Skip to main content

The Kidney

Diabetic Nephropathy

  • Chapter
Type 1 Diabetes

Part of the book series: Contemporary Endocrinology ((COE))

  • 548 Accesses

Abstract

Diabetic nephropathy is a serious and costly microvascular complication of both type 1 and type 2 diabetes. It has been a subject of study for over two centuries. Richard Bright (1789–1858) is often credited for the observation that albuminuria reflects serious diabetic renal involvement (1,2). Elliott P. Joslin (1869–1962), one of the first diabetologists stated, “the renal complications of diabetes have been unimportant in the past, but with the prolongation of life which modern treatment is bringing about they will deserve attention” (3). This statement, made 5 yr before the introduction of insulin in 1917 has, unfortunately, been proven correct because more than onethird of patients entering maintenance dialysis today suffer from diabetic nephropathy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bright P. Dr. Richard Bright (1789–1858), The Bodley Head, London, 1983, pp. 131–142.

    Google Scholar 

  2. Ritz E, Zeier M, Lundin P. French and German nephrologists in the mid-19th century: the impact of Richard Bright on the continent. Am J Nephrol 1989;9:167–172.

    Article  PubMed  CAS  Google Scholar 

  3. Joslin EP. Treatment of Diabetes Mellitus. Lea & Febiger, Philadelphia, 1917, p. 419.

    Google Scholar 

  4. Borch-Johnsen K, Kreiner S. Proteinuria: value as predictor of cardiovascular mortality in insulindependent diabetes mellitus. Br Med J 1987;294:1651–1654.

    Article  CAS  Google Scholar 

  5. Mogensen CE. Microalbuminuria predicts clinical proteinuria and early mortality in maturity onset diabetes. N Engl J Med 1984;310:356–360.

    Article  PubMed  CAS  Google Scholar 

  6. Marso SP, Ellis SG, Gurm HS, Lytle BW. Topol EJ. Proteinuria is a key determinant of death in patients with diabetes after isolated coronary artery bypass grafting. Am Heart J 2000;139:939–944.

    Article  PubMed  CAS  Google Scholar 

  7. Messent JWC, Elliott TG, Hill RD, Jarrett RJ, Keen H, Viberti GC. Prognostic significance of microalbuminuria in insulin-dependent diabetes mellitus: a twenty year follow-up study. Kidney Int 1992;41:836–839.

    Article  PubMed  CAS  Google Scholar 

  8. Nelson RG, Knowler WC, Pettitt DJ, Bennett PH. Kidney diseases. In: National Diabetes Group. Diabetes in America, 2nd ed. National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 1995, pp. 349–400.

    Google Scholar 

  9. Bilous RW. Can we prevent or delay diabetic nephropathy? J R Coll Physicians Lond 1997;31:22–27.

    PubMed  CAS  Google Scholar 

  10. Fioretto P, Steffes MW, Mauer M. Glomerular structure in non-proteinuric IDDM patients with various levels of albuminuria. Diabetes 1994;43:1358–1364.

    Article  PubMed  CAS  Google Scholar 

  11. Feldt-Rasmussen B, Mathiesen ER, Deckert T. Effect of 2 years of strict metabolic control on progression of incipient nephropathy in insulin-dependent diabetes. Lancet 1986;2:1300–1304.

    Article  PubMed  CAS  Google Scholar 

  12. Dahl-Jorgensen K, Hanssen KF, Kierulf P, Bjoro T, Sandvik L, Aagenaess O. Reduction of urinary albumin excretion after 4 years of continuous subcutaneous insulin infusion in insulin-dependent diabetes mellitus. Acta Endocrinol 1988;117:19–25.

    Article  PubMed  CAS  Google Scholar 

  13. Dahl-Jorgensen K, Bjoro T, Kierulf P, Sandvik L, Bangstad HJ, Hanssen KF. The effect of long-term strict glycemic control on kidney function in insulin-dependent diabetes mellitus: seven years result from the Oslo Study. Kidney Int 1992;41:920–923.

    Article  PubMed  CAS  Google Scholar 

  14. Viberti G, Mogensen CE, Groop LC, Pauls JF, European Microalbuminuria Captopril Study Group. Effect of captopril on progression to clinical proteinuria in patients with insulin-dependent diabetes mellitus and microalbuminuria. JAMA 1994;271:275–279.

    Article  PubMed  CAS  Google Scholar 

  15. Borch-Johnsen K, Wenzel H, Viberti GC, Mogensen CE. Is screening and intervention for microalbuminuria worthwhile in patients with insulin dependent diabetes? Br Med J 1993;306:1722–1725.

    Article  CAS  Google Scholar 

  16. Viberti GC, Bilous RW, Mackintosh D, Keen H. Monitoring glomerular function in diabetic nephropathy: a prospective study. Am J Med. 1983;74:256–264.

    Article  PubMed  CAS  Google Scholar 

  17. Camamori MI, Fioretto P, Mauer M. The need for early predictors of diabetic nephropathy risk: is albumin excretion rate sufficient? Diabetes 2000;49:1399–1408.

    Article  Google Scholar 

  18. Bennett PH, Haffner S, Kasiske BL, et al. Screening and management of microalbuminuria in patients with diabetes mellitus: recommendations to the Scientific Advisory Board of the National Kidney Foundation from an ad hoc committee of the Council on Diabetes Mellitus of the National Kidney Foundation. Am J Kidney Dis 1995;25:107–112.

    Article  PubMed  CAS  Google Scholar 

  19. Ziyadeh FN. The extracellular matrix in diabetic nephropathy. Am J Kidney Dis 1993;22:736–744.

    PubMed  CAS  Google Scholar 

  20. Osterby R, Gundersen HJG. Glomerular size and structure in diabetes mellitus. I. Early abnormalities. Diabetologia 1975;11:225–229.

    Article  PubMed  CAS  Google Scholar 

  21. Osterby R. Morphometric studies of the peripheral glomerular basement membrane in early juvenile diabetes. I. Development of initial basement membrane thickening. Diabetologia 1972;8:84–92.

    Article  PubMed  CAS  Google Scholar 

  22. Mogensen CE, Andersen MJ. Increased kidney size and glomerular filtration rate in early juvenile diabetes. Diabetes 1973;22:706–712.

    PubMed  CAS  Google Scholar 

  23. Lane PH, Steffes MW, Fioretto P, Mauer SM. Renal interstitial expansion in insulin-dependent diabetes mellitus. Kidney Int 1993;43:661–667.

    Article  PubMed  CAS  Google Scholar 

  24. Ziyadeh FN, Goldfarb S. The renal tubulointerstitium in diabetes mellitus. Kidney Int 1991;39:464–475.

    Article  PubMed  CAS  Google Scholar 

  25. Kimmelstiel P, Wilson C. Intercapillary lesions in glomeruli of the kidney. Am J Pathol 1936;12:83–97.

    PubMed  CAS  Google Scholar 

  26. Rodby RA. Type II diabetic nephropathy: Its clinical course and therapeutic implications. Serrin Nephrol 1997;17:132–147.

    CAS  Google Scholar 

  27. Della Vestra M, Saller A, Bortoloso E, Mauer M, Fioretto P. Structural involvement in type 1 and type 2 diabetic nephropathy. Diabetes Metab 2000;26(Suppl 4):8–14.

    PubMed  Google Scholar 

  28. DCCT Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 1993;329:977–986.

    Article  Google Scholar 

  29. United Kingdom Prospective Diabetes Study (UKPDS). Intensive blood-glucose control with sulphonylurea or insulin compared to conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998; 1352:837–853.

    Google Scholar 

  30. Mauer SM, Goetz FC, McHugh CE. Long term studies of normal kidneys transplanted into patients with type I diabetes. Diabetes 1989;38:516–523.

    Article  PubMed  CAS  Google Scholar 

  31. Wolf G, Sharma K, Chen Y, Ericksen M, Ziyadeh FN. High glucose-induced proliferation in mesangial cells is reversed by autocrine TGF-ß. Kidney Int 1992;42:647–656.

    Article  PubMed  CAS  Google Scholar 

  32. Ziyadeh FN, Snipes ER, Watanabe M, Alvarez RJ, Goldtarbs, Haverty T P. Ign glucose inauces cell hypertrophy and stimulates collagen gene transcription in proximal tubule. Am J Physiol 1990.259:F704–F714.

    PubMed  CAS  Google Scholar 

  33. Ziyadeh FN, Sharma K, Ericksen M, Wolf G. Stimulation of collagen gene expression and protein synthesis in murine mesangial cells by high glucose is mediated by activation of transforming growth factnr-ß. J Clin Invest 1994:93:536–542.

    Article  PubMed  CAS  Google Scholar 

  34. Wakisaka M, Spiro MJ, Spiro RG. Synthesis of type VI collagen in cultured glomerular cells and comparison of its regulation by glucose and other factors with that of type IV collagen. Diabetes 1994;43:95–103.

    Article  PubMed  CAS  Google Scholar 

  35. Van Det NF, van den Born J, Tamsa JT, et al. Effects of high glucose on the production of heparan sulfate proteoglycan by mesangial and epithelial cells. Kidney Int 1996;49:1079–1089.

    Article  PubMed  Google Scholar 

  36. Kasinath BS, Block JA, Singh AK, et al. Regulation of rat glomerular epithelial cell proteoglycans by high-medium glucose. Arch Biochem Biophys 1994;309:149–159.

    Article  PubMed  CAS  Google Scholar 

  37. Heilig CW, Concepcion LA, Riser BL, Freytag SO, Zhu M, Cortes P. Overexpression of glucose transporters in rat mesangial cells cultured in a normal glucose milieu mimics the diabetic phenotype. J Clin Invest 1994;96:149–159.

    Google Scholar 

  38. King GL, Ishii H, Koya D. Diabetic vascular dysfunctions: a model of excessive activation of protein kinase C. Kidney Int 1997;52:S77–S85.

    Google Scholar 

  39. DeRubertis FR, Craven PA. Activation of protein kinase C in glomerular cells in diabetes. Mechanisms and potential link to the pathogenesis of diabetic glomerulopathy. Diabetes 1994;43:1–8.

    Article  PubMed  CAS  Google Scholar 

  40. Larkins RG, Dunlop ME. The link between hyperglycaemia and diabetic nephropathy. DDiabetologia 1992;35:499–504.

    Article  CAS  Google Scholar 

  41. Sharma K, Ziyadeh FN. Biochemical events and cytokine interactions linking glucose metabolism to the development of diabetic nenhronathy. Semin Nenhrnl 1997.1780–92

    Google Scholar 

  42. Ledbetter S, Copeland EJ, Noonan D, Vogeli G, Hassell JR. Altered steady-state mRNA levels of basement membrane proteins in diabetic mouse kidneys and thromboxane synthase inhibition. Diabetes 1990;39:196–203.

    Article  PubMed  CAS  Google Scholar 

  43. Craven PA, Melhem FT, DeRubertis FR. Thromboxane in the pathogenesis of glomerular injury in diabetes. Kidney Int 1992;42:937–946.

    Article  PubMed  CAS  Google Scholar 

  44. Studer RK, Negrete H, Craven PA, DeRubertis FR. Protein kinase C signals thromboxane induced increases in fibronectin synthesis and TGF-beta bioactivity in mesangial cells. Kidney Int 1995;48:422–430.

    Article  PubMed  CAS  Google Scholar 

  45. Baynes JW, Thorpe SR. The role of oxidative stress in diabetic complications. Curr Opin Endocrinol 1996;3:277–284.

    Article  Google Scholar 

  46. Giugliano D, Ceriello A, Paolisso G. Oxidative stress and diabetic vascular complications. Diabetes Care 1996;19:257–267.

    Article  PubMed  CAS  Google Scholar 

  47. Santinim SA, Marra G, Giardina B, et al. Defective plasma antioxidant defenses and enhanced susceptibility to lipid peroxidation in uncomplicated IDDM. Diabetes 1997:46:1853–1858.

    Article  Google Scholar 

  48. Cohen MP, Ziyadeh FN. Role of Amadori-modified nonenzymatically glycated serum proteins in the pathogenesis of diabetic nephropathy. J Am Soc Nephrol 1996;7:1–8.

    Google Scholar 

  49. Brownlee M. Lilly Lecture 1993. Glvcation and diabetic comnliations Diahetes 1994;43R 68–41

    Google Scholar 

  50. Makita Z, Radoff S, Rayfield EJ, et al. Advanced glycosylation end products in patients with diabetic nephropathy. N. Engl J Med 1991;325:836–842.

    Article  PubMed  CAS  Google Scholar 

  51. Soulis T, Cooper M, Vranes D, Bucala R, Jerums G. The effects of aminoguanidine in preventing exnerimental diabetic nenhrnnathy are related to duration of treatment Kidey Int 1966;627–634

    Google Scholar 

  52. Pugliese G, Pricci F, Romeo G, et al. Upregulation of mesangial growth factor and extracellular matrix synthesis by advanced glycation end products via a receptor-mediated mechanism. Diabetes 1997;46:1881–1887.

    Article  PubMed  CAS  Google Scholar 

  53. Cohen MP, Masson N, Hud E, Ziyadeh F, Han DC. Clements RS. Inhibiting albumin glycation ameliorates diabetic nephropathy in the db/db mouse. Exp Nephrol 2000;8:135–143.

    Article  PubMed  CAS  Google Scholar 

  54. Ziyadeh FN, Han DC, Cohen J, Guo J, Cohen MR Glycated albumin stimulates fibronectin gene expression in glomerular mesangial cells: Involvement of the TGF-[beta] system. Kidney Int 1998;53:631–638.

    Article  CAS  Google Scholar 

  55. Craven PA, DeRubertis FR, Melhem ME Nitric oxide in diabetic nephropathy. Kidney Int 1997;52(Suppl): S46–S53.

    Google Scholar 

  56. Keynan S, Hirshberg B, Levin-Iaina N, et al. Renal nitric oxide production during the early phase of experimental diabetes mellitus. Kidney Int 2000;58:740–747.

    Article  PubMed  CAS  Google Scholar 

  57. Craven PA, Studer RK, Felder J, et al. Nitric oxide inhibition of transforming growth factor-beta and collagen synthesis in mesangial cells. Diabetes 1997;46:671–681.

    Article  PubMed  CAS  Google Scholar 

  58. Phillips SL, DeRubertis FR, Craven PA. Regulation of the laminin Cl promoter in cultured mesangial cells. Diabetes 1999;48:2083–2089.

    Article  PubMed  CAS  Google Scholar 

  59. Studer RK, Craven PA, DeRubertis FR. Antioxidant inhibition of protein kinase C signalled increases in transforming growth factor-ß in mesangial cells. Metabolism 1997:46:918–925

    Article  PubMed  CAS  Google Scholar 

  60. Craven PA, Studer RK, DeRubertis FR. Impaired NO dependent cyclic GMP generation in glomeruli from diabetic rats: evidence for protein kinase C mediated suppression of the cholinergic response. J Clin Invest 1994;93:311–320.

    Article  PubMed  CAS  Google Scholar 

  61. Craven PA, Studer RK, DeRubertis FR. Impaired nitric oxide release by glomeruli from diabetic rats. Metabolism 1995;44:695–698.

    Article  PubMed  CAS  Google Scholar 

  62. Ting H, Timimi FK, Boles KS, et al. Vitamin C improves endothelium dependent vasodilation in patients with non insulin dependent diabetes mellitus. J Clin Invest 1996:97:22–28.

    Article  PubMed  CAS  Google Scholar 

  63. Beckman JS, Koppenol WH. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and the ugly. Am J Physiol 1996;271:C1424–C1437.

    PubMed  CAS  Google Scholar 

  64. Lyall F, Gibson JL, Greer IA, et al. Increased nitrotyrosine in the diabetic placenta. Diabetes Care 1998;21:1753–1758.

    Article  PubMed  CAS  Google Scholar 

  65. Carmines P, Pollock JS, Ishii N, et al. Tyrosine nitration accompanies increased nitric oxide and superoxide production in renal cortex in diabetes. J Am Soc Nenhrol 1999;10:393A

    Google Scholar 

  66. Nishikawa T, Edelstein D, Du XL, et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 2000;404:787–790.

    Article  PubMed  CAS  Google Scholar 

  67. Du X-L, Edelstein D, Rossetti L, et al. Hyperglycemia-induced mitochondrial superoxide overproduction activates the hexosamine pathway and induces plasminogen activator inhibitor-1 expression by increasing Spl glycosylation. Proc Natl Acad Sci USA 2000;97:12,222–12,226.

    CAS  Google Scholar 

  68. Craven PA, Melhem MF, Phillips SL, DeRubertis FR. Overexpression of Cu2+/Zn2+ superoxide dismutase protects against early diabetic glomerular injury in transgenic mice. Diabetes 2001;50(9),2114–2115.

    Article  PubMed  CAS  Google Scholar 

  69. Ishii H, Jirousek MR, Koya D, et al. Amelioration of vascular dysfunctions in diabetic rats by an oral PKC ß3 inhibitor. Science 1996;272:728–731.

    Article  PubMed  CAS  Google Scholar 

  70. Soulis-Liparota T, Cooper M, Papazoglou D, Clarke B, Jerums G. Retardation by aminoguanidine of development of albuminuria, mesangial expansion, and tissue fluorescence in streptozotocin-induced diabetic rat. Diabetes 1991;40:1328–1334.

    Article  PubMed  CAS  Google Scholar 

  71. Bucala R, Vlassara H. Advanced glycosylation end products in diabetic renal and vascular disease. Am J Kidney Dis 1995;26:875–888.

    Article  PubMed  CAS  Google Scholar 

  72. Sharma K, Jin Y, Guo J, Ziyadeh FN. Neutralization of TGF-ß3 by anti-TGF-ß3 antibody attenuates kidney hypertrophy and the enhanced extracellular matrix gene expression in STZ-induced diabetic mice. Diabetes 1996;45:522–530.

    Article  PubMed  CAS  Google Scholar 

  73. Ziyadeh FN, Hoffman BB, Han DC, et al. Long-term prevention of renal insufficiency, excess matrix gene expression, and glomerular mesangial matrix expansion by treatment with monoclonal antitransforming growth factor-beta antibody in db/db diabetic mice. Proc Nat Acad Sci USA 2000;97:8015–8020.

    Article  PubMed  CAS  Google Scholar 

  74. Matsuo Y, Takagawa I, Koshida H, et al. Antiproteinuric effect of a thromboxane receptor antagonist, S-1452, on rat diabetic nephropathy and murine lupus nephritis. Pharmacology 1995;50:1–8.

    Article  PubMed  CAS  Google Scholar 

  75. Craven PA, DeRubertis FR, Kagan VE, Melhem MF, Studer RK. Effects of dietary supplementation with vitamin C or E on albuminuria, glomerular TGF 3 and size in diabetes. J Am Soc Nephrol 1997;8:1405–1407.

    PubMed  CAS  Google Scholar 

  76. Koya D, Lee IK, Ishii H, Kanoh H, King GL. Prevention of glomerular dysfunction in diabetic rats by treatment with d-alpha-tocopherol. J Am Soc Nephrol 1997;8:426–435.

    PubMed  CAS  Google Scholar 

  77. Melhem MF, Craven PA, DeRubertis FR. Effects of dietary supplementation of alpha-lipoic acid on early glomerular injury in diabetes mellitus. J Am Soc Nephrol 2001;12(1):124–133.

    PubMed  CAS  Google Scholar 

  78. Ibrahim HN, Hostetter TH. Diabetic nephropathy. J Am Soc Nephrol 1997;8:487–493.

    PubMed  CAS  Google Scholar 

  79. Hostetter TH, Troy JL, Brenner BM. Glomerular hemodynamics in experimental diabetes mellitus. Kidney Int 1981;19:410–415.

    Article  PubMed  CAS  Google Scholar 

  80. O’Bryan GT, Hostetter TH. The renal hemodynamic basis of diabetic nephropathy. Semin Nephrol 1997;17:93–100.

    PubMed  Google Scholar 

  81. Zatz R. Haemodynamically mediated glomerular injury: the end of a 15-year-old controversy? Curr Opin Nephrol Hypertens 1996;5:468–475.

    Article  PubMed  CAS  Google Scholar 

  82. Cortes P, Zhao X, Riser BL, Narins RG. Role of glomerular mechanical strain in the pathogenesis of diabetic nephropathy. Kidney Int 1997;51:57–68.

    Article  PubMed  CAS  Google Scholar 

  83. Harris RC, Haralson MA, Badr KF. Continuous stretch-relaxation in culture alters rat mesangial cell morphology, growth characteristics and metabolic activity. Lab Invest 1992;66:548–554.

    PubMed  CAS  Google Scholar 

  84. Yasuda Kondo S, Homma T, Harris RC. Regulation of extracellular matrix by mechanical stress in rat glomerular mesangial cells. J Clin Invest 1996;98:1991–2000.

    Article  PubMed  CAS  Google Scholar 

  85. Riser BL, Cortes P, Zhao X, Berstein J, Dumler F, Narins RG. Intraglomerular pressure and mesangial stretching stimulate extracellular matrix formation in the rat. J Clin Invest 1992;90:1932–1943.

    Article  PubMed  CAS  Google Scholar 

  86. Mattana J, Singhal PC. Applied pressure modulates mesangial cell proliferation and matrix synthesis. Am J Hypertens 1995;8:1112–1120.

    Article  PubMed  CAS  Google Scholar 

  87. Riser BL, Cortes P, Heilig C, et al. Cyclic stretching force selectively up-regulates transforming growth factor-b isoforms in cultured rat mesangial cells. Am J Pathol 1996;148:1915–1923.

    PubMed  CAS  Google Scholar 

  88. Homma T, Akai Y, Burns KD, Harris RC. Activation of S6 kinase by repeated cycles of stretching and relaxation in rat glomerular mesangial cells. J Biol Chem 1992;267:23,129–23,135.

    CAS  Google Scholar 

  89. Harris RC, Akai Y, Yasuda T, Homma T. The role of physical forces in alterations of mesangial cell function. Kidney Int 1995;45(Suppl 45):S 17.

    Google Scholar 

  90. Mauer SM, Steffes MW, Ellis EN, Sutherland DER, Brown DM, Goetz FC. Structural-functional relationships in diabetic nephropathy. J Clin Invest 1984;74:1143–1155.

    Article  PubMed  CAS  Google Scholar 

  91. Nath KA. Tubulointerstitial changes as a major determinant in the progression of renal damage. Am J Kidney Dis 1992;20:1–17.

    PubMed  CAS  Google Scholar 

  92. Schwieger J, Fine LG. Renal hypertrophy, growth factors, and nephropathy in diabetes mellitus. Semin Nephrol 1990;10:242–253.

    PubMed  CAS  Google Scholar 

  93. Wolf G. Cellular mechanisms of tubule hypertrophy and hyperplasia in renal injury. Miner Electrolyte Metab 1995;21:303–316.

    PubMed  CAS  Google Scholar 

  94. Abboud HE. Growth factors and diabetic nephropathy: an overview. Kidney Int 1997;52(Suppl 60):S3–S6.

    Google Scholar 

  95. Sharma K, Ziyadeh FN. Hyperglycemia and diabetic kidney disease: the case for transforming growth factor-[beta] as a key mediator. Diabetes 1995;44:1139–1146.

    Article  PubMed  CAS  Google Scholar 

  96. Border WA, Ruoslahti E. Transforming growth factor-[beta] in disease: the dark side of tissue repair. J Clin Invest 1992;90:1–7.

    Article  PubMed  CAS  Google Scholar 

  97. Sharma K, Ziyadeh FN, Alzahabi B, et al. Increased renal production of transforming growth factor[beta] 1 in patients with type II diabetes mellitus. Diabetes 1997;46:854–859.

    Article  PubMed  CAS  Google Scholar 

  98. Shankland SJ, Scholey JW. Expression of transforming growth factor-[beta] l during diabetic renal hypertrophy. Kidney Int 1994;46:430–442.

    Article  PubMed  CAS  Google Scholar 

  99. Yamamoto T, Nakamura T, Noble NA, Ruoslahti E, Border WA. Expression of transforming growth factor [beta] is elevated in human and experimental diabetic nephropathy. Proc Natl Acad Sci USA 1993;90:1814–1818.

    Article  PubMed  CAS  Google Scholar 

  100. Sharma K, Ziyadeh FN. Renal hypertrophy is associated with upregulation of TGF-[beta] 1 gene expression in diabetic BB rat and NOD mouse. Am J Physiol 1994;267:F1094–F1101.

    PubMed  CAS  Google Scholar 

  101. Pankewycz OG, Guan JX, Bolton WK, Gomez A, Benedict JE Renal TGF-[beta] regulation in spontaneously diabetic NOD mice with correlations in mesangial cells. Kidney Int 1994;46:748–758.

    Article  PubMed  CAS  Google Scholar 

  102. Mogyorosi A, Ziyadeh FN. Increased decorin mRNA in diabetic mouse kidney and in mesangial and tubular cells cultured in high glucose. Am J Physiol 1998:275(5 Pt 2):F827–F832.

    PubMed  CAS  Google Scholar 

  103. Kolm-Litty V, Sauer U, Nerlich A, Lehmann R, Schleicher ED. High glucose-induced transforming growth factor [beta] 1 production is mediated by the hexoseamine pathway in porcine glomerular mesangial cells. J Clin Invest 1998;101:160–169.

    Article  PubMed  CAS  Google Scholar 

  104. Rocco MV, Chen Y, Goldfarb S, Ziyadeh FN. Elevated glucose stimulates TGF-[beta] gene expression and bioactivity in proximal tubule. Kidney Int 1992;41:107–114.

    Article  PubMed  CAS  Google Scholar 

  105. Hirakata M, Kaname S, Chung UG, et al. Tyrosine kinase dependent expression of TGF-[beta] induced by stretch in mesangial cells. Kidney Int 1997;51:1028–1036.

    Article  PubMed  CAS  Google Scholar 

  106. Wolf G, Mueller E, Stahl RAK, Ziyadeh FN. Angiotensin II-induced hypertrophy of cultured murine proximal tubular cells is mediated by endogenous transforming growth factor-[beta]. J Clin Invest 1993;92:1366–1372.

    Article  PubMed  CAS  Google Scholar 

  107. Guh JY, Yang ML, Yang YL, Chang CC, Chuang LY. Captopril reverses high-glucose-induced growth effects on LLC-PK1 cells partly by decreasing transforming growth factor-[beta] receptor protein expression. J Am Soc Nephrol 1996;7:1207–1215.

    PubMed  CAS  Google Scholar 

  108. Sharma K, Eltayeb BO, McGowan TA, et al. Captopril-induced reduction of serum levels of transforming growth factor-betal correlates with long-term renoprotection in insulin-dependent diabetic patients. Am J Kidney Dis 1999;34:818–823.

    Article  PubMed  CAS  Google Scholar 

  109. Nakamura T, Ebihara I, Fukui M, Tomino Y, Koide H. Effect of a specific endothelin receptor A antagonist on mRNA levels for extracellular matrix components and growth factors in diabetic glomeruli. Diabetes 1995;44:895–899.

    Article  PubMed  CAS  Google Scholar 

  110. Negrete H, Studer RK, Craven PA, DeRubertis FR. Role for transforming growth factor [beta] in thromboxane-induced increases in mesangial cell fibronectin synthesis. Diabetes 1995;44:335–339.

    Article  PubMed  CAS  Google Scholar 

  111. Feld SM, Hirschberg R, Artishevsky A, Nast C, Adler SG. Insulin-like growth factor I induces mesangial proliferation and increases mRNA and secretion of collagen. Kidney Int 1995;48:45–51.

    Article  PubMed  CAS  Google Scholar 

  112. Blazer-Yost BL, Watanabe M, Haverty TP, Ziyadeh FN. Role of insulin and IGF1 receptors in proliferation of cultured renal proximal tubule cells. Biochim Biophys Acta 1992;113:329–335.

    Article  Google Scholar 

  113. Hammerman MR. The growth hormone-insulin-like growth factor axis in kidney. Am J Physiol 1989;257:F503–F514.

    PubMed  CAS  Google Scholar 

  114. Flyvbjerg A, Bornfeldt KE, Marshall SM, Arnqvist Orskov H. Kidney IGF-I mRNA in initial renal hypertrophy in experimental diabetes in rats. Diabetologia 1990;33:334–338.

    Article  PubMed  CAS  Google Scholar 

  115. Phillip M, Segeve Y, Zung A, et al. The accumulation of IGF-I in kidneys of streptozotocin-diabetic adult rats is not associated with elevated plasma GH or IGF-I levels. Endocrine 1995;3:689–693.

    Article  PubMed  CAS  Google Scholar 

  116. Werner H, Shen-Orr Z, Stannard B, Burguera B, Roberts CT, Leroith D. Experimental diabetes increases insulinlike growth factor I and II receptor concentration and gene expression in kidney. Diabetes 1990;39:1490–1497.

    Article  PubMed  CAS  Google Scholar 

  117. Sugimoto H, Shikata K, Makino H, Ota K, Ota Z. Increased gene expression of insulin-like growth factor-I receptor in experimental diabetic rat glomeruli. Nephron 1996:72:648–653.

    Article  PubMed  CAS  Google Scholar 

  118. Flyvbjerg A, Marshall SM, Frystyk J, Hansen KW, Harris AG, Orskov H. Octreotide administration in diabetic rats: effects on renal hypertrophy and urinary albumin excretion. Kidney Int 1997;41:S05–R 12

    Google Scholar 

  119. Hirschberg R. Bioactivity of glomerular ultrafiltrate during heavy proteinuria may contribute to renal tubulo-interstitial lesions: evidence for a role of insulin-like growth factor I. J Clin Invest 1996;98:116–124.

    Article  PubMed  CAS  Google Scholar 

  120. Wolf G. Molecular mechanisms of angiotensin II in the kidney: emerging role in the progression of renal disease beyond haemodynamics. Nephrol Dial Transplant 1998;13:1131–1142.

    Article  PubMed  CAS  Google Scholar 

  121. Wolf G. Vasoactive substances as regulators of renal growth. Exp Nephrol 1993;1:141–151.

    PubMed  CAS  Google Scholar 

  122. Wolf G, Ziyadeh FN. The role of angiotensin II in diabetic nephropathy: emphasis on nonhemodynamic mechanisms. Am J Kidney Dis 1997;29:153–163.

    Article  PubMed  CAS  Google Scholar 

  123. Kennefick TM, Anderson S. Role of angiotensin 11 in diabetic nephropathy. Semin Nepnrol 1997;17:441–447.

    CAS  Google Scholar 

  124. Wolf G, Neilson EG, Goldfarb S, Ziyadeh FN. The influence of glucose concentration on angiotensin II-induced hypertrophy of proximal tubular cells in culture. Biochem Biophys Res Commun 1991;176:902–909.

    Article  PubMed  CAS  Google Scholar 

  125. Wolf G, Neilson EG. Angiotensin II induces cellular hypertrophy in cultured murine proximal tubular cells. Am J Physiol 1990;259:F768–F777.

    PubMed  CAS  Google Scholar 

  126. Wolf G, Neilson EG. Angiotensin II as a renal growth factor. J Am Soc Nephrol 1993;3:1531–1540.

    PubMed  CAS  Google Scholar 

  127. Ling H, Vamvakas S, Schaefer L, Schnittler Hi, Schaefer KM, Heidland A. Angiotensin -inducea cellular hypertrophy: Potential role of impaired proteolytic activity in cultured LLC-PK1 cells. Nephrol Dial Transplant 1995;10:1305–1312.

    PubMed  CAS  Google Scholar 

  128. Haijinazarian M, Cosio FG, Nahman NS, Mahan JD. Angiotensin-converting enzyme inhibition partially prevents diabetic organomegaly. Am J Kidney Dis 1994;23:105–117.

    Google Scholar 

  129. Sassy-Prigent C, Heudes D, Jouquey S, et al. Morphometric detection of incipient glomerular lesions in diabetic nephropathy in rats: protective effects of ACE inhibition. Lab Invest 1995;73:64–71.

    PubMed  CAS  Google Scholar 

  130. Young BA, Johnson RJ, Alpers CA, et al. Cellular events in the evolution of experimental aianetic nephropathy. Kidney Int 1995;47:935–944.

    Article  PubMed  CAS  Google Scholar 

  131. Throckmorton DC, Brodgen AP, Min B, Rasmussen H, Kashgarian M. PDGF and TGF-[beta] mediate collagen production by mesangial cells exposed to advanced glycosylation end products. Kidney Int 1995;48:111–117.

    Article  PubMed  CAS  Google Scholar 

  132. Nakamura T, Fukui M, Ebihara I, et al. mRNA expression of growth tactors in glomeruli from diabetic rats. Diabetes 1993;42:450–456.

    Article  PubMed  CAS  Google Scholar 

  133. Inaba T, Ishibashi S, Gotoda T, et al. Enhanced expression of platelet-derived growth factor-[beta] receptor by high glucose. Involvement of platelet-derived growth factor in diabetic angiopathy. Diabetes 1996;45:507–512.

    Article  PubMed  CAS  Google Scholar 

  134. Ishibashi K, Sasaki S, Sakamoto H, et al. Hepatocyte growth factor is a paracrine factor for renal epithelial cells: stimulation of DNA synthesis and Na,K-ATPase activity. Biochim Biophys Res Cornmun 1992;182:960–965.

    Article  CAS  Google Scholar 

  135. Morabito E, Corsico N, Arrigoni Martelli E. Endothelins urinary excretion in spontaneously diabetic db/db rats. Life Sci 1995;56:13–18.

    Google Scholar 

  136. Takahashi K, Ghatei MA, Lam H-C, O’Halloran, OJ, Bloom SR. Elevated plasma endothelin in patients with diabetes mellitus. Diabetologia 1990;33:306–310.

    Article  PubMed  CAS  Google Scholar 

  137. Ferri C, Laurenti O, Bellini C, et al. Circulating endothelin-1 levels in lean non-insulin-dependent diabetic patients. Am J Hypertens 1995;8:40–47.

    Article  PubMed  CAS  Google Scholar 

  138. Craven PA, Caines MA, DeRubertis FR. Sequential alterations in glomerular prostaglandin ana thromboxane synthesis in diabetic rats: relationship to the hyperfiltration of early diabetes. Metabolism 1987;36:95–103.

    Article  PubMed  CAS  Google Scholar 

  139. Gambardella S, Andreani D, Cancelli A, et al. Renal hemodynamics and urinary excretion of 6-keto prostaglandin F la, and thromboxane B2 in newly diagnosed type I diabetic patients. Diabetes 1988;37:1044–1048.

    Article  PubMed  CAS  Google Scholar 

  140. DeRubertis FR, Craven PA. Contribution of platelet thromboxane production to enhanced urinary excretion and glomerular production of thromboxane and to the pathogenesis of albuminuria in the streptozotocin-diabetic rat. Metabolism 1992;41:90–96.

    Article  PubMed  CAS  Google Scholar 

  141. Bruggeman LA, Horigan EA, Horikoshi S, Ray PE, Klotman PE. Thormboxane stimulates synthesis of extracellular matrix proteins in vitro. Am J Physiol 1991;261:F488–F494.

    PubMed  CAS  Google Scholar 

  142. Craven PA, Patterson M, DeRubertis FR. Role of enhanced aracnidonate availability tnrougn me phospholipase A2 pathway in the mediation of increased prostaglandin synthesis by glomeruli fron diabetic rats. Diabetes 1988;37:429–435.

    Article  PubMed  CAS  Google Scholar 

  143. Pricci E, Pugliese G, Mene P, et al. Regulatory role of eicosanoids in extracellular matrix overproduction induced by long-term exposure to high glucose in cultured rat mesangial cells. Diabetologia 1996;39:1055–1062.

    Article  PubMed  CAS  Google Scholar 

  144. Banba N, Nakamura T, Matsumura M, Kuroda H, Hattori Y, Kasai K. Possible relationship of monocyte chemoattractant protein-1 with diabetic nephropathy. Kidney Int 2000;58:684–690.

    Article  PubMed  CAS  Google Scholar 

  145. Anderson AR, Christiansen IS, Anderson JK, Kreiner S, Deckert T. Diabetic nephropathy in type 1 (insulin-dependent) diabetes: an epidemiological study. Diabetologia 1983;25:496–501.

    Article  Google Scholar 

  146. Krolewski AS, Warram JH, Christlieb AR, Busick EJ, Kahn CR. The changing natural history of nephropathy in type 1 diabetes. Am J Med 1985;78:785–793.

    Article  PubMed  CAS  Google Scholar 

  147. Parving HH, Hommel E. Prognosis in diabetic nephropathy. Br Med J 1989;299:230–233.

    Article  CAS  Google Scholar 

  148. Quinn M, Angelico MC, Warram JH, Krolewski AS. Familial factors determine the development of diabetic nephropathy in patients with IDDM. Diabetologia 1996;39:940–945.

    Article  PubMed  CAS  Google Scholar 

  149. DCCT. Clustering of long term complications in families with diabetes in the Diabetes Control and Complications Trials. Diabetes 1997;46:1829–1839.

    Article  Google Scholar 

  150. Klein R, Klein BEK, Moss SE. The Wisconsin Epidemiologic study of Diabetic Retinopathy: II. Prevalence and risk of diabetic retinopathy when age at diagnosis is less than 30 years. Arch Ophthalmol 1984;102:527–532.

    Article  PubMed  CAS  Google Scholar 

  151. Seaquist ER, Goetz FC, Rich S, Barbosa J. Familial clustering of diabetic kidney disease. Evidence for genetic susceptibility to diabetic nephropathy. N Engl J Med 1989;320:1161–1165.

    Article  PubMed  CAS  Google Scholar 

  152. Borch-Johnsen K, Norgaard K, Hommel E, et al. Is diabetic nephropathy an inherited complication? Kidney Int 1992;41:719–722.

    Article  PubMed  CAS  Google Scholar 

  153. Viberti GC, Keen H, Wiseman MJ. Raised arterial pressure in parents of proteinuric insulin-dependent diabetics. Br Med J 1987;295:515–518.

    Article  CAS  Google Scholar 

  154. Krolewski AS, Canessa H, Warram JH, et al. Predisposition to hypertension and susceptibility to renal disease in insulin-dependent diabetes mellitus. N Fngl J MM 1988:31 R:140–145

    Article  Google Scholar 

  155. Barzilay J, Warram JH, Bak M, Laffel LM, Canessa M, Krolewski AS. Predisposition to hypertension: risk factor for nephropathy and hypertension in IDDM. Kidney Int 1992:41:723–730

    Article  PubMed  CAS  Google Scholar 

  156. Roglic G, Colhoun HM, Stevens LK, Lemkes HH, Manes C, Fuller JH. Parental history of hypertension and parental history of diabetes and microvascular complications in insulin dependent diabetes mellitus: the EURODIAB IDDM complications study. Diabet Med 1998;15:418–426.

    Article  PubMed  CAS  Google Scholar 

  157. Viberti G. Why do we invoke genetic susceptibility for diabetic nephropathy. Kidney Int 1999;55:2526–2527.

    Article  PubMed  CAS  Google Scholar 

  158. Vardarli I, Baier LJ, Hanson RL, et al. Gene for susceptibility to diabetic nephropathy in type 2 diabetes maps to 18q22.3–33. Kidney Int 2002;62:2176–2183.

    Article  PubMed  CAS  Google Scholar 

  159. Bain S, Chowdhury T. Genetics of diabetic nephropathy and microalbuminuria. J Royal Soc Med 2000;93:62–66.

    CAS  Google Scholar 

  160. Barbosa J, Saner B. Do genetics factors play a role in the pathogenesis of diabetic microangiopathy? Diabetologia 1984:27:487–492.

    Article  PubMed  CAS  Google Scholar 

  161. Pyke D, Tattersall R. Diabetic retinopathy in identical twins. Diabetes 1973:22:613–618.

    PubMed  CAS  Google Scholar 

  162. Chowdhury TA, Dyer PH, Mijovic CH, Dunger D, Barnett AH, Bain SC. HLA and insulin genes in diabetic nephropathy. Diabetologia 1999:42:1017–1020.

    Article  PubMed  CAS  Google Scholar 

  163. Hallab M, Bled F, Ebran JM. Elevated serum angiotensin converting enzyme activity in type 1, insulin dependent diabetic subiects with persistent microalbuminuria. Acta Diaheto1 1992;29;82–85

    Google Scholar 

  164. Schmidt S, Schone N, Ritz E. Association of ACE gene polymorphism and diabetic nephropathy? The Diabetic Nephropathy Study Group. Kidney Int 1995;47:1176–1181.

    Article  PubMed  CAS  Google Scholar 

  165. van Ittersum FJ, de Man AM, Thijssen S, et al. Genetic polymorphisms of the renin-angiotensin system and complications of insulin-dependent diabetes mellitus. Nephrol Dial Transplant 2000;15:1000–1007.

    Article  PubMed  Google Scholar 

  166. Tarnow L, Cambien F, Rossing P, et al. Lack of relationship between an insertion/deletion polymorphism in the angiotensin I-converting enzyme gene and diabetic nephropathy and proliferative retinopathy in IDDM patients. Diabetes 1995;44:489–494.

    Article  PubMed  CAS  Google Scholar 

  167. Doria A, Warram JH, Krolewski AS. Genetic predisposition to diabetic nephropathy. Evidence for a role of the angiotensin I-converting enzyme gene. Diabetes 1994;43:690–695.

    Article  PubMed  CAS  Google Scholar 

  168. Tarnow L, Cambien F, Rossing P, et al. Angiotensin-II type 1 receptor gene polymorphism and diabetic microangiopathy. Nephrol Dial Transplant 1996;11:1019–1023.

    Article  PubMed  CAS  Google Scholar 

  169. Chowdhury TA, Dyer PH, Kumar S, et al. Lack of association of angiotensin II type 1 receptor gene polymorphism with diabetic nephropathy in insulin-dependent diabetes mellitus. Diabet Med 1997;14:837–840.

    Article  PubMed  CAS  Google Scholar 

  170. Parving HH, Jacobsen P, Tarnow L, et al. Effect of deletion polymorphism of angiotensin converting enzyme gene on progression of diabetic nephropathy during inhibition of angiotensin converting enzyme: observational follow up study. Br Med J 1996;313:591–594.

    Article  CAS  Google Scholar 

  171. Penno G, Chaturvedi N, Talmud PJ, et al. Effect of angiotensin-converting enzyme (ACE) gene polymorphism on progression of renal disease and the influence of ACE inhibition in IDDM patients. Diabetes 1998;47:1507–1511.

    Article  PubMed  CAS  Google Scholar 

  172. van Essen GG, Rensma PL, de Zeeuw D, et al. Association between angiotensin-converting-enzyme gene polymorphism and failure of renoprotective therapy. Lancet 1996;347:94–95.

    Article  PubMed  Google Scholar 

  173. Johannesen J, Tarnow L, Parving HH, Nerup J, Pociot F. CCTTT-Repeat polymorphism in the human NOS2-promoter confers low risk of diabetic nephropathy in type 1 diabetic patients. Diabetes Care 2000;23:560–562.

    Article  PubMed  CAS  Google Scholar 

  174. Neuberger S, Baba T, Watanabe T. Association of nitric oxide synthase gene polymorphism with an increased risk for progression to diabetic nephropathy in type 2 diabetes. Diabetes 2000;49:500–503.

    Article  Google Scholar 

  175. Pociot F, Hansen PM, Karlsen AE, Langdahl BL, Johannesen J, Nerup J. TGF-[beta] 1 gene mutations in insulin-dependent diabetes mellitus and diabetic nephropathy. J Am Soc Nephrol 1998;9:2302–2307.

    PubMed  CAS  Google Scholar 

  176. Heesom AE, Hibberd ML, Millward A, Demaine AG. Polymorphism in the 5′-end of the aldose reductase gene is strongly associated with the development of diabetic nephropathy in type I diabetes. Diabetes 1997;46:287–291.

    Article  PubMed  CAS  Google Scholar 

  177. Dyer PH, Chowdhury TA, Dronsfield MJ, Dunger D, Barnett AH, Bain SC. The 5′-end polymorphism of the aldose reductase gene is not associated with diabetic nephropathy in Caucasian type I diabetic patients. Diabetologia 1999;42:1030.

    Article  PubMed  CAS  Google Scholar 

  178. Deckert T, Feldt Rasmussen B, Borch-Johnsen K, Jensen T, Kofoed-Enevoldsen A. Albuminuria reflects widespread vascular damage. The Steno Hypothesis. Diabetologia 1989;32:219–226.

    Article  PubMed  CAS  Google Scholar 

  179. Hansen PM, Chowdhury TA, Deckert T, Hellgren A, Bain SC, Pociot F. Genetic variation of the heparan sulphate proteogylcan gene (perlecan gene). Association with albumin excretion in IDDM patients. Diabetes 1997;46:1658–1659.

    PubMed  CAS  Google Scholar 

  180. Chowdhury TA, Dyer PH, Kumar S, et al. Association of apolipoprotein e2 allele with diabetic nephropathy in subjects with insulin dependent diabetes mellitus. Diabetes 1998;47:278–281.

    PubMed  CAS  Google Scholar 

  181. Hardman TC, Dubrey SW, Leslie DG, Hafiz M, Noble MI, Lant AF. Erythrocyte sodium-lithium countertransport and blood pressure in identical twin pairs discordant for insulin dependent diabetes. Br Med J 1992;305:215–219.

    Article  CAS  Google Scholar 

  182. Ng LL, Quinn PA, Baker F, Carr SJ. Red cell Na+/Li+ countertransport and Na+/H+ exchanger isoforms in human proximal tubules. Kidney Int 2000;58:229–235.

    Article  PubMed  CAS  Google Scholar 

  183. Trevisan R, Viberti GC. Sodium-hydrogen antiporter: its possible role in the genesis of diabetic nephropathy. Nephrol Dial Transplant 1997;12:643–645.

    Article  PubMed  CAS  Google Scholar 

  184. Trevisan R, Li LK, Messent J, et al. Na+/H+ antiport activity and cell growth in cultured skin fibroblasts of IDDM patients with nephropathy. Diabetes 1992;41:1239–1246.

    Article  PubMed  CAS  Google Scholar 

  185. Ng LL, Davies JE, Siczkowski M, et al. Abnormal sodium-lithium antiporter phenotype and turnover of immortalized lymphoblasts from type 1 diabetic patients with nephropathy. J Clin Invest 1994;93:2750–2757.

    Article  PubMed  CAS  Google Scholar 

  186. Koren W, Koldanov R, Pronin VS, et al. Enhanced erythrocyte Na+/H+ exchange predicts diabetic nephropathy in patients with IDDM. Diabetologia 1998;41:201–205.

    Article  PubMed  CAS  Google Scholar 

  187. Trevisan R, Fioretto P, Barbosa J, Mauer M. Insulin-dependent diabetic sibling pairs are concordant for sodium-hydrogen antiport activity. Kidney Int 1999;55:2383–2389.

    Article  PubMed  CAS  Google Scholar 

  188. Fioretto P, Steffes MW, Barbosa J, Rich SS, Miller ME, Mauer M. Is diabetic nephropathy inherited? Studies on glomerular structure in type 1 diabetic sibling pairs. Diabetes 1999;48:865–869.

    Article  PubMed  CAS  Google Scholar 

  189. Krolewski AS, Canessa M, Warram JH, et al. Predisposition to hypertension and susceptibility to renal disease in insulin-dependent diabetes mellitus. N Engl J Med 1988;318:140–145.

    Article  PubMed  CAS  Google Scholar 

  190. DCCT Collaborative Group. The absence of a glycemic threshold for the development of longterm complications: the perspective of the Diabetes Control and Complications Trial. Diabetes 1996;45:1289–1298.

    Article  Google Scholar 

  191. Kasiske BL, Kalil RS, Ma JZ, Liao M, Keane WE Effect of antihypertensive therapy on the kidney in patients with diabetes: a meta-regression analysis. Ann Intern Med 1993;118:129–138.

    Article  PubMed  CAS  Google Scholar 

  192. Ravid M, Lang R, Rachmani R, Lishner M. Long-term renoprotective effect of angiotensin-converting enzyme inhibition in non-insulin-dependent diabetes mellitus: a 7-year follow-up study. Arch Intern Med 1996;156:286–289.

    Article  PubMed  CAS  Google Scholar 

  193. Lewis EJ, Hunsicker LG, Bain RP, Rohde RD, Collaborative Study Group. The effect of angiotensinconverting-enzyme inhibition on diabetic nephropathy. N Engl J Med 1993;329:1456–1462.

    Article  PubMed  CAS  Google Scholar 

  194. Parving HH, Rossing P, Hommel E, Smidt UM. Angiotensin-converting enzyme inhibition in diabetic nephropathy: ten years’ experience. Am J Kidney Dis 1995;26:99–107.

    Article  PubMed  CAS  Google Scholar 

  195. Mulec H, Johnsen SA, Bjorck S. Long-term enalapril treatment in diabetic nephropathy. Kidney Int 1994;45(Suppl):S 141–S 144.

    CAS  Google Scholar 

  196. Laffel LMB, McGill JB, Gans DJ, North American Microalbuminuria Study Group. The beneficial effect of angiotensin-converting enzyme inhibition with captopril on diabetic nephropathy in normotensive IDDM patients with microalbuminuria. Am J Med 1995:994,97–504.

    Google Scholar 

  197. Brenner BM, Cooper ME, de Zeeuw D, et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Eng J Med 2001;345:861–869.

    Article  CAS  Google Scholar 

  198. Parvirg HH, Lehnert H, Brochner-Mortensen J, et al. The effect of irbesartan on the development of diabetic nephropathy in patients with type 2 diabetes. N Engl J Med 2001;345:870–878.

    Article  Google Scholar 

  199. UK Prospective Diabetes Study Group. Efficacy of atenolol and captopril in reducing the risk of macrovascular complications in type 2 diabetes (UKPDS 39). Br Med J 1998:317:713–720.

    Article  Google Scholar 

  200. Pedrini MT, Levey AS, Lau J, Chalmers TC, Wang PH. The effect of dietary protein restriction on the progression of diabetic and nondiabetic renal diseases: a meta-analysis. Ann Intern Med 1996;124:627–632.

    Article  PubMed  CAS  Google Scholar 

  201. Gin H, Rigalleau V, Aparicio M. Lipids, protein intake, and diabetic nephropathy. Diabetes Metab 2000;26(Suppl 4):45–53.

    PubMed  CAS  Google Scholar 

  202. Tonolo G, Ciccarese M, Brizzi P, et al. Reduction of albumin excretion rate in normotensive microalbuminuric type 2 diabetic patients during long-term simvastatin treatment. Diabetes Care 1997;20:1891–1895.

    Article  PubMed  CAS  Google Scholar 

  203. Chase HP, Garg SK, Marshall G, et al. Cigarette smoking increases the risk of albuminuria among subjects with type I diabetes. JAMA 1991;265:614–617.

    Article  PubMed  CAS  Google Scholar 

  204. Ritz E, Ogata H, Orth SR. Smoking: a factor promoting onset and progression of diabetic nephropathy. Diabetes Metab 2000;26(Suppl 4):54–63.

    PubMed  CAS  Google Scholar 

  205. Feldt-Rasmussen B, Mathiesen ER, Jensen T, Lauritzen T, Deckert T. Effect of improved metabolic control on loss of kidney function in type 1 (insulin-dependent) diabetic patients: an update of the Steno studies. Diabetologia 1991:34:164–170.

    Article  PubMed  CAS  Google Scholar 

  206. Microalbuminuria Collaborative Study Group, United Kingdom. Intensive therapy and progression to clinical albuminuria in patients with insulin dependent diabetes mellitus and microalbuminuria. Br Med J 1995;311:973–977.

    Article  Google Scholar 

  207. Alaveras AEG, Thomas SM, Sagriotos A, Viberti GC. Promoters of progression of diabetic nephropathy: the relative roles of blood glucose and blood pressure control. Nephrol Dial Transplant 1997;12(Suppl 2):71–74.

    PubMed  Google Scholar 

  208. Bos H, Andersen S, Rossing P, et al. Role of patient factors in therapy resistance to antiproteinuric intervention in nondiabetic and diabetic nephropathy. Kidney Int 2000;57(Suppl 75):32–37.

    Article  Google Scholar 

  209. ADA Position Statement: Implications of the UKPDS. Diabetes Care 1991:22(Sunpl 1):S27–S31.

    Google Scholar 

  210. ADA Position Statement: Standards of Care for Patients with Diabetes Mellitus. Diabetes Care 1999;22(Suppl 1):S32–S41.

    Google Scholar 

  211. Best JD. O’Neal DN. Diabetic dyslipidaemia: current treatment recommendations. Drugs 2000;59:1101–1111.

    Article  PubMed  CAS  Google Scholar 

  212. Stegall MD, Larson TS, Kudva YC, et al. Pancreas transplantation for the prevention of diabetic nephropathy. Mayo Clin Proc 2000;75:49–56.

    Article  PubMed  CAS  Google Scholar 

  213. Bohman SO, Tyden G, Wilczek H, et al. Prevention of kidney graft diabetic nephropathy by pancreas transplantation in man. Diabetes 1985;34:306–308.

    Article  PubMed  CAS  Google Scholar 

  214. Fioretto P, Steffes MW, Sutherland DER, Goetz FC, Mauer M. Reversal of lesions of diabetic nephropathy after pancreas transplantation. N Engl J Med 1998:339:69–75.

    Article  PubMed  CAS  Google Scholar 

  215. Port FK, Wolfe RA, Mauger EA, Berling DP, Jiang K. Comparison of survival probabilities for dialysis patients vs cadaveric renal transplant recipients. JAMA 1993;270:1339–1343.

    Article  PubMed  CAS  Google Scholar 

  216. Basadonna G, Matas AJ, Gillingham K, et al. Kidney transplantation in patients with type I diabetes: 26-year experience at the University of Minnesota. Clin Transpl 1992;227–235.

    Google Scholar 

  217. Tilney NL. A crisis in transplantation: too much demand for too few organs. Transplant Rev 1998;12:112–120.

    Article  Google Scholar 

  218. Gruessner AC, Sutherland DER. Pancreas transplants for United States (US) and non-US cases as reported to the International Pancreas Transplant Registry (IPTR) and to the United Network for Organ Sharing (UNOS). Clin Transpl 1997;45–59.

    Google Scholar 

  219. Tyden G, Tollemar J, Bolinder J. Combined pancreas and kidney transplantation improves survival in patients with end-stage diabetic nephropathy. Clin Transplant 2000;14:505–508.

    Article  PubMed  CAS  Google Scholar 

  220. Joshi N, Caputo GM, Weitekamp MR, Karchmer AW. Primary care: infections in patients with diabetes mellitus. N Engl J Med 1999;341(25):1906–1912.

    Article  PubMed  CAS  Google Scholar 

  221. Ronald A, Ludwig E. Urinary tract infections in adults with diabetes. Int J Antimicrob Agents 2001;17:287–292

    Article  PubMed  CAS  Google Scholar 

  222. Patterson JE, Andriole VT. Bacterial urinary tract infections in diabetes. Infect Dis Clin North Am 1995;9:25–51.

    PubMed  CAS  Google Scholar 

  223. Geerlings SE, Stolk RP, Camps MJ, et al. Asymptomatic bacteriuria may be considered a complication in women with diabetes. Diabetes Mellitus Women Asymptomatic Bacteriuria Utrecht Study Group. Diabetes Care 2000;23:744–749.

    Article  PubMed  CAS  Google Scholar 

  224. Geerlings SE, Stolk RP, Camps MJ, Netten PM, Collet TJ, Hoepelman AI. Risk factors for symptomatic urinary tract infection in women with diabetes. Diabetes Care 2000;23:1737–1741.

    Article  PubMed  CAS  Google Scholar 

  225. Lye WC, Chan RKT, Lee EJC, et al. Urinary tract infections in patients with diabetes mellitus. J Infect 1992;24:169–174.

    Article  PubMed  CAS  Google Scholar 

  226. Kobayashi T, Ieiri T, Asada M, et al. A case of Pasteurella multocida urinary tract infection in noninsulin-dependent diabetes mellitus. J Jpn Diabetes Soc 1997;40:341–346.

    Google Scholar 

  227. Jacobs LG, Skidmore EA, Cardoso LA, et al. Bladder irrigation with amphotericin B for treatment of fungal urinary tract infections. Clin Infect Dis 1994;18:313–318.

    Article  PubMed  CAS  Google Scholar 

  228. Frye KR, Donovan JM, Drach GW. Torulopsis glabrata urinary infections: a review. J Urol 1988;139:1245–1249.

    PubMed  CAS  Google Scholar 

  229. Hoepelmann IM. Urinary tract infection in patients with diabetes mellitus. Int J Antimicrob Agents 1994;4:113–116.

    Article  Google Scholar 

  230. Barkai L, Szabo L. Urinary bladder dysfunction in diabetic children with and without subclinical cardiovascular autonomic neuropathy. Eur J Pediatr 1993;152:190–192.

    Article  PubMed  CAS  Google Scholar 

  231. Edelstein H, McCabe RE. Perinephric abscess: modern diagnosis and treatment in 47 cases. Medicine 1988:67:118–131.

    Article  PubMed  CAS  Google Scholar 

  232. Tahir H, Thomas G, Sheerin N, Bettington H, Pattison JM, Goldsmith DJ. Successful medical treatment of acute bilateral emphysematous pyelonephritis. Am J Kidney Dis 2000;36:1267–1270.

    PubMed  CAS  Google Scholar 

  233. Egawa S, Utsunomiya T, Uchida T, et al. Emphysematous pyelonephritis, ureteritis, and cystitis in a diabetic patient. Urol Int 1994;52:178.

    Article  Google Scholar 

  234. Sailesh S, Randeva HS, Hillhouse EW, Patel V. Fatal emphysematous pyelonephritis with gas in the spinal extradural space in a patient with diabetes. Diabet Med 2001;18:68–71.

    Article  PubMed  CAS  Google Scholar 

  235. Turner FC. Necrosis of the pyramids of one kidney. Trans Pathol Soc London 1939;159:1887–1888.

    Google Scholar 

  236. Eknoyan G. Renal papillary necrosis in diabetic patients. In: Mogensen CE, ed. The Kidney and Hypertension in Diabetes Mellitus. Kluwer Academic, Boston, 1996, pp. 461–468.

    Google Scholar 

  237. Smitherman KO, Peacock JE Jr. Infectious emergencies in patients with diabetes mellitus. Med Clin North Am 1995;79:53–77.

    PubMed  CAS  Google Scholar 

  238. Waldherr R, Ilkenhans C, Ritz E. How frequent is glomerulonephritis in diabetes mellitus type II? Clin Nephrol 1992;37:271–273.

    PubMed  CAS  Google Scholar 

  239. Walmsley RS, David DB, Allan RN, et al. Bilateral endogenous Escherichia coli endophthalmitis: a devastating complication in an insulin-dependent diabetic. Postgrad Med J 1996;72:361–363.

    Article  PubMed  CAS  Google Scholar 

  240. Ogata M, Sato A, Takahashi Y, et al. A case of pyogenic spondylitis associated with diabetes mellitus. J Tokyo Wom Med Coll 1991;61:645–650.

    Google Scholar 

  241. Suzuki H, Miyake T. A case of diabetes mellitus associated with iliopsoas abscess caused by MRSA. J Jpn Diabetes Soc 1995;38:965–969.

    Google Scholar 

  242. Gluckman SJ, Dinubile MJ. Controversial issues in the management of urinary tract infections. Curr Opin Infect Dis 1992;5:50–56.

    Article  Google Scholar 

  243. Wong-Beringer A, Jacobs RA, Guglielmo J. Treatment of funguria. JAMA 1992;20:2780–2785.

    Article  Google Scholar 

  244. Leu HS, Huang CT. Clearance of funguria with short-course antifungal regimens: a prospective, randomized, controlled study. Clin Infect Dis 1995;20:1152–1157.

    Article  PubMed  CAS  Google Scholar 

  245. Jacobs LG, Skidmore EA, Freeman K, Lipschultz D, Fox N. Oral fluconazole compared with bladder irrigation with amphotericin B for treatment of fungal urinary tract infections in elderly patients. Clin Infect Dis 1996;22:30–35.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Vats, A., DeRubertis, F. (2003). The Kidney. In: Sperling, M.A. (eds) Type 1 Diabetes. Contemporary Endocrinology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-310-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-310-1_23

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-258-2

  • Online ISBN: 978-1-59259-310-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics