flexor MA, Mauchauffe M, Jonveaux P, et al. High frequency of t(12;21) in childhood B-lineage acute lymphoblastic leukemia. Blood 1995; 86: 4263–4269.

    PubMed  CAS  Google Scholar 

  150. McWhirter JR, Wang JY. An actin-binding function contributes to transformation by the Bcr-Abl oncoprotein of Philadelphia chromosome-positive human leukemias. EMBO J 1993; 12: 1533–1546.

    PubMed  CAS  Google Scholar 

  151. Hunger SP, Ohyashiki K, Toyama K, Cleary ML. Hlf, a novel hepatic bZIP protein, shows altered DNA-binding properties following fusion to E2A in t(17;19) acute lymphoblastic leukemia. Genes Dev 1992; 6: 1608–1620.

    Article  PubMed  CAS  Google Scholar 

  152. Inaba T, Roberts WM, Shapiro LH, Jolly KW, Raimondi SC, Smith SD, et al. Fusion of the leucine zipper gene HLF to the E2A gene in human acute B-lineage leukemia. Science 1992; 257: 531–534.

    Article  PubMed  CAS  Google Scholar 

  153. Mueller CR, Maire P, Schibler U. DBP, a liver-enriched transcriptional activator, is expressed late in ontogeny and its tissue specificity is determined posttranscriptionally. Cell 1990; 61: 279–291.

    Article  PubMed  CAS  Google Scholar 

  154. Drolet DW, Scully KM, Simmons DM, Wegner M, Chu KT, Swanson LW, et al. TEF, a transcription factor expressed specifically in the anterior pituitary during embryogenesis, defines a new class of leucine zipper proteins. Genes Dev 1991; 5: 1739–1753.

    Article  PubMed  CAS  Google Scholar 

  155. Boultwood J, Lewis S, Wainscoat JS. The 5q-syndrome. Blood 1994; 84: 3253–3260.

    PubMed  CAS  Google Scholar 

  156. Fairman J, Chumakov I, Chinault AC, Nowell PC, Nagarajan L. Physical mapping of the minimal region of loss in 5q-chromosome. Proc Natl Acad Sci USA 1995; 92: 7406–7410.

    Article  PubMed  CAS  Google Scholar 

  157. McCormick F. New-age drug meets resistance. Nature 2001; 412: 281–282.

    Article  PubMed  CAS  Google Scholar 

  158. Druker BJ, Sawyers CL, Kantarjian H, Resta DJ, Reese SF, Ford JM, et al. Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N Engl J Med 2001; 344: 1038–1042.

    Article  PubMed  CAS  Google Scholar 

  159. Druker BJ, Talpaz M, Resta DJ, Peng B, Buchdunger E, Ford JM, et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 2001; 344: 1031–1037.

    Article  PubMed  CAS  Google Scholar 

  160. Gorre ME, Mohammed M, Ellwood K, Hsu N, Paquette R, Rao PN, et al. Clinical resistance to STI571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 2001; 293: 876–880.

    Article  PubMed  CAS  Google Scholar 

  161. Rak J, Mitsuhashi Y, Bayko L, Filmus J, Shirasawa S, Sasazuki T, et al. Mutant ras oncogenes upregulate VEGFNPF expression: implications for induction and inhibition of tumor angiogenesis. Cancer Res 1995; 55: 4575–4580.

    PubMed  CAS  Google Scholar 

  162. Mukhopadhyay D, Tsiokas L, Sukhatme VP. Wild-type p53 and v-Src exert opposing influences on human vascular endothelial growth factor gene expression. Cancer Res 1995; 55: 6161–6165.

    PubMed  CAS  Google Scholar 

  163. Dameron KM, Volpert OV, Tainsky MA, Bouck N. Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science 1994; 265: 1582–1584.

    Article  PubMed  CAS  Google Scholar 

  164. Rak J, Filmus J, Finkenzeller G, Grugel S, Marme D, Kerbel RS. Oncogenes as inducers of tumor angiogenesis. Cancer Metastasis Rev 1995; 14: 263–277.

    Article  PubMed  CAS  Google Scholar 

  165. Janz A, Sevignani C, Kenyon K, Ngo CV, Thomas-Tikhonenko A. Activation of the myc oncoprotein leads to increased turnover of thrombospondin-1 mRNA. Nucleic Acids Res 2000; 28: 2268–2275.

    Article  PubMed  CAS  Google Scholar 

  166. Breit S, Ashman K, Wilting J, Rossler J, Hatzi E, Fotsis T, et al. The N-myc oncogene in human neuroblastoma cells: down-regulation of an angiogenesis inhibitor identified as activin A. Cancer Res 2000; 60: 4596–4601.

    PubMed  CAS  Google Scholar 

  167. Ngo CV, Gee M, Akhtar N, Yu D, Volpert O, Auerbach R, et al. An in vivo function for the transforming Myc protein: elicitation of the angiogenic phenotype. Cell Growth Differ 2000; 11: 201–210.

    PubMed  CAS  Google Scholar 

  168. Kerbel RS. Inhibition of tumor angiogenesis as a strategy to circumvent acquired resistance to anticancer therapeutic agents. BioEssays 1991; 13: 31–36.

    Article  PubMed  CAS  Google Scholar 

  169. Denekamp J. Vascular endothelium as the vulnerable element in tumours. Acta Radiol Oncol 1984; 23: 217–225.

    Article  PubMed  CAS  Google Scholar 

  170. St Croix B, Rago C, Velculescu V, Traverso G, Romans KE, Montgomery E, et al. Genes expressed in human tumor endothelium. Science 2000; 289: 1197–1202.

    Article  Google Scholar 

  171. Browder T, Butterfield CE, Kraling BM, Marshall B, O’Reilly MS, Folkman J. Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Cancer Res 2000; 60: 1878–1886.

    PubMed  CAS  Google Scholar 

  172. Klement G, Baruchel S, Rak J, Man S, Clark K, Hicklin DJ, et al. Continuous low-dose therapy with vinblastine and VEGF receptor-2 antibody induces sustained tumor regression without overt toxicity [see comments]. J Clin Invest 2000; 105: R15 - R24.

    Article  PubMed  CAS  Google Scholar 

  173. Klement G, Huang P, Mayer B, Man S, Bohlen P, Hicklin DJ, et al. Differences in therapeutic indexes of combination metronomic chemotherapy and an anti-VEGFR-2 antibody in multidrug resistant human breast cancer xenografts. Clin Cancer Res 2002; 8: 221–232.

    PubMed  CAS  Google Scholar 

  174. Hanahan D, Bergers G, Bergsland E. Less is more, regularly: metronomic dosing of cytotoxic drugs can target tumor angiogenesis in mice. J Clin Invest 2000; 105: 1045–1047.

    Article  PubMed  CAS  Google Scholar 

  175. Saito H, Tujitani S, Ikeguchi M, Maeta M, Kaibara N. Neoangiogenesis and relationship to nuclear p53 accumulation and vascular endothelial growth factor expression in advanced gastric carcinoma. Oncology 1999; 57: 164–172.

    Article  PubMed  CAS  Google Scholar 

  176. Volpert OV, Dameron KM, Bouck N. Sequential development of an angiogenic phenotype by human fibroblasts progressing to tumorigenicity. Oncogene 1997; 14: 1495–1502.

    Article  PubMed  CAS  Google Scholar 

  177. Siemeister G, Weindel K, Mohrs K, Barleon B, Martiny-Baron G, Marme D. Reversion of deregulated expression of vascular endothelial growth factor in human renal carcinoma cells by von HippelLindau tumor suppressor protein. Cancer Res 1996; 56: 2299–2301.

    PubMed  CAS  Google Scholar 

  178. Ananth S, Knebelmann B, Gruning W, Dhanabal M, Walz G, Stillman IE, et al. Transforming growth factor betal is a target for the von Hippel-Lindau tumor suppressor and a critical growth factor for clear cell renal carcinoma. Cancer Res 1999; 59: 2210–2216.

    PubMed  CAS  Google Scholar 

  179. Zhong H, Chiles K, Feldser D, Laughner E, Hanrahan C, Georgescu MM, et al. Modulation of hypoxia-inducible factor]alpha expression by the epidermal growth factor/phosphatidylinositol 3kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics. Cancer Res 2000; 60: 1541–1545.

    PubMed  CAS  Google Scholar 

  180. Bouck N, Stellmach V, Hsu S. How tumors become angiogenic. In: Vande Woude JKG, ed. Advances in Cancer Research. Academic, New York, 1996, pp. 135–174.

    Google Scholar 

  181. Hanahan D, Christofori G, Naik P, Arbeit J. Transgenic mouse models of tumour angiogenesis: the angiogenic switch, its molecular controls, and prospects for preclinical therapeutic models. Eur J Cancer 1996; 32A: 2386–2393.

    Article  Google Scholar 

  182. Esparza J, Vilardell C, Calvo J, Juan M, Vives J, Urbano-Marquez A, et al. Fibronectin upregulates gelatinase B (MMP-9) and induces coordinated expression of gelatinase A (MMP-2) and its activator MT1-MMP (MMP-14) by human T lymphocyte cell lines. A process repressed through RAS/MAP kinase signaling pathways. Blood 1999; 94: 2754–2766.

    PubMed  CAS  Google Scholar 

  183. Hatzi E, Breit S, Zoephel A, Ashman K, Tontsch U, Ahorn H, et al. MYCN oncogene and angiogenesis: down-regulation of endothelial growth inhibitors in human neuroblastoma cells. Purification, structural, and functional characterization [in process citation]. Adv Exp Med Biol 2000; 476: 239–248.

    Article  PubMed  CAS  Google Scholar 

  184. Fotsis T, Breit S, Lutz W, Rossler J, Hatzi E, Schwab M, et al. Down-regulation of endothelial cell growth inhibitors by enhanced MYCN oncogene expression in human neuroblastoma cells. Eur J Biochem 1999; 263: 757–764.

    Article  PubMed  CAS  Google Scholar 

  185. Bein K, Ware JA, Simons M. Myb-dependent regulation of thrombospondin 2 expression. Role of mRNA stability. JBiol Chem 1998; 273: 21423–21429.

    Article  CAS  Google Scholar 

  186. Dejong V, Degeorgres A, Filleur S, Ait-Si-Ali S, Mettouchi A, Bornstein P, et al. The Wilm’s tumor gene product represses the transcription of thrombospondin 1 in response to overexpression of c-Jun. Oncogene 1999; 18: 3143–3151.

    Article  PubMed  CAS  Google Scholar 

  187. Kraemer M, Tournaire R, Dejong V, Montreau N, Briane D, Derbin C, et al. Rat embryo fibroblasts transformed by c-Jun display highly metastatic and angiogenic activities in vivo and deregulate gene expression of both angiogenic and antiangiogenic factors. Cell Growth Differ 1999; 10: 193–200.

    PubMed  CAS  Google Scholar 

  188. Bouck N. Tumor angiogenesis: the role of oncogenes and tumor suppressor genes. Cancer Cells 1990; 2: 179–185.

    PubMed  CAS  Google Scholar 

  189. Dawson DW, Volpert OV, Gillis P, Crawford SE, Xu H, Benedict W, et al. Pigment epithelium-derived fas a potent inhibitor of angiogenesis. Science 1999. 285 (5425): 245–248.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Klement, G., Kerbel, R.S. (2003). Targeting Oncogenes in Pediatric Malignancies. In: Rak, J. (eds) Oncogene-Directed Therapies. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-313-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-313-2_19

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9738-0

  • Online ISBN: 978-1-59259-313-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics