Skip to main content

Part of the book series: Infectious Disease ((ID))

  • 167 Accesses

Abstract

Human immunodeficiency virus (HIV), the causative agent of the acquired immunodeficiency syndrome (AIDS), is a member of the Lentiviridae subfamily of retroviruses (1). HIV is a complex retrovirus that contains a diploid RNA genome, approx 9600 nucleotides in length. In addition to the typical retroviral genes (gag, pol, env), the HIV genome contains several nonstructural genes encoding small regulatory proteins that modulate viral expression and play an important role in the interaction with the infected host (1). Three branches in the phylogenetic tree of HIV-1 have been defined: M (main), N (new), and O (outlier). Among them, group M is the most widespread, being responsible for more than 99% of the infections worldwide. At least nine distinct genotypes (or clades) have been identified within group M (labeled A through K), as well as a growing number of intermediate genotypes, chimeric viruses most likely resulting from mixed infections in endemic areas (2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Luciw, P.A. (1996) Human immunodeficiency viruses and their replication, in Fields Virology (Fields, B.N., Knipe, D.M., and Howley, P.M. ed.). Lippincott-Raven, Philadelphia, pp. 1881–1952.

    Google Scholar 

  2. Essex, M. (1999) Human immunodeficiency viruses in the developing world. Adv. Virus Res. 53, 71–88.

    Article  PubMed  CAS  Google Scholar 

  3. Geijtenbeek, T.B., van Vliet, S.J., van Duijnhoven, G.C., Figdor, C.G. and van Kooyk, Y. (2001) DC-SIGN, a dendritic cell-specific HIV-1 receptor present in placenta that infects T cells in trans-a review. Placenta 22, S19-S23.

    Article  PubMed  Google Scholar 

  4. Miedema, F., Petit, A.J., Terpstra, F.G., Schattenkerk, J.K., de Wolf, F., Al, B.J., et al. (1988) Immunological abnormalities in human immunodeficiency virus (HlV)-infected asymptomatic homosexual men. HIV affects the immune system before CD4+ T helper cell depletion occurs. J. Clin. Invest. 82, 1908–1914.

    Article  PubMed  CAS  Google Scholar 

  5. Poli G. (1999) Cytokines and the human immunodeficiency virus: from bench to bedside. Eur. J. Clin. Invest. 29, 723–732.

    Article  PubMed  CAS  Google Scholar 

  6. Lusso, P. and Gallo, R.C. (1997) Chemokines and HIV infection. Curr. Opin. Infect. Dis. 10, 12–17.

    Article  Google Scholar 

  7. Berger, E.A., Murphy, P.M., and Farber, J.M. (1999) Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease. Annu. Rev. Immunol. 17, 657–700.

    Article  PubMed  CAS  Google Scholar 

  8. Loetscher, P., Moser B., and Baggiolini, M. (2000). Chemokines and their receptors in lymphocyte traffic and HIV infection. Adv. Immunol. 74, 127–180.

    Article  PubMed  CAS  Google Scholar 

  9. Premack, B.A. and Schall, T.J. (1996). Chemokine receptors: gateways to inflammation and infection. Nat. Med. 2, 1174–1178.

    Article  PubMed  CAS  Google Scholar 

  10. Murphy, P.M. (2001) Viral exploitation and subversion of the immune system through chemokine mimicry. Nat. Immunol. 2, 116–122.

    Article  PubMed  CAS  Google Scholar 

  11. Cocchi, F., DeVico, A.L., Garzino-Demo, A., Arya, S.K., Gallo, R.C, and Lusso, P. (1995) Identification of RANTES, MIP-1oc, MIP-1p as the major HIV-suppressive factors produced by CD8+ T cells. Science 270, 1811–1815.

    Article  PubMed  CAS  Google Scholar 

  12. Walker, CM., Moody, D.J., Stites, D.P., and Levy, J.A. (1986) CD8+ lymphocytes can control HIV infection in vitro by suppressing virus replication. Science 234, 1563–1566.

    Article  PubMed  CAS  Google Scholar 

  13. Feng, Y., Broder, CC, Kennedy, P.E., and Berger, E.A. (1996) HIV-1 entry cofactor. Functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science 272, 872–877.

    Article  PubMed  CAS  Google Scholar 

  14. Koot, M., Keet, LP., Vos, A.H.V., de Goede, R.E.Y., Roos, M.T.L., Coutinho, R.A., et al. (1993). Prognostic value of HIV-1 syncytium-inducing phenotype for rate of CD4+ cell depletion and progression to AIDS. Ann. Intern. Med. 118, 681–688.

    PubMed  CAS  Google Scholar 

  15. Samson, M., Labbe, O., Mollereau, C, Vassart, G., and Parmentier, M. (1996) Molecular cloning and functional expression of a new human CC-chemokine receptor gene. Biochemistry 35, 3362–3367.

    Article  PubMed  CAS  Google Scholar 

  16. Combadiere, C, Ahuja, S.K., Tiffany, H.L., and Murphy, P.M. (1996) Cloning and functional expression of CC CKR5, a human monocyte CC chemokine receptor selective for MIP-1oc, MIP-1p, and RANTES. J. Leukocyte Biol. 60, 147–152.

    PubMed  CAS  Google Scholar 

  17. Oberlin, E., Amara, A., Bachelerie, F., Bessia, C, Virelizier, J.L., Arenzana-Seisdedos, F., et al. (1996) The CXC chemokine SDF-1 is the ligand for LESTR/fusin and prevents infection by T-cell-line-adapted HIV-1. Nature 382, 833–835.

    Article  PubMed  CAS  Google Scholar 

  18. Bleul, CC, Farzan, M., Choe, H., Parolin, C, Clark-Lewis, I., Sodroski, J., et al. (1996) The lymphocyte chemoattractant SDF-1 is a ligand for LESTR/fusin and blocks HIV-1 entry. Nature 382, 829–833.

    Article  PubMed  CAS  Google Scholar 

  19. Liu, R., Paxton, W.A., Choe, S., Ceradini, D., Martin, S.R., Horuk, R., et al. (1996) Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell 86, 367–377.

    Article  PubMed  CAS  Google Scholar 

  20. Samson, M., Libert, F., Doranz, B.J., Rucker, J., Liesnard, C, Farber, C-M., et al. (1996) Resistance to HIV-1 infection in Caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature 382, 722–725.

    Article  PubMed  CAS  Google Scholar 

  21. Chan, D.C. and Kim, P.S. (1998) HIV entry and its inhibition. Cell 93, 681–684.

    Article  PubMed  CAS  Google Scholar 

  22. Kwong, P.D., Wyatt, R., Robinson, J., Sweet, R.W., Sodroski, J., and Hendrickson, W.A. (1998) Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature 393, 648–659.

    Article  PubMed  CAS  Google Scholar 

  23. Michael, N.L., Nelson, J.A., Kewal Ramani, V.N., Chang, G., O’Brien, S.J., Mascola, J.R., et al. (1998) Exclusive and persistent use of the entry coreceptor CXCR4 by human immunodeficiency virus type 1 from a subject homozygous for CCR5 delta32. J. Virol. 72, 6040–6047.

    PubMed  CAS  Google Scholar 

  24. Sheppard, H.W., Celum, C, Michael, N.L., O’Brien, S., Dean, M., Carrington, M., et al. (2002) HIV-1 infection in individuals with the CCR5-Delta32/Delta32 genotype: acquisition of syncytium-inducing virus at seroconversion. J. Acquired Immune Defic. Syndrome 29, 307–313.

    Google Scholar 

  25. Quillent, C, Oberlin, E., Braun, J., Rousset, D., Gonzalez-Canali, G., Metais, P., et al. (1998) HIV-1-resistance phenotype conferred by combination of two separate inherited mutations of CCR5 gene. Lancet 351, 14–18.

    Article  PubMed  CAS  Google Scholar 

  26. Hogan, CM. and Hammer, S.M. (2001) Host determinants in HIV infection and disease. Part 2: genetic factors and implications for antiretroviral therapeutics. Ann. Intern. Med. 134, 978–996.

    PubMed  CAS  Google Scholar 

  27. Kostrikis, L.G., Huang, Y., Moore, J.P., Wolinsky, S.M., Zhang, L., Guo, Y., et al. (1998) A chemokine receptor CCR2 allele delays HIV-1 disease progression and is associated with a CCR5 promoter mutation. Nat. Med. 4, 350–353.

    Article  PubMed  CAS  Google Scholar 

  28. Lathey, J.L., Tierney, C, Chang, S.Y., D’Aquila, R.T., Bettendorf, D.M., Alexander, H.C., et al. (2001) Associations of CCR5, CCR2, and stromal cell-derived factor 1 genotypes with human immunodeficiency virus disease progression in patients receiving nucleoside therapy. J. Infect. Dis. 184, 1402–1411.

    Article  PubMed  CAS  Google Scholar 

  29. Lusso, P. (2000) Chemokines and viruses: the dearest enemies. Virology 273, 228–240.

    Article  PubMed  CAS  Google Scholar 

  30. Scarlatti, G., Tresoldi, E., Bjorndal, A., Fredriksson, R., Colognesi, C, Deng, H.K., et al. (1997) In vivo evolution of HIV-1 coreceptor usage and sensitivity to chemokine-mediated suppression. Nat. Med. 3, 1259–1265.

    Article  PubMed  CAS  Google Scholar 

  31. de Roda Husman, A.M., van Rij, R.P., Blaak, H., Broersen, S., and Schuitemaker, H. (1999) Adaptation to promiscuous usage of chemokine receptors is not a prerequisite for human immunodeficiency virus type 1 disease progression. J. Infect. Dis. 180, 1106–1115.

    Article  Google Scholar 

  32. Peeters, M., Vincent, R., Perret, J.L., Lasky, M., Patrel, D., Liegeois, F., et al. (1999). Evidence of differences in MT2 cell tropism according to genetic subtypes of HIV-1: syncytium-inducing variants seem rare among subtype C HIV-1 viruses. J. Acquir. Immune Defic. Syndr. Hum. Retrovirol. 20, 115–121.

    Article  PubMed  CAS  Google Scholar 

  33. Ping, L.H., Nelson, J.A., Hoffman, I.F., Schock, J., Lamers, S.L., Goodman, M., et al. (1999) Characterization of V3 sequence heterogeneity in subtype C human immunodeficiency virus type 1 isolates from Malawi: underrepresentation of X4 variants. J. Virol. 73, 6271–6281.

    PubMed  CAS  Google Scholar 

  34. Xiao, X., Wu, L., Stantchev, T.S., Feng, Y.R., Ugolini, S., Chen, H., et al. (1999). Constitutive cell surface association between CD4 and CCR5. Proc. Natl. Acad. Sci. USA 96, 7496–7501.

    Article  PubMed  CAS  Google Scholar 

  35. Pal, R., Garzino-Demo, A., Markham, P. D., Burns, J., Brown, M., Gallo, R. C, et al. (1997) Inhibition of HIV-1 infection by the b-chemokine MDC. Science 278, 695–698.

    Article  PubMed  CAS  Google Scholar 

  36. Liu, H., Chao, D., Nakayama, E.E., Taguchi, H., Goto, M., Xin, X., et al. (1999) Polymorphism in RANTES chemokine promoter affects HIV-1 disease progression. Proc. Natl. Acad. Sci. USA 96, 4581–4585.

    Article  PubMed  CAS  Google Scholar 

  37. McDermott, D.H., Beecroft, M.J., Kleeberger, C.A., Al-Sharif, F.M., Oilier, W.E., Zimmerman, P.A., et al. (2000) Chemokine RANTES promoter polymorphism affects risk of both HIV infection and disease progression in the Multicenter AIDS Cohort Study. AIDS 14, 2671–2678.

    Article  PubMed  CAS  Google Scholar 

  38. Ioannidis, J.P.A., Rosenberg, P.S., Goedert, J.J., Ashton, L.J., Benfield, T.L, Buchbinder, S.P., et al. (2001) Effects of CCR5-A32, CCR2–64I, and SDF-1 3’ A alleles on HIV-1 disease progression: an international meta-analysis of individual-patient data. Ann. Intern. Med. 135, 782–795.

    PubMed  CAS  Google Scholar 

  39. Trumpfheller, C, Tenner-Racz, K., Racz, P., Fleischer, B., and Frosch, S. (1998) Expression of macrophage inflammatory protein (MIP)-lalpha, MlP-lbeta, and RANTES genes in lymph nodes from HIV+ individuals: correlation with a Thl-type cytokine response. Clin. Exp. Immunol. 112, 92–99.

    Article  PubMed  CAS  Google Scholar 

  40. Triozzi, P.L., Bresler, H.S., and Aldrich, W.A. (1998) HIV type 1-reactive chemokine-producing CD8+ and CD4+ cells expanded from infected lymph nodes. AIDS Res. Hum. Retrovir. 14, 643–649.

    Article  PubMed  CAS  Google Scholar 

  41. Malnati, M., Tambussi, G., Clerici, E., Polo, S., Algeri, M., Nardese, V., et al. (1997) Increased plasma levels of the C-C chemokine RANTES in patients with primary HIV-1 infection. J. Biol. Regul. Homeostasis Aging 11, 40–42.

    CAS  Google Scholar 

  42. Cocchi, F., DeVico, A.L., Yarchoan, R., Redfield, R., Cleghorn, F., Blattner, W.A., et al. (2000) Higher macrophage inflammatory protein (MIP)-1 alpha and M1P-1beta levels from CD8+ T cells are associated with asymptomatic HIV-1 infection. Proc. Natl. Acad. Sci. USA 97, 13,812–13,827.

    Article  CAS  Google Scholar 

  43. Garzino-Demo, A., Moss, R.B., Margolick, J.B., Cleghorn, F., Sill, A., Blattner, W.A., et al. (1999) Spontaneous and antigen-induced production of HIV-inhibitory beta-chemokines are associated with AIDS-free status. Proc. Natl. Acad. Sci. USA 96, 11,986–11,991.

    Article  CAS  Google Scholar 

  44. Ferbas, J., Giorgi, J.V., Amini, S., Grovit-Ferbas, K., Wiley, D.J., Detels, R., and Plaeger, S. (2000) Antigen-specific production of RANTES, macrophage inflammatory protein (MIP)-1 alpha, and M1P-1beta in vitro is a correlate of reduced human immunodeficiency virus burden in vivo. J. Infect. Dis. 182, 1247–1250.

    Article  PubMed  CAS  Google Scholar 

  45. Grivel, J.C., Ito, Y., Faga, G., Santoro, F., Shaheen, F., Malnati, M.S., et al. (2001) Suppression of CCR5- but not CXCR4-tropic HIV-1 in lymphoid tissue by human herpesvirus 6. Nat. Med. 7, 1232–1235.

    Article  PubMed  CAS  Google Scholar 

  46. Agace, W.W., Amara, A., Roberts, A.I., Pablos, J.L., Thelen, S., Uguccioni, M.G., et al. (2000) Constitutive expression of stromal derived factor-1 by mucosal epithelia and its role in HIV transmission and propagation. Curr. Biol. 10, 325–328.

    Article  PubMed  CAS  Google Scholar 

  47. Mascola, J.R. and Nabel, G.J. (2001) Vaccines for the prevention of HIV-1 disease. Curr. Opin. Immunol. 13,489–495.

    Article  PubMed  CAS  Google Scholar 

  48. Lehner, T., Wang, Y., Cranage, M., Bergmeier, L.A., Mitchell, E., Tao, L., et al. (1996) Protective mucosal immunity elicited by targeted iliac lymph node immunization with a subunit SIV envelope and core vaccine in macaques. Nat. Med. 2, 767–775.

    Article  PubMed  CAS  Google Scholar 

  49. Paxton, W.A., Liu, R., Kang, S., Wu, L., Gingeras, T.R., Landau, N.R., et al. (1998) Reduced HIV-1 infectability of CD4+ lymphocytes from exposed-uninfected individuals: association with low expression of CCR5 and high production of beta-chemokines. Virology 244, 66–73.

    Article  PubMed  CAS  Google Scholar 

  50. Richman, D.D. (2001) HIV chemotherapy. Nature 410, 995–1001.

    Article  PubMed  CAS  Google Scholar 

  51. Kinter, A., Catanzaro, A., Monaco, J., Ruiz, M., Justement, J., Moir, S., et al. (1998) CC-chemok ines enhance the replication of T-tropic strains of HIV-1 in CD4+ T cells: role of signal transduction. Proc. Natl. Acad. Sci. USA 95, 11,880–11,885.

    Article  CAS  Google Scholar 

  52. Mosier, D.E., Picchio, G.R., Gulizia, R.J., Sabbe, R., Poignard, P., Picard, L., et al. (1999) Highly potent RANTES analogues either prevent CCR5-using human immunodeficiency virus type 1 infection in vivo or rapidly select for CXCR4-using variants. J. Virol. 73, 3544–3350.

    PubMed  CAS  Google Scholar 

  53. Yang, A.G., Bai, X., Huang, X.F., Yao, C, and Chen, S. (1997) Phenotypic knockout of HIV type 1 chemokine coreceptor CCR-5 by intrakines as potential therapeutic approach for HIV-1 infection. Proc. Natl. Acad. Sci. USA 94, 11,567–11,572.

    CAS  Google Scholar 

  54. Simmons, G., Clapham, P.R., Picard, L., Offord, R.E., Rosenkilde, M.M., Schwartz, T.W., et al. (1997) Potent inhibition of HIV-1 infectivity in macrophages and lymphocytes by a novel CCR5 antagonist. Science 276, 276–279.

    Article  PubMed  CAS  Google Scholar 

  55. Proost, P., De Meester, I., Schols, D., Struyf, S., Lambeir, A.M., Wuyts, A., et al. (1998) Amino-terminal truncation of chemokines by CD26/dipeptidyl-peptidase IV. Conversion of RANTES into a potent inhibitor of monocyte chemotaxis and HIV-1 infection. J. Biol. Chem. 273, 7222–7227.

    Article  PubMed  CAS  Google Scholar 

  56. Ylisastigui, L., Vizzavona, J., Drakopoulou, E., Paindavoine, P., Calvo, C.F., Parmentier, M., et al. (1998) Synthetic full-length and truncated RANTES inhibit HIV-1 infection of primary macrophages. AIDS 12, 977–984.

    Article  PubMed  CAS  Google Scholar 

  57. Polo, S., Nardese, V., DeSantis, C, Arcelloni, C, Paroni, R., Sironi, F., et al. (2000) Enhancement of the HIV-1 inhibitory activity of RANTES by modification of the N-terminal region: dissociation from CCR5 activation. Eur. J. Immunol. 30,3190–3198.

    Article  PubMed  CAS  Google Scholar 

  58. Nardese, V., Longhi, R., Polo, S., Sironi, F., Arcelloni, C, Paroni, R., et al. (2001) Structural determinants of HIV-1 blockade and CCR5 recognition in RANTES. Nat. Struct. Biol. 8, 611–615.

    Article  PubMed  CAS  Google Scholar 

  59. Baba, M., Nishimura, O., Kanzaki, N., Okamoto, M., Sawada, H., Iizawa, Y., et al. (1999) A small-molecule, nonpeptide CCR5 antagonist with highly potent and selective anti-HIV-1 activity. Proc. Natl. Acad. Sci. USA 96, 5698–5703.

    Article  PubMed  CAS  Google Scholar 

  60. Strizki, J.M., Xu, S., Wagner, N.E., Wojcik, L., Liu, J., Hou, Y., et al. (2001) SCH-C (SCH 351125), an orally bioavailable, small molecule antagonist of the chemokine receptor CCR5, is a potent inhibitor of HIV-1 infection in vitro and in vivo. Proc. Natl. Acad. Sci. USA 98, 12,718–12,723.

    Article  CAS  Google Scholar 

  61. Delgado, M.B., Clark-Lewis, I., Loetscher, P., Langen, H., Thelen, M., Baggiolini, M., et al. (2001) Rapid inactivation of stromal cell-derived factor-1 by cathepsin G associated with lymphocytes. Eur. J. Immunol. 31, 699–707.

    Article  PubMed  CAS  Google Scholar 

  62. Schols, D., Struyf, S., Van Damme, J., Este, J.A., Henson, G., and De Clercq, E. (1997) Inhibition of T-tropic HIV strains by selective antagonization of the chemokine receptor CXCR4. J. Exp. Med. 186, 1383–1388.

    Article  PubMed  CAS  Google Scholar 

  63. Nagasawa, T., Hirota, S., Tachibana, K., Takakura, N., Nishikawa, S., Kitamura, Y., et al. (1996) Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature 382, 635–638.

    Article  PubMed  CAS  Google Scholar 

  64. Ma, Q., Jones, D., Borghesani, P.R., Segal, R.A., Nagasawa, T., Kishimoto, T., et al. (1998) Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4- and SDF-1-deficient mice. Proc. Natl. Acad. Sci. USA 95, 9448–9453.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lusso, P. (2003). Chemokines and Chemokine Receptors in HIV Infection. In: Kotb, M., Calandra, T. (eds) Cytokines and Chemokines in Infectious Diseases Handbook. Infectious Disease. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-309-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-309-5_21

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-247-6

  • Online ISBN: 978-1-59259-309-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics