Skip to main content

Part of the book series: Current Clinical Neurology ((CCNEU))

  • 294 Accesses

Abstract

Insights into the structure and function of the basal ganglia and their role in the pathophysiology of movement disorders resulted in the 1980s in the development of testable models of hypokinetic and hyperkinetic movement disorders. Further refinement in the 1990s resulted from continued research in animal models and the addition of physiological recordings of neuronal activity in humans undergoing functional neurosurgical procedures (1–7). These models have gained considerable practical value, guiding the development of new pharmacologic and surgical treatments, but, in their current form, more and more insufficiencies of these simplified schemes are becoming apparent. In the following chapter we discuss both models, as well as some of the most important criticisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albin, R. L., Young, A. B., and Penney, J. B. (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci. 12, 366–375.

    Article  PubMed  CAS  Google Scholar 

  2. Albin, R. L. (1995) The pathophysiology of chorea/ballism and parkinsonism. Parkinson. Rel. Disord. 1, 3–11.

    Article  CAS  Google Scholar 

  3. Chesselet, M. F. and Delfs, J. M. (1996) Basal ganglia and movement disorders: an update. Trends Neurosci. 19, 417–422.

    PubMed  CAS  Google Scholar 

  4. Brooks, D. J. (1995) The role of the basal ganglia in motor control: contributions from PET. J. Neurol. Sci. 128, 1–13.

    Article  PubMed  CAS  Google Scholar 

  5. DeLong, M. R. (1990) Primate models of movement disorders of basal ganglia origin. Trends Neurosci. 13, 281–285.

    Article  PubMed  CAS  Google Scholar 

  6. Wichmann, T. and DeLong, M. R. (1996) Functional and pathophysiological models of the basal ganglia. Curr. Opin. Neurobiol. 6, 751–758.

    Article  PubMed  CAS  Google Scholar 

  7. Vitek, J. L., Chockkan, V., Zhang, J. Y., Kaneoke, Y., Evatt, M., DeLong, M. R., et al. (1999) Neuronal activity in the basal ganglia in patients with generalized dystonia and hemiballismus. Ann. Neurol. 46, 22–35.

    Article  PubMed  CAS  Google Scholar 

  8. Alexander, G. E., Crutcher, M. D., and DeLong, M. R. (1990) Basal ganglia-thalamocortical circuits: parallel substrates for motor, oculomotor, ‘prefrontal’ and ‘limbic’ functions. Prog. Brain. Res. 85, 119–146.

    Article  PubMed  CAS  Google Scholar 

  9. Kemp, J. M. and Powell, T. P. S. (1971) The connections of the striatum and globus pallidus: synthesis and speculation. Phil. Trans. R. Soc. Lond. 262, 441–457.

    Article  CAS  Google Scholar 

  10. Wilson, C. J., Chang, H. T., and Kitai, S. T. (1983) Origins of post synaptic potentials evoked in spiny neostriatal projection neurons by thalamic stimulation in the rat. Exp. Brain Res. 51, 217–226.

    PubMed  CAS  Google Scholar 

  11. Dube, L., Smith, A. D., and Bolam, J. P. (1988) Identification of synaptic terminals of thalamic or cortical origin in contact with distinct medium-size spiny neurons in the rat neostriatum. J. Comp. Neurol. 267, 455–471.

    Article  PubMed  CAS  Google Scholar 

  12. Sadikot, A. F., Parent, A., Smith, Y., and Bolam, J. P. (1992) Efferent conncetions of the centromedian and parafascicular thalamic nuclei in the squirrell monkey: a light and electron microscopic study of the thalamostriatal projection in relation to striatal heterogeneity. J. Comp. Neurol. 320, 228–242.

    Article  PubMed  CAS  Google Scholar 

  13. Sadikot, A. F., Parent, A., and Francois, C. (1992) Efferent connections of the centromedian and parafascicular thalamic nuclei in the squirrel monkey: a PHA-L study of subcortical projections. J. Comparat. Neurol. 315, 137–159.

    Article  CAS  Google Scholar 

  14. Smith, Y. and Parent, A. (1986) Differential connections of caudate nucleus and putamen in the squirrel monkey (Saimiri Sciureus). Neuroscience 18, 347–371.

    Article  PubMed  CAS  Google Scholar 

  15. Nakano, K., Hasegawa, Y., Tokushige, A., Nakagawa, S., Kayahara, T., and Mizuno, N. (1990) Topographical projections from the thalamus, subthalamic nucleus and pedunculopontine tegmental nucleus to the striatum in the Japanese monkey, Macaca fuscata. Brain Res. 537, 54–68.

    Article  PubMed  CAS  Google Scholar 

  16. Hazrati, L. N., Parent, A., Mitchell, S., and Haber, S. N. (1990) Evidence for interconnections between the two segments of the globus pallidus in primates: a PHA-L anterograde tracing study. Brain Res. 533, 171–175.

    Article  PubMed  CAS  Google Scholar 

  17. Parent, A. and Hazrati, L-N. (1995) Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamocortical loon. Brain Res. Rev. 20, 91–127.

    Article  PubMed  CAS  Google Scholar 

  18. Kita, H. (1994) Physiology of two disynaptic pathways from the sensorimotor cortex to the basal ganglia output nuclei. In: The Basal Ganglia IV. New Ideas and Data on Structure and Function (Percheron, G., McKenzie, J. S., and Feger, J., eds.), Plenum Press, New York, pp. 263–276.

    Google Scholar 

  19. Nambu, A., Takada, M., Inase, M., and Tokuno, H. (1996) Dual somatotopical representations in the primate subthalamic nucleus: evidence for ordered but reversed body-map transformations from the primary motor cortex and the supplementary motor area. J. Neurosci. 16, 2671–2683.

    PubMed  CAS  Google Scholar 

  20. Hartmann-von Monakow, K., Akert, K., and Kunzle, H. (1978) Projections of the precentral motor cortex and other cortical areas of the frontal lobe to the subthalamic nucleus in the monkey. Exp. Brain Res. 33, 395–403.

    Google Scholar 

  21. Smith, Y., Hazrati, L. N., and Parent, A. (1990) Efferent projections of the subthalamic nucleus in the squirrel monkey as studied by PHA-L anterograde tracing method. J. Comp. Neurol. 294, 306–323.

    Article  PubMed  CAS  Google Scholar 

  22. Hamada, I. and DeLong, M. R. (1992) Excitotoxic acid lesions of the primate subthalamic nucleus result in reduced pallidal neuronal activity during active holding. J. Neurophysiol. 68, 1859–1866.

    PubMed  CAS  Google Scholar 

  23. Magill, P. J., Bolam, J. P., and Bevan, M. D. (2000) Relationship of activity in the subthalamic nucleus-globus pallidus network to cortical electroencephalogram. J. Neurosci. 20, 820–833.

    PubMed  CAS  Google Scholar 

  24. Nambu, A., Tokuno, H., Hamada, I., Kita, H., Imanishi, M., Akazawa, T., et al. (2000) Excitatory cortical inputs to pallidal neurons via the subthalamic nucleus in the monkey. J. Neurophysiol. 84, 289–300.

    PubMed  CAS  Google Scholar 

  25. Goldman-Rakic, P. S. and Porrino, L. J. (1985) The primate mediodorsal (MD) nucleus and its projection to the frontal lobe. J.Comp. Neurol. 242, 535–560.

    Article  PubMed  CAS  Google Scholar 

  26. Schell, G. R. and Strick, P. L. (1984) The origin of thalamic inputs to the arcuate premotor and supplementary motor areas. J. Neurosci. 4, 539–560.

    PubMed  CAS  Google Scholar 

  27. Strick, P. L. (1985) How do the basal ganglia and cerebellum gain access to the cortical motor areas? Behay. Brain Res. 18, 107–123.

    Article  CAS  Google Scholar 

  28. Inase, M. and Tanji, J. (1995) Thalamic distribution of projection neurons to the primary motor cortex relative to afferent terminal fields from the globus pallidus in the macaque monkey. J. Comp. Neurol. 353, 415–426.

    Article  PubMed  CAS  Google Scholar 

  29. Nambu, A., Yoshida, S., and Jinnai, K. (1988) Projection on the motor cortex of thalamic neurons with pallidal input in the monkey. Exp. Brain Res. 71, 658–662.

    Article  PubMed  CAS  Google Scholar 

  30. Hoover, J. E. and Strick, P. L. (1993) Multiple output channels in the basal ganglia. Science 259, 819–821.

    Article  Google Scholar 

  31. Jinnai, K., Nambu, A., Yoshida, S., and Tanibuchi, I. (1993) The two separate neuron circuits through the basal ganglia concerning the preparatory or execution proceses of motor control. In: Role of the Cerebellum and Basal Ganglia in Voluntary Movement (Mamo, N., Hamada, I., and DeLong, M. R., eds.), Elsevier Science, pp. 153–161.

    Google Scholar 

  32. Sidibe, M., Bevan, M. D., Bolam, J. P., and Smith, Y. (1997) Efferent connections of the internal globus pallidus in the squirrel monkey: I. Topography and synaptic organization of the pallidothalamic projection. J. Comp. Neurol. 382, 323–347.

    Article  PubMed  CAS  Google Scholar 

  33. Middleton, F. A. and Strick, P. L. (1994) Anatomical evidence for cerebellar and basal ganglia involvement in higher cognitive function. Science 266, 458–461.

    Article  PubMed  CAS  Google Scholar 

  34. Ilinsky, I. A., Jouandet, M. L., and Goldman-Rakic, P. S. (1985) Organization of the nigrothalamocortical system in the rhesus monkey. J. Comp. Neurol. 236, 315–330.

    Article  PubMed  CAS  Google Scholar 

  35. Bevan, M. D. and Bolam, J. P. (1995) Cholinergic, GABAergic, and glutamate-enriched inputs from the mesopontine tegmentum to the subthalamic nucleus in the rat. J. Neurosci. 15, 7105–7120.

    PubMed  CAS  Google Scholar 

  36. Jaffer, A., van der Spuy, G. D., Russell, V. A., Mintz, M., and laljaard, J. J. (l995) Activation of me subtnaiamic nucleus and pedunculopontine tegmentum: does it affect dopamine levels in the substantia nigra, nucleus accumbens and striatum? Neurodegeneration 4, 139–145.

    Article  Google Scholar 

  37. Lavoie, B. and Parent, A. (1994) Pedunculopontine nucleus in the squirrel monkey: projections to the basal ganglia as revealed by anterograde tract-tracing methods. J. Comp. Neurol. 344, 210–231.

    Article  PubMed  CAS  Google Scholar 

  38. Rye, D. B., Lee, H. J., Saper, C. B., and Wainer, B. H. (1988) Medullary and spinal efferents of the pedunculopontine tegmental nucleus and adjacent mesopontine tegmentum in the rat. J. Comp. Neurol. 269, 315–341.

    Article  PubMed  CAS  Google Scholar 

  39. Steininger, T. L., Wainer, B. H., and Rye, D. B. (1997) Ultrastructural study of cholinergic and noncholinergic neurons in the pars compacta of the rat pedunculopontine tegmental nucleus. J. Comp. Neurol. 382, 285–301.

    Article  PubMed  CAS  Google Scholar 

  40. Hikosaka, O. and Wurtz, R. H. (1983) Visual and oculomotor functions of monkey substantia nigra pars reticulata. IV. Relation of substantia nigra to superior colliculus. J. Neurophysiol. 49, 1285–1301.

    PubMed  CAS  Google Scholar 

  41. Anderson, M. and Yoshida, M. (1977) Electrophysiological evidence for branching nigral projections to the thalamus and the superior colliculus. Brain Res. 137, 361–364.

    Article  PubMed  CAS  Google Scholar 

  42. Lynch, J. C., Hoover, J. E., and Strick, P. L. (1994) Input to the primate frontal eye Held from the substantia nigra, superior colliculus, and dentate nucleus demonstrated by transneuronal transport. Exp. Brain Res. 100, 181–186.

    Article  PubMed  CAS  Google Scholar 

  43. Deniau, J. M., Hammond, C., Riszk, A., and Feger, J. (1978) Electrophysiological properties of identified output neurons of the rat substantia nigra (pars compacta and pars reticulata): evidences for the existence of branched neurons. Exp. Brain Res. 32, 409–422.

    Article  PubMed  CAS  Google Scholar 

  44. Parent, A., Mackey, A., Smith, Y., and Boucher, R. (1983) The output organization of the substantia nigra in primate as revealed by a retrograde double labeling method. Brain Res. Bull. 10, 529–537.

    Article  PubMed  CAS  Google Scholar 

  45. Wurtz, R. H. and Hikosaka, O. (1986) Role of the basal ganglia in the initiation of saccadic eye movements. Progr. Brain Res. 64, 175–190.

    Article  CAS  Google Scholar 

  46. Gerfen, C. R. (1988) Synaptic organization of the striatum. J. Electron Microsc. Techn. 10, 265–281.

    Article  CAS  Google Scholar 

  47. Waelti, P., Dickinson, A., and Schultz, W. (2001) Dopamine responses comply with basic assumptions of formal learning theory. Nature 412, 43–48.

    Article  PubMed  CAS  Google Scholar 

  48. Schultz, W. (1998) The phasic reward signal of primate dopamine neurons. Adv. Pharmacol. 42, 686–690.

    Article  PubMed  CAS  Google Scholar 

  49. Schultz, W. (1994) Behavior-related activity of primate dopamine neurons. Revue Neurologique 150, 634–639.

    PubMed  CAS  Google Scholar 

  50. Aizman, O., Brismar, H., Uhlen, P., Zettergren, E., Levey, A. I., Forssberg, H., et al. (2000) Anatomical and physiological evidence for D1 and D2 dopamine receptor colocalization in neostriatal neurons. Nature Neurosci. 3, 226–230.

    Article  PubMed  CAS  Google Scholar 

  51. Surmeier, D. J., Reiner, A., Levine, M. S., and Ariano, M. A. (1993) Are neostriatal dopamine receptors co-localized? [see comments]. Trends Neurosci. 16, 299–305.

    Article  PubMed  CAS  Google Scholar 

  52. Gerfen, C. R. (1995) Dopamine receptor function in the basal ganglia. Clin. Neuropharmacol. 18, S162-S177.

    Article  Google Scholar 

  53. Gerfen, C. R., Engber, T. M., Mahan, L. C., Susel, Z., Chase, T. N., Monsma, F. J. Jr., and Sibley, D. R. (1990) D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 250, 1429–1432.

    Article  PubMed  CAS  Google Scholar 

  54. Wichmann, T., Bergman, H., Starr, P. A., Subramanian, T., Watts, R. L., and DeLong, M. R. (1999) Comparison of MPTP-induced changes in spontaneous neuronal discharge in the internal pallidal segment and in the substantia nigra pars reticulata in primates. Exp. Brain Res. 125, 397–409.

    Article  PubMed  CAS  Google Scholar 

  55. DeLong, M. R., Crutcher, M. D., and Georgopoulos, A. P. (1983) Relations between movement and single cell discharge in the substantia nigra of the behaving monkey. J. Neurosci. 3, 1599–1606.

    PubMed  CAS  Google Scholar 

  56. Rodriguez, M. C., Gorospe, A., Mozo, A., Guridi, J., Ramos, E., Linazasoro, G., et al. (1997) Characteristics of neuronal activity in the subthalamic nucleus (STN) and substantia nigra pars reticulata (SNr) in Parkinson’s disease (PD). Soc. Neurosci. Abstr. 23, 470.

    Google Scholar 

  57. DeLong, M. R. (1971) Activity of pallidal neurons during movement. J. Neurophysiol. 34, 414–427.

    PubMed  CAS  Google Scholar 

  58. Mink, J. W. and Thach, W. T. (1991) Basal ganglia motor control. III. Pallidal ablation: normal reaction time, muscle cocontraction, and slow movement. J. Neurophysiol. 65, 330–351.

    PubMed  CAS  Google Scholar 

  59. Mink, J. W. (1996) The basal ganglia: focused selection and inhibition of competing motor programs. Progr. Neurobiol. 50, 381–425.

    Article  CAS  Google Scholar 

  60. Wenger, K. K., Musch, K. L., and Mink, J. W. (1999) Impaired reaching and grasping after focal inactivation or globus pallidus pars interna in the monkey. J. Neurophysiol. 82, 2049–2060.

    PubMed  CAS  Google Scholar 

  61. Hikosaka, O., Matsumara, M., Kojima, J., and Gardiner, T. W. (1993) Role of basal ganglia in initiation and suppression of saccadic eye movements. In: Role of the Cerebellum and Basal Ganglia in Voluntary Movement (Mano, N., Hamada, I., and DeLong, M. R., eds.), Elsevier, Amsterdam, pp. 213–220.

    Google Scholar 

  62. Bevan, M. D., Bolam, J. P., and Crossman, A. R. (1994) Convergent synaptic input from the neostriatum and the subthalamus onto identified nigrothalamic neurons in the rat. Euro. J. Neurosci. 6, 320–334.

    Article  CAS  Google Scholar 

  63. Bolam, J. P. and Smith, Y. (1992) The striatum and the globus pallidus send convergent synaptic inputs onto single cells in the entopeduncular nucleus of the rat: a double anterograde labelling study combined with postembedding immunocytochemistry for GABA. J. Comp. Neurol. 321, 456–476.

    Article  PubMed  CAS  Google Scholar 

  64. Hazrati, L. and Parent, A. (1992) Convergence of subthalamic and striatal efferents at pallidal level in primates: an anterograde double-labeling study with biocytin and PHA-L. Brain Res. 569, 336–340.

    Article  PubMed  CAS  Google Scholar 

  65. Wichmann, T., Bergman, H., and DeLong, M. R. (1994) The primate subthalamic nucleus. I. Functional properties in intact animals. J. Neurophysiol. 72, 494–506.

    PubMed  CAS  Google Scholar 

  66. Jaeger, D., Gilman, S., and Aldridge, J. W. (1995) Neuronal activity in the striatum and pallidum of primates related to the execution of externally cued reaching movements. Brain Res. 694, 111–127.

    Article  PubMed  CAS  Google Scholar 

  67. Jaeger, D., Gilman, S., and Aldridge, J. W. (1993) Primate basal ganglia activity in a precued reaching task: preparation for movement. Exp. Brain Res. 95, 51–64.

    Article  PubMed  CAS  Google Scholar 

  68. Alexander, G. E. and Crutcher, M. D. (1987) Preparatory activity in primate motor cortex and putamen coded in spatial rather than limb coordinates. Soc. Neurosci. Abstr. 13, 245.

    Google Scholar 

  69. Alexander, G. E. and Crutcher, M. D. (1989) Coding in spatial rather than joint coordinates of putamen and motor cortex preparatory activity preceding planned limb movements. In: Neural Mechanisms in Disorders of Movement (Sambrook, M. A. and Crossman, A. R., eds.), Blackwell, London, pp. 55–62.

    Google Scholar 

  70. Anderson, M., Inase, M., Buford, J., and Turner, R. (1992) Movement and preparatory activity of neurons in pallidal-receiving areas of the monkey thalamus. Role of Cerebellum and Basal Ganglia in Voluntary Movement 39.

    Google Scholar 

  71. Apicella, P., Scarnati, E., and Schultz, W. (1991) Tonically discharging neurons of monkey striatum respond to preparatory and rewarding stimuli. Exp. Brain Res. 84, 672–675.

    Article  PubMed  CAS  Google Scholar 

  72. Boussaoud, D. and Kermadi, I. (1997) The primate striatum: neuronal activity in relation to spatial attention versus motor preparation. Euro. J. Neurosci. 9, 2152–2168.

    Article  CAS  Google Scholar 

  73. Crutcher, M. D. and Alexander, G. E. (1988) Supplementary motor area (SMA): coding of both preparatory and movement-related neural activity in spatial rather than joint coordinates. Soc. Neurosci. Abstr. 14, 342.

    Google Scholar 

  74. Kubota, K. and Hamada, I. (1979) Preparatory activity of monkey pyramidal tract neurons related to quick movement onset during visual tracking performance. Brain Res. 168, 435–439.

    Article  PubMed  CAS  Google Scholar 

  75. Schultz, W. and Romo, R. (1992) Role of primate basal ganglia and frontal cortex in the internal generation of movement. I. Preparatory activity in the anterior striatum. Exp. Brain Res. 91, 363–384.

    Article  PubMed  CAS  Google Scholar 

  76. Dettmers, C., Fink, G. R., Lemon, R. N., Stephan, K. M., Passingham, R. E., Silbersweig, D., et al. (1995) Relation between cerebral activity and force in the motor areas of the human brain. J. Neurophysiol. 74, 802–815.

    PubMed  CAS  Google Scholar 

  77. Turner, R. S., Grafton, S. T., Votaw, J. R., Delong, M. R., and Hoffman, J. M. (1998) Motor subcircuits mediating the control of movement velocity: a PET study. J. Neurophysiol. 80, 2162–2176.

    PubMed  CAS  Google Scholar 

  78. Marsden, C. D. and Obeso, J. A. (1994) The functions of the basal ganglia and the paradox of stereotaxic surgery in Parkinson’s disease. Brain 117, 877–897.

    Article  PubMed  Google Scholar 

  79. Martin, K. E., Phillips, J. G., Iansek, R., and Bradshaw, J. L. (1994) Inaccuracy and instability of sequential movements in Parkinson’s disease. Exp. Brain Res. 102, 131–140.

    Article  PubMed  CAS  Google Scholar 

  80. Graybiel, A. M. (1995) Building action repertoires: memory and learning functions of the basal ganglia. Curr. Opin. Neurobiol. 5. 733–741.

    Article  PubMed  CAS  Google Scholar 

  81. Watanabe, K. and Kimura, M. (1998) Dopamine receptor-mediated mechanisms involved in the expression of learned activity of primate striatal neurons. J. Neurophysiol. 79, 2568–2580.

    PubMed  CAS  Google Scholar 

  82. Kimura, M., Kato, M., Shimazaki, H., Watanabe, K., and Matsumoto, N. (1996) Neural information transferred from the putamen to the globus pallidus during learned movement in the monkey. J. Neurophysiol. 76, 3771–3786.

    PubMed  CAS  Google Scholar 

  83. Kimura, M. (1995) Role of basal ganglia in behavioral learning. Neurosci. Res. 22, 353–358.

    Article  PubMed  CAS  Google Scholar 

  84. Aosaki, T., Kimura, M., and Graybiel, A. M. (1995) Temporal and spatial characteristics of tonically active neurons of the primate striatum. J. Neurophysiol. 73, 1234–1252.

    PubMed  CAS  Google Scholar 

  85. Aosaki, T., Tsubokawa, H., Watanabe, K., Graybiel, A. M., and Kimura, M. (1994) Responses of tonically active neurons in the primate’s striatum undergo systematic changes during behavioral sensory-motor conditioning. J. Neurosci. 14, 3969–3984.

    PubMed  CAS  Google Scholar 

  86. Jog, M. S., Kubota, Y., Connolly, C. I., Hillegaart, V., and Graybiel, A. M. (1999) Building neural representations of habits. Science 286, 1745–1749.

    Article  PubMed  CAS  Google Scholar 

  87. Aziz, T. Z., Peggs, D., Sambrook, M. A., and Crossman, A. R. (1991) Lesion of the subthalamic nucleus for the alleviation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism in the primate. Mov. Disord. 6, 288–292.

    Article  PubMed  CAS  Google Scholar 

  88. DeLong, M. R. and Georgopoulos, A. P. (1981) Motor functions of the basal ganglia. In: Handbook of Physiology. The Nervous System. Motor Control. Sect. 1, Vol. II, Pt. 2 (Brookhart, J. M., Mountcastle, V. B., Brooks, V. B., and Geiger. S. R.. eds.) American Physiological Society. Bethesda. MD. on. 1017–1061.

    Google Scholar 

  89. Laitinen, L. V. (1995) Pallidotomy for Parkinson’s diesease. Neurosurg. Clin. North Am. 6, 105–112.

    CAS  Google Scholar 

  90. Baron, M. S., Vitek, J. L., Bakay, R. A. E., Green, J., Kaneoke, Y., Hashimoto, T., et al. (1996) Treatment of advanced Parkinson’s disease by GPi pallidotomy: 1 year pilot-study results. Ann. Neurol. 40, 355–366.

    Article  PubMed  CAS  Google Scholar 

  91. Zweig, R. M., Cardillo, J. E., Cohen, M., Giere, S., and Hedreen, J. C. (1993) The locus ceruleus and dementia in Parkinson’s disease. Neurology 5, 986–991.

    Article  Google Scholar 

  92. Palombo, E., Porrino, L. J., Bankiewicz, K. S., Crane, A. M., Sokoloff, L., and Kopin, I. J. (1990) Local cerebral glucose utilization in monkeys with hemiparkinsonism induced by intracarotid infusion of the neurotoxin MPTP. J. Neurosci.10, 860–869.

    PubMed  CAS  Google Scholar 

  93. Mitchell, I. J., Clarke, C. E., Boyce, S., Robertson, R. G., Peggs, D., Sambrook, M. A., and Crossman, A. R. (1989) Neural mechanisms underlying parkinsonian symptoms based upon regional uptake of 2-deoxyglucose in monkeys exposed to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Neuroscience 32, 213–226.

    Article  PubMed  CAS  Google Scholar 

  94. Kojima, J., Yamaji, Y., Matsumura, M., Nambu, A., Inase, M., Tokuno, H., et al. (1997) Excitotoxic lesions of the pedunculopontine tegmental nucleus produce contralateral hemiparkinsonism in the monkey. Neurosci. Lett. 226, 111–114.

    Article  PubMed  CAS  Google Scholar 

  95. Munro-Davies, L. E., Winter, J., Aziz, T. Z., and Stein, J. F. (1999) The role of the pedunculopontine region in basalganglia mechanisms of akinesia. Exp. Brain Res. 129, 511–517.

    Article  PubMed  CAS  Google Scholar 

  96. Brooks, D. J. (1999) Functional imaging of Parkinson’s disease: is it possible to detect brain areas for specific symptoms? J. Neural Transm. (Suppl.) 56, 139–153.

    CAS  Google Scholar 

  97. Bergman, H., Wichmann, T., and DeLong, M. R. (1990) Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. Science 249, 1436–1438.

    CAS  Google Scholar 

  98. Dogali, M., Fazzini, E., Kolodny, E., Eidelberg, D., Sterio, D., Devinsky, O., and Beric, A. (1995) Stereotactic ventral pallidotomy for Parkinson’s disease. Neurology 45, 753–761.

    Article  PubMed  CAS  Google Scholar 

  99. Laitinen, L. V., Bergenheim, A. T., and Hariz, M. I. (1992) Leksell’s posteroventral pallidotomy in the treatment of Parkinson’s disease. J. Neurosurg. 76, 53–61.

    Article  PubMed  CAS  Google Scholar 

  100. Lozano, A. M., Lang, A. E., Galvez-Jimenez, N., Miyasaki, J., Dutt, J., Hutchinson, W. D., and Dostrovsky, J. U. (1995) Effect of GPi pallidotomy on motor function in Parkinson’s disease. Lancet 346, 1383–1387.

    Article  PubMed  CAS  Google Scholar 

  101. Lozano, A. M., Lang, A. E., Hutchison, W. D., and Dostrovsky, J. O. (1997) Microelectrode recording-guided posteroventral pallidotomy in patients with Parkinson’ s disease. Adv. Neurol. 74, 167–174.

    PubMed  CAS  Google Scholar 

  102. Lang, A., Lozano, A., Montgomery, E., Duff, J., Tasker, R., and Hutchinson, W. (1997) Posteroventral mediai pallidotomy in advanced Parkinson’s disease. N. Engl. J. Med. 337, 1036–1042.

    Article  PubMed  CAS  Google Scholar 

  103. Starr, P. A., Vitek, J. L., and Bakay, R. A. E. (1998) Pallidotomy: clinical results. In: Neurosurgical Treatment of Movement Disorders (Germano, I. M., ed.), American Association of Neurological Surgeons, Park Ridge, IL, pp. 143–156.

    Google Scholar 

  104. Ceballos-Bauman, A. O., Obeso, J. A., Vitek, J. L., DeLong, M. R., Bakay, R., Linaasoro, G., and Brooks, D. J. (1994) Restoration of thalamocortical activity after posteroventrolateral pallidotomy in Parkinson’s disease. Lancet 344, 814.

    Article  Google Scholar 

  105. Samuel, M., Ceballos-Baumann, A. O., Turjanski, N., Boecker, H., Gorospe, A., Linazasoro, et al. (1991) Pallidotomy in Parkinson’ s disease increases supplementary motor area and prefrontal activation during performance of volitional movements an H2(15)O PET study. Brain 120, 1301–1313.

    Article  Google Scholar 

  106. Brooks, D. J. (1997) Motor disturbance and brain functional imaging in Parkinson’s disease. Euro. Neurol. 38(Suppl. 2), 26–32.

    Article  Google Scholar 

  107. Grafton, S. T., Waters, C., Sutton, J., Lew, M. F., and Couldwell, W. (1995) Pallidotomy increases activity of motor association cortex in Parkinson’ s disease: a positron emission tomographic study. Ann. Neurol. 37, 776–783.

    Article  PubMed  CAS  Google Scholar 

  108. Henselmans, J. M., de Jong, B. M., Pruim, J., Staal, M. J., Rutgers, A. W., and Haaxma, K. (2000) Acute ettects or thalamotomy and pallidotomy on regional cerebral metabolism, evaluated by PET. Clin. Neurol. Neurosurg. 102, 84–90.

    Article  PubMed  CAS  Google Scholar 

  109. Limousin-Dowsey, P., Pollak, P., Van Blercom, N., Krack, P., Benazzouz, A., and Benabia, A. (1999) inaiamic, subthalamic nucleus and internal pallidum stimulation in Parkinson’s disease. J. Neurol. 246(Suppl. 2), 1142–1145.

    Article  Google Scholar 

  110. Volkmann, J., Allert, N., Voges, J., Weiss, P. H., Freund, H. J., and Sturm, V. (2001) Safety and efficacy of pallidal or subthalamic nucleus stimulation in advanced PD. Neurology 56, 548–551.

    Article  PubMed  CAS  Google Scholar 

  111. Benabid, A. L., Krack, P. P., Benazzouz, A., Limousin, P., Koudsie, A., and Follak, F. (2000) Deep brain stimulation of the subthalamic nucleus for Parkinson’s disease: methodologic aspects and clinical criteria. Neurology 55, S40-S44.

    Google Scholar 

  112. Kumar, R., Lang, A. E., Rodriguez-Oroz, M. C., Lozano, A. M., Limousin, P., Pollak, P., et al. (2000) Deep brain stimulation of the globus pallidus pars interna in advanced Parkinson’s disease. Neurology 55, S34–S39.

    Google Scholar 

  113. Jahanshahi, M., Ardouin, C. M., Brown, R. G., Rothwell, J. C., Obeso, J., Albanese, A., et al. (2000) The impact of deep brain stimulation on executive function in Parkinson’s disease. Brain 123, 1142–1154.

    Article  PubMed  Google Scholar 

  114. Ardouin, C., Pillon, B., Peiffer, E., Bejjani, P., Limousin, P., Damier, P., et al. (1999) Bilateral subthaiamic or pallidal stimulation for Parkinson’ s disease affects neither memory nor executive functions: a consecutive series of 62 patients. Ann. Neurol. 46, 217–223.

    Article  PubMed  CAS  Google Scholar 

  115. Benazzouz, A., Piallat, B., Pollak, P., and Benabid, A. L. (1995) Responses of substantia nigra pars reticulata and globus pallidus complex to high frequency stimulation of the subthalamic nucleus in rats: electrophysiological data. Neurosci. Lett. 189, 77–80.

    Article  PubMed  CAS  Google Scholar 

  116. Limousin, P., Greene, J., Pollak, P., Rothwell, J., Benabid, A. L., and Frackowiak, R. (1997) Changes in cerebral activity pattern due to subthalamic nucleus or internal pallidum stimulation in Parkinson’ s disease. Ann. Neurol. 42, 283–291.

    Article  PubMed  CAS  Google Scholar 

  117. Davis, K. D., Taub, E., Houle, S., Lang, A. E., Dostrovsky, J. O., Tasker, R. R., and Lozano, A. M. (1997) Globus pallidus stimulation activates the cortical motor system during alleviation of parkinsonian symptoms. Nature Med. 3, 671–674.

    Article  PubMed  CAS  Google Scholar 

  118. Hashimoto, T. M., Elder, C. R., DeLong, M., and Vitek, J. L. (2000) Responses of pallidai neurons to electrical stimulation of the subthalamic nucleus in experimental parkinsonism. Mov. Disord. (Abstract Volume) 277. .

    Google Scholar 

  119. Windels, F., Bruet, N., Poupard, A., Urbain, N., Chouvet, G., Feuerstein, C., and Savasta, M. (2000) Effects of high frequency stimulation of subthalamic nucleus on extracellular glutamate and GABA in substantia nigra and globus pallidus in the normal rat. Euro. J. Neurosci. 12, 4141–4146.

    Article  CAS  Google Scholar 

  120. Filion, M., Tremblay, L., and Bedard, P. J. (1988) Abnormal influences of passive limb movement on the activity of globus pallidus neurons in parkinsonian monkeys. Brain Res. 444, 165–176.

    Article  PubMed  CAS  Google Scholar 

  121. Miller, W. C. and DeLong, M. R. (1987) Altered tonic activity of neurons in the globus pallidus and subthalamic nucleus in the primate MPTP model of parkinsonism. In: The Basal Ganglia II (Carpenter, M. B. and Jayaraman, A., eds.), Plenum Press, New York, pp. 415–427.

    Chapter  Google Scholar 

  122. Bergman, H., Wichmann, T., Karmon, B., and DeLong, M. R. (1994) The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of parkinsonism. J. Neurophysiol. 72, 507–520.

    PubMed  CAS  Google Scholar 

  123. Vitek, J. L., Ashe, J., DeLong, M. R., and Alexander, G. E. (1990) Altered somatosensory response properties of neurons in the ‘motor’ thalamus of MPTP treated parkinsonian monkeys. Soc. Neurosci. Abstr. 16, 425.

    Google Scholar 

  124. 124. Raz, A., Feingold, A., Zelanskaya, V., and Bergman, H. (1996) Neuronal synchronization of tonically active neurons in the striatum of normal and parkinsonian primates. J. Neurophysiol., in press.

    Google Scholar 

  125. Filion, M. and Tremblay, L. (1991) Abnormal spontaneous activity of globus pallidus neurons in monkeys with MPTP-induced parkinsonism. Brain Res. 547, 142–151.

    PubMed  CAS  Google Scholar 

  126. Vitek, J. L., Ashe, J., DeLong, M. R., and Alexander, G. E. (1990) Altered somatosensory response properties of neurons in the ‘motor’ thalamus of MPTP treated parkinsonian monkeys. Soc. Neurosci. Abstr. 16, 425.

    Google Scholar 

  127. Vitek, J. L., Ashe, J., DeLong, M. R., and Alexander, G. E. (1994) Physiologic properties and somatotopic organization of the primate motor thalamus. J. Neurophysiol. 71, 1498–1513.

    PubMed  CAS  Google Scholar 

  128. Vitek, J. L., Kaneoke, Y., Turner, R., Baron, M., Bakay, R., and DeLong, M. (1993) Neuronal activity in the internal (GPi) and external (GPe) segments of the globus pallidus (GP) of parkinsonian patients is similar to that in the MPTP-treated primate model of parkinsonism. Soc. Neurosci. Abstr. 19, 1584.

    Google Scholar 

  129. Wichmann, T., Bergman, H., and DeLong, M. R. (1996) Comparison of the effects of experimental parkinsonism on neuronal discharge in motor and non-motor portions of the basal ganglia output nuclei in primates. Soc. Neurosci. Abstr. 22, 415.

    Google Scholar 

  130. Neufeld, M. Y., Inzelberg, R., and Korczyn, A. D. (1988) EEG in demented and non-demented parkinsonian patients. Acta Neurolog. Scand. 78, 1–5.

    Article  CAS  Google Scholar 

  131. Zijlmans, J. C., Pasman, J. W., Horstink, M. W., Stegeman, D. F., van’t Hof, M. A., Poortvliet, D. J., et al. (1998) EEG findings in patients with vascular parkinsonism. Acta Neurolog. Scand. 98, 243–247.

    Article  CAS  Google Scholar 

  132. Primavera, A. and Novello, P. (1992) Quantitative electroencephalography in Parkinson’s disease, dementia, depression and normal aging. Neuropsychobiology 25, 102–105.

    Article  PubMed  CAS  Google Scholar 

  133. Soikkeli, R., Partanen, J., Soininen, H., Paakkonen, A., and Riekkinen, P. Sr. (1991) Slowing of EEG in Parkinson’s disease. Electroencephalogr. Clin. Neurophysiol. 79, 159–165.

    Article  PubMed  CAS  Google Scholar 

  134. Jelles, B., Achtereekte, H. A., Slaets, J. P., and Stam, C. J. (1995) Specific patterns of cortical dysfunction in dementia and Parkinson’s disease demonstrated by the acceleration spectrum entropy of the EEG. Clin. Electroencephalogr. 26, 188–192.

    PubMed  CAS  Google Scholar 

  135. Hellwig, B., Haussler, S., Lauk, M., Guschlbauer, B., Koster, B., Kristeva-Feige, R., et al. (2000) Tremor-correlated cortical activity detected by electroencephalography. Clin. Neurophysiol.111, 806–809.

    Article  PubMed  CAS  Google Scholar 

  136. Boulton, A. A. and Marjerrison, G. L. (1972) Effect of L-dopa therapy on urinary p-tyramine excretion and EEG changes in Parkinson’s disease. Nature 236, 76–78.

    Article  PubMed  CAS  Google Scholar 

  137. Marjerrison, G., Boulton, A. A., and Rajput, A. (1971) Dopa therapy in parkinsonism effects on the EEG and amine metabolism. Internationale Zeitschrift fur Klinische Pharmakologie, Therapie und Toxikologie 4, 263–266.

    CAS  Google Scholar 

  138. Marjerrison, G., Boulton, A. A., and Rajput, A. H. (1972) EEG and urinary non-catecholic amine changes during L-dopa therapy of Parkinson’s disease. Diseases of the Nervous System 33, 164–169.

    PubMed  CAS  Google Scholar 

  139. Yaar, I. (1977) EEG power spectral changes secondary to L-DOPA treatment in parkinsonian patients: a pilot study. Electroencephalogr. Clin. Neurophysiol. 43, 111–118.

    Article  PubMed  CAS  Google Scholar 

  140. Brown, P. and Marsden, C. D. (1999) Bradykinesia and impairment of EEG desynchronization in Parkinson’s disease. Mov. Disord. 14, 423–429.

    Article  PubMed  CAS  Google Scholar 

  141. Wang, H. C., Lees, A. J., and Brown, P. (1999) Impairment of EEG desynchronisation before and during movement and its relation to bradykinesia in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 66, 442–446.

    Article  PubMed  CAS  Google Scholar 

  142. Nini, A., Feingold, A., Slovin, H., and Bergman, H. (1995) Neurons in the globus pallidus do not show correlated activity in the normal monkey, but phase-locked oscillations appear in the MPTP model of parkinsonism. J. Neurophysiol. 74, 1800–1805.

    PubMed  CAS  Google Scholar 

  143. Bergman, H., Raz, A., Feingold, A., Nini, A., Nelken, I., Hansel, D., et al. (1998) Physiology of MPTP tremor. Mov. Disord. 13(Suppl. 3), 29–34.

    Article  PubMed  Google Scholar 

  144. Raz, A., Frechter-Mazar, V., Feingold, A., Abeles, M., Vaadia, E., and Bergman, H. (2001) Activity of pallidal and striatal tonically active neurons is correlated in mptp-treated monkeys but not in normal monkeys. J. Neurosci. 21, RC128.

    Google Scholar 

  145. Brown, P., Oliviero, A., Mazzone, P., Insola, A., Tonali, P., and Di Lazzaro, V. (2001) Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinson’s disease. J. Neurosci. 21, 1033–1038.

    PubMed  CAS  Google Scholar 

  146. Ruskin, D. N., Bergstrom, D. A., Kaneoke, Y., Patel, B. N., Twery, M. J., and Walters, J. R. (1999) Multisecond oscillations in firing rate in the basal ganglia: robust modulation by dopamine receptor activation and anesthesia. J. Neurophysiol. 81, 2046–2055.

    PubMed  CAS  Google Scholar 

  147. Karmon, B. and Bergman, H. (1993) Detection of neuronal periodic oscillations in the basal ganglia of normal and parkinsonian monkeys. Israeli J. Med Sci. 29, 570–579.

    CAS  Google Scholar 

  148. Hutchison, W. D., Lozano, A. M., Tasker, R. R., Lang, A. E., and Dostrovsky, J. O. (1997) Identification and characterization of neurons with tremor-frequency activity in human globus pallidus. Exp. Brain Res. 113, 557–563.

    Article  PubMed  CAS  Google Scholar 

  149. Hurtado, J. M., Gray, C. M., Tamas, L. B., and Sigvardt, K. A. (1999) Dynamics of tremor-related oscillations in the human globus pallidus: a single case study. Proc. Nat. Acad. Sci. USA 96, 1674–1679.

    Article  PubMed  CAS  Google Scholar 

  150. Hua, S., Reich, S. G., Zirh, A. T., Perry, V., Dougherty, P. M., and Lenz, F. A. (1998) The role of the thalamus and basal ganglia in parkinsonian tremor. Mov. Disord. 13(Suppl. 3), 40–42.

    Article  PubMed  Google Scholar 

  151. Bergman, H., Feingold, A., Nini, A., Raz, A., Slovin, H., Abeles, M., and Vaadia, E. (1998) Physiological aspects of information processing in the basal ganglia of normal and parkinsonian primates. Trends Neurosci. 21, 32–38.

    Article  PubMed  CAS  Google Scholar 

  152. Wichmann, T., Kliem, M. A., and Long, S. B. (2000) Changes in oscillatory discharge in the primate basal ganglia associated with parkinsonism and light sleep. Mov. Disord. (Abstract Volume) P303.

    Google Scholar 

  153. Hallett, M. (1998) Overview of human tremor physiology. Mov. Disord. 13, 43–48.

    Article  PubMed  Google Scholar 

  154. Rothwell, J. C. (1998) Physiology and anatomy of possible oscillators in the central nervous system. Mov. Disord. 13(Suppl. 3), 24–28.

    Article  PubMed  Google Scholar 

  155. Elble, R. J. (1996) Central mechanisms of tremor. J. Clin. Neurophysiol. 13, 133–144.

    Article  PubMed  CAS  Google Scholar 

  156. Hallett, M. (1999) Motor cortex plasticity. Electroencephalogr. Clin. Neurophysiol. (Suppl.) 50, 85–91.

    CAS  Google Scholar 

  157. Hallett, M. (1995) The plastic brain [editorial] [see comments]. Ann. Neurol. 38, 4–5.

    Article  PubMed  CAS  Google Scholar 

  158. Johansson, F., Malm, J., Nordh, E., and Hariz, M. (1997) Usefulness of pallidotomy in advanced Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 62, 125–132.

    Article  PubMed  CAS  Google Scholar 

  159. Samuel, M., Caputo, E., Brooks, D. J., Schrag, A., Scaravilli, T., Branston, N. M., et al. (1998) A study of medial pallidotomy for Parkinson’s disease: clinical outcome, MRI location and complications. Brain 121, 59–75.

    Article  PubMed  Google Scholar 

  160. Vitek, J. L., Chockkan, V., Zhang, J. Y., Kaneoke, Y., Evatt, M., DeLong, M. R., et al. (1999) Neuronal activity in the basal ganglia in patients with generalized dystonia and hemiballismus. Ann. Neurol. 46, 22–35.

    Article  PubMed  CAS  Google Scholar 

  161. Lozano, A. M., Kumar, R., Gross, R. E., Giladi, N., Hutchison, W. D., Dostrovsky, J. O., and Lang, A. E. (1997) Globus pallidus internus pallidotomy for generalized dystonia. Mov. Disord. 12, 865–870.

    Article  PubMed  CAS  Google Scholar 

  162. Lenz, F. A., Suarez, J. I., Metman, L. V., Reich, S. G., Karp, B. I., Hallett, M., et al. (1998) Palidal activity durping dystonia: somatosensory reorganisation and changes with severity. J. Neurol. Neurosurg. Psychiatry 65, 767–770.

    Article  PubMed  CAS  Google Scholar 

  163. Wichmann, T. and DeLong, M. R. (1998) Models of basal ganglia function and pathophysiology of movement disorders. Neurosurg. Clin. North Am. 9, 223–236.

    CAS  Google Scholar 

  164. Soghomonian, J. J., Pedneault, S., Audet, G., and Parent, A. (1994) Increased glutamate decarboxylase mRNA levels in the striatum and pallidum of MPTP-treated primates. J. Neurosci. 14, 6256–6265.

    PubMed  CAS  Google Scholar 

  165. Herrero, M. T., Levy, R., Ruberg, M., Javoy-Agid, F., Luquin, M. R., Agid, Y., et al. (1996) Glutamic acid decarboxylase mRNA expression in medial and lateral pallidal neurons in the MPTP-treated monkeys and patients with Parkinson’s disease. Adv. Neurol. 69, 209–216.

    PubMed  CAS  Google Scholar 

  166. Herrero, M. T., Levy, R., Ruberg, M., Luquin, M. R., Villares, J., Guillen, J., et al. (1996) Consequence of nigrostriatal denervation and L-dopa therapy on the expression of glutamic acid decarboxylase messenger RNA in the pallidum. Neurology 47, 219–224.

    Article  PubMed  CAS  Google Scholar 

  167. Soghomonian, J. J. and Chesselet, M. F. (1992) Effects of nigrostriatal lesions on the levels of messenger RNAs encoding two isoforms of glutamate decarboxylase in the globus pallidus and entopeduncular nucleus of the rat. Synapse11, 124–133.

    Article  PubMed  CAS  Google Scholar 

  168. Delfs, J. M., Anegawa, N. J., and Chesselet, M. F. (1995) Glutamate decarboxylase messenger RNA in rat pallidum: comparison of the effects of haloperidol, clozapine and combined haloperidol-scopolamine treatments. Neuroscience 66, 67–80.

    Article  PubMed  CAS  Google Scholar 

  169. Blanchet, P. J., Boucher, R., and Bedard, P. J. (1994) Excitotoxic lateral pallidotomy does not relieve L-dopa-induced dyskinesia in MPTP parkinsonian monkeys. Brain Res. 650, 32–39.

    Article  PubMed  CAS  Google Scholar 

  170. Albin, R. L., Reiner, A., Anderson, K. D., Penney, J. B., and Young, A. B. (1990) Striatal and nigral neuron subpopulations in rigid Huntington’s disease: implications for the functional anatomy of chorea and rigidity-akinesia. Ann. Neurol. 27, 357–365.

    Article  PubMed  CAS  Google Scholar 

  171. Papa, S. M., Desimone, R., Fiorani, M., and Oldfield, E. H. (1999) Internal globus pallidus discharge is nearly suppressed during levodopa-induced dyskinesias. Ann. Neurol. 46, 732–738.

    Article  PubMed  CAS  Google Scholar 

  172. Lozano, A. M., Lang, A. E., Levy, R., Hutchison, W., and Dostrovsky, J. (2000) Neuronal recordings in Parkinson s disease patients with dyskinesias induced by apomorphine. Ann. Neurol. 47, S141-S146.

    Article  Google Scholar 

  173. Merello, M., Balej, J., Delfino, M., Cammarota, A., Betti, O., and Leiguarda, R. (1999) Apomorphine induces changes in GPi spontaneous outflow in patients with Parkinson’s disease. Mov. Disord. 14, 45–49.

    Article  PubMed  CAS  Google Scholar 

  174. Brooks, D. J. (1993) Functional imaging in relation to parkinsonian syndromes. J. Neurol. Sci. 115, 1–17.

    Article  PubMed  CAS  Google Scholar 

  175. Horak, F. B. and Anderson, M. E. (1984) Influence of globus pallidus on arm movements in monkeys. I. Effects of kainic-induced lesions. J. Neurophysiol. 52, 290–304.

    PubMed  CAS  Google Scholar 

  176. 176. Wichmann, T., Kliem, M. A., and DeLong, M. R. (2001) Antiparkinsonian and behavioral effects of inactivation of the substantia nigra pars reticulata in hemiparkinsonian primates. Exp. Neurol. In press.

    Google Scholar 

  177. Burbaud, P., Bonnet, B., Guehl, D., Lagueny, A., and Bioulac, B. (1998) Movement disorders induced by gammaaminobutyric agonist and antagonist injections into the internal globus pallidus and substantia nigra pars reticulata of the monkey. Brain Res. 780, 102–107.

    Article  PubMed  CAS  Google Scholar 

  178. Baron, M. S., Wichmann, T., Ma, D., and DeLong, M. R. (2001) The effects of transient focal inactivation of the basal ganglia in parkinsonian primates. J. Neurosci. Submitted.

    Google Scholar 

  179. Hamada, I. and DeLong, M. R. (1992) Excitotoxic acid lesions of the primate subthalamic nucleus result in transient dyskinesias of the contralateral limbs. J. Neurophysiol. 68, 1850–1858.

    PubMed  CAS  Google Scholar 

  180. Vitek, J. L. and Giroux, M. (2000) Physiology of hypokinetic and hyperkinetic movement disorders: model for dyskinesia. Ann. Neurol. 47, S131-S140.

    Google Scholar 

  181. Gille, M., Jacquemin, C., Kiame, G., Delbecq, J., Guilmot, D., and Depre, A. (1993) Myelinolyse centropontine avec ataxie cerebelleuse et dystonie. Rev. Neurol. 149, 344–346.

    PubMed  CAS  Google Scholar 

  182. Tranchant, C., Maquet, J., Eber, A. M., Dietemann, J. L., Franck, P., and Warter, J. M. (1991) Angiome caverneux cerebelleux, dystonie cervicale et diaschisis cortical croise. Rev. Neurol. 147, 599–602.

    PubMed  CAS  Google Scholar 

  183. Janati, A., Metzer, W. S., Archer, R. L., Nickols, J., and Raval, J. (1989) Blepharospasm associated with olivopontocerebellar atrophy. J. Clin. Neuro-Ophthalmol. 9, 281–284.

    CAS  Google Scholar 

  184. Ozelius, L. J., Hewett, J., Kramer, P., Bressman, S. B., Shalish, C., deLeon, D., et al. (1991) Fine localization or tne torsion dystonia gene (DYT1) on human chromosome YAC map and linkage disequilibrium. Genome Res. 7, 483–494.

    Google Scholar 

  185. Risch, N., deLeon, D., Ozelius, L., Kramer, P., Almassy, L., Singer, B., Fahn, S., Breakefield, X., and Bressman, S. (1995) Genetic analysis of idiopathic torsion dystonia in Ashkenazi Jews and their recent descent from a small founder population. Nature Genet. 9, 152–159.

    Article  PubMed  CAS  Google Scholar 

  186. Hutchison, W. D., Lozano, A. M., Davis, K., Saint-Cyr, J. A., Lang, A. E., and Dostrovsky, J. O. (1994) Differential neuronal activity in segments of globus pallidus in Parkinson’s disease patients. Neuroreport 5, 1533–1537.

    Article  PubMed  CAS  Google Scholar 

  187. Patel, K., Roskrow, T., Davis, J. S., and Heckmatt, J. Z. (1995) Dopa responsive dystonia. Arch. Dis. Childhood 73, 256–257.

    Article  CAS  Google Scholar 

  188. Nygaard, T. G. (1995) Dopa-responsive dystonia. Curr. Opin. Neurol. 8, 310–313.

    Article  PubMed  CAS  Google Scholar 

  189. Ichinose, H., Ohye, T., Takayashi, E., Seki, N., Hori, T., Segawa, M., et al. (1994) Hereditary progressive dystonia with marked diurnal fluctuation caused by mutations in the GTP cyclohydrolase I gene. Nature Genet. 8, 236–242.

    Article  PubMed  CAS  Google Scholar 

  190. Vitek, J., Evatt, M., Zhang, J., Hashimoto, T., DeLong, M., Triche, S., et al. (1997) Pallidotomy as a treatment for medically intractable dystonia. Ann. Neurol. 42, 409.

    Google Scholar 

  191. Cardoso, F., Jankovic, J., Grossman, R. G., and Hamilton, W. J. (1995) Outcome after stereotactic thalamotomy for dystonia and hemiballismus. Neurosurgery 36, 501–508.

    Article  PubMed  CAS  Google Scholar 

  192. Lozano, A. M., Kumar, R., Gross, R. E., Giladi, N., Hutchison, W. D., Dostrovsky, J. O., and Lang, A. E. (1997) Globus pallidus internus pallidotomy for generalized dystonia. [see comments]. Mov. Disord. 12, 865–870.

    Article  PubMed  CAS  Google Scholar 

  193. Lenz, F. A. and Byl, N. N. (1999) Reorganization in the cutaneous core of the human thalamic principal somatic sensory nucleus (Ventral caudal) in patients with dystonia. J. Neurophysiol. 82, 3204–3212.

    PubMed  CAS  Google Scholar 

  194. Lenz, F. A., Jaeger, C. J., Seike, M. S., Lin, Y. C., Reich, S. G., DeLong, M. R., and Vitek, J. L. (1999) Thalamic single neuron activity in patients with dystonia: dystonia-related activity and somatic sensory reorganization. J.Neurophysiol. 82, 2372–2392.

    PubMed  CAS  Google Scholar 

  195. Bara-Jimenez, W., Catalan, M. J., Hallett, M., and Gerloff, C. (1998) Abnormal somatosensory homunculus in dystonia of the hand. Ann. Neurol. 44, 828–831.

    Article  PubMed  CAS  Google Scholar 

  196. Hallett, M. and Toro, C. (1996) Dystonia and the supplementary sensorimotor area. Adv. Neurol. 70, 471–476.

    PubMed  CAS  Google Scholar 

  197. Ikoma, K., Samii, A., Mercuri, B., Wassermann, E. M., and Hallett, M. (1996) Abnormal cortical motor excitability in dystonia. Neurology 46, 1371–1376.

    Article  PubMed  CAS  Google Scholar 

  198. Berardelli, A., Rothwell, J. C., Hallett, M., Thompson, P. D., Manfredi, M., and Marsden, C. D. (1998) The pathophysiology of primary dystonia. Brain 121, 1195–1212.

    Article  PubMed  Google Scholar 

  199. Hallett, M. (1998) The neurophysiology of dystonia. Arch. Neurol. 55, 601–603.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Wichmann, T., Vitek, J.L. (2003). Physiology of the Basal Ganglia and Pathophysiology of Movement Disorders. In: Tarsy, D., Vitek, J.L., Lozano, A.M. (eds) Surgical Treatment of Parkinson’s Disease and Other Movement Disorders. Current Clinical Neurology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-312-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-312-5_1

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9736-6

  • Online ISBN: 978-1-59259-312-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics