Skip to main content

Genetic Basis of Cancer Progression

  • Chapter
Oncogene-Directed Therapies

Abstract

The current paradigm for the development of cancer is that it is a genetic disease, with the malignant phenotype resulting from an accumulation of genetic alterations. This model was first postulated by Cavenee et al. (1) and further developed by Fearon and Vogelstein (2). In the simplest situation of a hematologic neoplasm, such as chronic myeloid leukemia (CML), neoplasia arises as a direct result of the formation of the Philadelphia chromosome (1). This primary aberration is observed recurrently in CML, and the onset of the more aggressive acute phase of the disease is usually heralded by the acquisition of secondary chromosomal changes (3). Many hematologic neoplasms and sarcomas are characterized by the presence of consistent primary chromosomal rearrangements. However, for most carcinomas, a more complex pattern of acquisition of genomic aberration takes place. An advanced carcinoma may have undergone multiple genetic alterations involving both simple mutations in tumor suppressor genes and oncogenes, as well as extensive karyotypic aberrations. Genetic changes are accompanied by a spectrum of phenotypic changes, and, as the number of genetic aberrations increases, there appears to be a more marked histologic phenotype. Through studies of colon cancer, we understand that colorectal neoplasia arises as a result of the mutational activation of oncogenes coupled with the mutational inactivation of tumor suppressor genes (for a review see ref. 2). It is believed that the total number of genetic changes, rather than the sequence in which they occur, is a primary factor in the development of malignancy. Vogelstein and coworkers found that at least five distinct genetic events were required for colon cancer to develop (2). In this malignancy, the specific genetic changes that lead to the production of invasive carcinoma have been clearly identified: the combination of adenomatous polyposis coli (APC) gene mutations; methylation status alterations; K-ras mutations; DCC (deleted in colon cancer) gene mutations; and p53 mutations. Invasive carcinoma has more genetic alterations than a benign lesion like an adenoma, and, in turn, an adenoma has more genetic alterations than histologically normal epithelium (Fig. 1). This particular model has guided much of our current thinking about how cancer arises.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cavenee WK, Dryja TP, Phillips RA, Benedict WF, Godbout R, Gallie BL, et al. Expression of recessive alleles by chromosomal mechanisms in retinoblastoma. Nature 1983; 305: 779–784.

    Article  PubMed  CAS  Google Scholar 

  2. Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell 1990; 61: 759–767.

    Article  PubMed  CAS  Google Scholar 

  3. Heim S, Mitelman F. Cancer Cytogenetics. 2nd ed. Wiley-Liss, New York, 1995.

    Google Scholar 

  4. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000; 100: 57–70.

    Article  PubMed  CAS  Google Scholar 

  5. Sandhu C, Slingerland J. Deregulation of the cell cycle in cancer. Cancer Detect Prey 2000; 24: 107–118.

    CAS  Google Scholar 

  6. Sattler M, Griffin JD. Mechanisms of transformation by the BCR/ABL oncogene. Int J Hematol 2001; 73: 278–291.

    Article  PubMed  CAS  Google Scholar 

  7. Blancato JK. Fluorescence in situ hybridization. In: Gersen SL, Keagle MB, eds. The Principles of Clinical Cytogenetics. Humana Press, Totowa, 1999, pp. 443–472.

    Google Scholar 

  8. Yamauchi H, Stearns V, Hayes DF. When is a tumor marker ready for prime time? A case study of cerbB-2 as a predictive factor in breast cancer. 1 Clin Oncol 2001; 19: 2334–2356.

    CAS  Google Scholar 

  9. Schnitt SJ. Breast cancer in the 21st century: neu opportunities and neu challenges. Mod Pathol 2001; 14: 213–218.

    Article  PubMed  CAS  Google Scholar 

  10. Minard V, Hartmann O, Peyroulet MC, Michon J, Coze C, Defachelle AS, et al. Adverse outcome of infants with metastatic neuroblastoma, MYCN amplification and/or bone lesions: results of the French society of pediatric oncology. Br J Cancer 2000; 83: 973–979.

    Article  PubMed  CAS  Google Scholar 

  11. Bayani J, Squire J. Advances in the detection of chromosomal aberrations using spectral karyotyping. Clin Genet 2001; 59: 65–73.

    Article  PubMed  CAS  Google Scholar 

  12. Dietmaier W, Hartmann A, Wallinger S, Heinmoller E, Kerner T, Endl E, et al. Multiple mutation analyses in single tumor cells with improved whole genome amplification. Am J Pathol 1999; 154: 83–95.

    Article  PubMed  CAS  Google Scholar 

  13. Dracopoli NC. Current Protocols in Human Genetics. John Wiley & Sons, New York, 2001.

    Google Scholar 

  14. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, et al. Current Protocols in Molecular Biology. John Wiley & Sons, New York, 2001.

    Book  Google Scholar 

  15. Baylin SB, Esteller M, Rountree MR, Bachman KE, Schuebel K, Herman JG. Aberrant patterns of DNA methylation, chromatin formation and gene expression in cancer. Hum Mol Genet 2001; 10: 687–692.

    Article  PubMed  CAS  Google Scholar 

  16. Feinberg AP. DNA methylation, genomic imprinting and cancer. Curr Top Microbiol lmmunol 2000; 249: 87–99.

    Article  CAS  Google Scholar 

  17. DeRisi J, Penland L, Brown PO, Bittner ML, Meltzer PS, Ray M, et al. Use of a eDNA microarray to analyse gene expression patterns in human cancer. Nat Genet 1996; 14: 457–460.

    Article  PubMed  CAS  Google Scholar 

  18. Kozal MJ, Shah N, Shen N, Yang R, Fucini R, Merigan TC, et al. Extensive polymorphisms observed in HIV-1 clade B protease gene using high-density oligonucleotide arrays. Nat Med 1996; 2: 753–759.

    Article  PubMed  CAS  Google Scholar 

  19. Pollack JR, Perou CM, Alizadeh AA, Eisen MB, Pergamenschikov A, Williams CF, et al. Genomewide analysis of DNA copy-number changes using cDNA microarrays. Nat Genet 1999; 23: 41–46.

    Article  PubMed  CAS  Google Scholar 

  20. Kononen J, Bubendorf L, Kallioniemi A, Barlund M, Schraml P, Leighton S, et al. Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat Med 1998; 4: 844–847.

    Article  PubMed  CAS  Google Scholar 

  21. Simone NL, Bonner RF, Gillespie JW, Emmert-Buck MR, Liotta LA. Laser-capture microdissection: opening the microscopic frontier to molecular analysis. Trends Genet 1998; 14: 272–276.

    Article  PubMed  CAS  Google Scholar 

  22. Ron E, Preston DL, Mabuchi K, Thompson DE, Soda M. Cancer incidence in atomic bomb survivors. Part IV: Comparison of cancer incidence and mortality. Radiat Res 1994; 137(2 Suppl):S98-S 112.

    Google Scholar 

  23. Dubrova YE, Plumb M, Gutierrez B, Boulton E, Jeffreys AJ. Transgenerational mutation by radiation. Nature 2000; 405: 37.

    Article  PubMed  CAS  Google Scholar 

  24. National Cancer Institute of Canada. Canadian Cancer Statistics 2001.

    Google Scholar 

  25. Knudson AG. Hereditary cancer, oncogenes, and antioncogenes. Cancer Res 1985; 45: 1437–1443.

    PubMed  CAS  Google Scholar 

  26. Nathanson KL, Wooster R, Weber BL, Nathanson KN. Breast cancer genetics: what we know and what we need. Nat Med 2001; 7: 552–556.

    Article  PubMed  CAS  Google Scholar 

  27. Gayther SA, Mangion J, Russell P, Seal S, Barfoot R, Ponder BA, et al. Variation of risks of breast and ovarian cancer associated with different germline mutations of the BRCA2 gene. Nat Genet 1997; 15: 103–105.

    Article  PubMed  CAS  Google Scholar 

  28. Goggins M, Schutte M, Lu J, Moskaluk CA, Weinstein CL, Petersen GM, et al. Germline BRCA2 gene mutations in patients with apparently sporadic pancreatic carcinomas. Cancer Res 1996; 56: 5360–5364.

    PubMed  CAS  Google Scholar 

  29. Arason A, Jonasdottir A, Barkardottir RB, Bergthorsson JT, Teare MD, Easton DF, et al. A population study of mutations and LOH at breast cancer gene loci in tumours from sister pairs: two recurrent mutations seem to account for all BRCAI/BRCA2 linked breast cancer in Iceland. J Med Genet 1998; 35: 446–449.

    Article  PubMed  CAS  Google Scholar 

  30. Knudson AG. Hereditary cancer: two hits revisited. J Cancer Res Clin Oncol 1996; 122: 135–140.

    Article  PubMed  CAS  Google Scholar 

  31. Millikan R, Hulka B, Thor A, Zhang Y, Edgerton S, Zhang X, et al. p53 mutations in benign breast tissue. J Clin Oncol 1995; 13: 2293–2300.

    PubMed  CAS  Google Scholar 

  32. Deng G, Lu Y, Zlotnikov G, Thor AD, Smith HS. Loss of heterozygosity in normal tissue adjacent to breast carcinomas. Science 1996; 274: 2057–2059.

    Article  PubMed  CAS  Google Scholar 

  33. Hiyama E, Hiyama K, Yokoyama T, Matsuura Y, Piatyszek MA, Shay JW. Correlating telomerase activity levels with human neuroblastoma outcomes. Nat Med 1995; 1: 249–255.

    Article  PubMed  CAS  Google Scholar 

  34. Vogelstein B, Kinzler KW. The Genetic Basis of Human Cancer. McGraw-Hill, New York, 1998.

    Google Scholar 

  35. Cahill DP, Kinzler KW, Vogelstein B, Lengauer C. Genetic instability and darwinian selection in tumours. Trends Cell Biol 1999; 9: M57 - M60.

    Article  PubMed  CAS  Google Scholar 

  36. Cahill DP, Lengauer C, Yu J, Riggins GJ, Willson JK, Markowitz SD, et al. Mutations of mitotic checkpoint genes in human cancers. Nature 1998; 392: 300–303.

    Article  PubMed  CAS  Google Scholar 

  37. Elledge RM, Allred DC. The p53 tumor suppressor gene in breast cancer. Breast Cancer Res Treat 1994; 32: 39–47.

    Article  PubMed  CAS  Google Scholar 

  38. Hall PA, Meek D, Lane DP. p53—integrating the complexity. J Pathol 1996; 180: 1–5.

    Article  PubMed  CAS  Google Scholar 

  39. Davidoff AM, Humphrey PA, Iglehart JD, Marks JR. Genetic basis for p53 overexpression in human breast cancer. Proc Natl Acad Sci USA 1991; 88: 5006–5010.

    Article  PubMed  CAS  Google Scholar 

  40. Shackney SE, Shankey TV. Genetic and phenotypic heterogeneity of human malignancies: finding order in chaos. Cytometry 1995; 21: 2–5.

    Article  PubMed  CAS  Google Scholar 

  41. Liotta L, Petricoin E. Molecular profiling of human cancer. Nat Rev Genet 2000; 1: 48–56.

    Article  PubMed  CAS  Google Scholar 

  42. Prime SS, Thakker NS, Pring M, Guest PG, Paterson IC. A review of inherited cancer syndromes and their relevance to oral squamous cell carcinoma. Oral Oncol 2001; 37: 1–16.

    Article  PubMed  CAS  Google Scholar 

  43. Lindblom A, Nordenskjold M. The biology of inherited cancer. Semin Cancer Biol 2000; 10: 251–254.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Done, S.J., Squire, J.A. (2003). Genetic Basis of Cancer Progression. In: Rak, J. (eds) Oncogene-Directed Therapies. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-313-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-313-2_1

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9738-0

  • Online ISBN: 978-1-59259-313-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics