Skip to main content

Glutamate and Dopamine Interactions in the Motive Circuit

Implications for Craving

  • Chapter
Glutamate and Addiction

Abstract

Addiction to psychomotor stimulants is marked by a transition in drug consumption from a casual and recreational style of use to a more compulsive and excessive pattern. Acute administration of psychomotor stimulants is associated with numerous effects, including feelings of euphoria and increased energy, which can contribute to repeated recreational consumption. However, chronic administration of psychomotor stimulants results in the emergence of persistent cravings, paranoia, and drug-seeking behaviors that contribute to the development of compulsive drug-taking behavior (1–4). An understanding of the neurobiology of drug addiction will require the identification and characterization of neuroadaptations underlying this transition from casual to chronic drug use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Satel, S. L., Southwick, S. M., and Gawin, F. H. (1991) Clinical features of cocaine-induced paranoia. Am. J. Psychiatry 148, 495–498.

    PubMed  CAS  Google Scholar 

  2. Ehrman, R. N., Robbins, S. J., Childress, A. R., and O’Brien, C. P. (1992) Conditioned responses to cocaine-related stimuli in cocaine abuse patients. Psychopharmacology 107, 523–529.

    PubMed  CAS  Google Scholar 

  3. Childress, A. R., Mozley, P. D., McElgin, W., Fitzgerald, J., Reivich, M., and O’Brien, C. P. (1999) Limbic activation during cue-induced cocaine craving. Am. J. Psychiatry 156, 11–18.

    Google Scholar 

  4. O’Brien, C. P. (1996) Recent developments in the pharmacotherapy of substance abuse. J Consult. Clin. Psychol. 64, 677–686.

    Google Scholar 

  5. Robinson, T. E. and Becker, J. B. (1986) Enduring changes in brain and behavior produced by chronic amphetamine administration: a review and evaluation of animal models of amphetamine psychosis. Brain Res. Rev. 11, 157–198.

    CAS  Google Scholar 

  6. Kalivas, P. W. and Stewart, J. (1991) Dopamine transmission in the initiation and expression of drug-and stress-induced sensitization of motor activity. Brain Res. Rev. 16, 223–244.

    PubMed  CAS  Google Scholar 

  7. Koob, G. F. (1988) Drugs of abuse: anatomy, pharmacology and function of reward pathways. Trends Pharmacol. Sci. 13, 177–184.

    Google Scholar 

  8. Rothman, R., Baumann, M., Dersch, C8. Wise, R. A. and Rompre, P. P. (1989) Brain dopamine and reward. Annu. Rev. Psychol. 40, 191–215.

    Google Scholar 

  9. Reid, M. S. and Berger, S. P. (1996) Evidence for sensitization of cocaine-induced nucleus accumbens glutamate release. Neuroreport 7, 1325–1329.

    PubMed  CAS  Google Scholar 

  10. Romero, D., Rice, K., Carroll, F., (2001) Amphetamine-type central nervous system stimulants release norepinephrine more potently than they release dopamine and serotonin. Synapse 39, 32–41.

    Google Scholar 

  11. Kuczenski, R., 1983, Biochemical actions of amphetamine and other stimulants, in Stimulants: Neurochemical, Behavioral and Clinical Perspective. ( Creese, I., ed.), Raven, New York, pp. 31–61.

    Google Scholar 

  12. Kelly, P. H. and Iversen, S. D. (1976) Selective 6-OHDA-induced destruction of mesolimbic dopamine neurons: abolition of psychostimulant-induced locomotor activity in rats. Eur. Pharmacol. 40, 45–56.

    CAS  Google Scholar 

  13. Roberts, D. C. S. and Koob, G. F. (1982) Disruption of cocaine self-administration following 6-hydroxydopamine lesions of the ventral tegmental area in rats. Pharmacol. Biochem. Behay. 17, 901–904.

    CAS  Google Scholar 

  14. Baker, D. A., Fuchs, R. A., Specio, S. E., Khroyan, T. V., and Neisewander, J. L. (1998) Effects of intraaccumbens administration of SCH-23390 on cocaine induced locomotion and conditioned place preference. Synapse 30, 181–193.

    PubMed  CAS  Google Scholar 

  15. Nestler, E. J. and Aghajanian, G. K. (1997) Molecular and cellular basis of addiction. Science 278, 58–63.

    PubMed  CAS  Google Scholar 

  16. White, F. J. and Kalivas, P. W. (1998) Neuroadaptations involved in amphetamine and cocaine addiction. Drug Alcohol Depend. 51, 141–154.

    PubMed  CAS  Google Scholar 

  17. LeMoal, M. and Simon, H. (1991) Mesocorticolimbic dopaminergic network: functional and regulatory roles. Physiolog. Rev. 71, 155–234.

    Google Scholar 

  18. Sesack, S. R. and Pickel, V. M. (1990) In the medial nucleus accumbens, hippocampal and catecholaminergic terminals converge on spiny neurons and are in apposition to each other. Brain Res. 527, 266–272.

    Google Scholar 

  19. O’Donnell, P. and Grace, A. A. (1995) Synaptic interactions among excitatory afferents to nucleus accumbens neurons: hipppocampal gating of prefrontal cortical input. J. Neurosci. 15, 3622–3639.

    PubMed  Google Scholar 

  20. Levine, M. S., Li, Z., Cepeda, C., Cromwell, H. C., and Altemus, K. L. (1996) Neuromodulatory actions of dopamine on synaptically-evoked neostriatal responses in slices. Synapse 24, 65–78.

    PubMed  CAS  Google Scholar 

  21. Kiyatkin, E. and Rebec, G. (1999) Striatal neuronal activity and responsiveness to dopamine and glutamate after selective blockade of D1 and D2 Dopamine receptors in freely moving rats. J. Neurosci. 19, 3594–3609.

    PubMed  CAS  Google Scholar 

  22. Pierce, R. C. and Kalivas, P. W. (1997) A circuitry model of the expression of behavioral sensitization to amphetamine-like psychostimulants, Brain Res. Rev. 25, 192–216.

    PubMed  CAS  Google Scholar 

  23. Grant, S., London, E. D., Newlin, D. B., Villemagne, V. L., Liu, X., Contoreggi, C., (1996) Activation of memory circuits during cue-elicited cocaine craving, Proc. Natl. Acad. Sci. (USA) 93, 12,040–12, 045.

    Google Scholar 

  24. Breiter, H. C., Gollub, R. L., Weisskoff. R. M., Kennedy, D. N., Makris, N., Berke, J. D., (1997) Acute effects of cocaine on human brain activity and emotion. Neuron 19, 591–611.

    Google Scholar 

  25. Neisewander, J. L., Baker, D. A., Fuchs, R. A., Tran-Nguyen, L. T. L., Palmer, A., and Marshall, J. F. (2000) Fos protein expression and cocaine seeking behavior in rats after exposure to a cocaine self-administration environment. Neuroscience 20, 798–805.

    Google Scholar 

  26. Jackson, D. M. and Westlind-Danielsson, A. (1994) Dopamine receptors: molecular biology, biochemistry and behavioural aspects. Pharmacol. Thee 64, 291–370.

    CAS  Google Scholar 

  27. Vallone, D., Picetti, R., and Borrelli, E. (2000) Structure and function of dopamine receptors. Neurosci. Biobehay. Rev. 24, 125–132.

    CAS  Google Scholar 

  28. Nakanishi, S., Nakajima, Y., Masu, M., Ueda, Y., Nakahara, K., Watanabe, D., (1998) Glutamate receptors: brain function and signal tansduction. Brain Res. Rev. 26, 230–235.

    PubMed  Google Scholar 

  29. Bigge, C. F. (1999) lonotropic glutamate receptors. Cure Opin. Chem Biol. 3, 441–447.

    Google Scholar 

  30. Cartmell, J. and Schoepp, D. D. (2000) Regulation of neurotransmitter release by metabotropic glutamate receptors. J. Neurochem. 75, 889–907.

    PubMed  CAS  Google Scholar 

  31. Kalivas, P. W., Churchill, L., and Klitenick, M. A., (1993) The circuitry mediating the translation of motivational stimuli into adaptive motor responses, in Limbic Motor Circuits and Neuropsychiatry Kalivas, P. W. and Barnes, C. D., Eds.), CRC Boca Raton, FL, pp. 237–287.

    Google Scholar 

  32. Mogenson, G. J., Brudzynski, S. M., Wu, M., Yang, C. R., and Yim. C. C. Y., (1993) From motivation to action: a review of dopaminergic regulation of limbic-nucleus accumbens-pedunculopontine nucleus circuitries involved in limbic-motor integration, in Limbic Motor Circuits and Neuropsychiatry Kalivas, R. W. and Barnes, C. D., Eds), CRC P, Boca Raton FL, pp. 193–236.

    Google Scholar 

  33. Carr, D. B. and Sesack, S. R. (2000) GABA-containing neurons in the rat ventral tegmental area project to the prefrontal cortex. Synapse 38, 114–123.

    PubMed  CAS  Google Scholar 

  34. Sesack, S. R. and Bunney, B. S. (1989) Pharmacological characterization of the receptor mediating electrophysiological responses to dopamine in the rat medial prefrontal cortex: a microiontophoretic study. J. Pharmacol. Exp. Ther. 248, 1323–1333.

    PubMed  CAS  Google Scholar 

  35. Kelley, A. E., Domesick, V. B., and Nauta, W. J. H. (1982) The amygdalostriatal projection in the rat-an anatomical study by anterograde and retrograde tracing methods. Neuroscience 7, 615–6630.

    PubMed  CAS  Google Scholar 

  36. Kelley, A. E. and Domesick, V. B. (1982) The distribution of the projection from the hippocampal formation to the nucleus accumbens in the rat. An anterograde and retrograde horseradish peroxidase study. Neuroscience 7, 2321–2335.

    PubMed  CAS  Google Scholar 

  37. Kelley, A. E., Winniock. M., and Stinus, L. (1986) Amphetamine, apomorphine and investigatory behavior in the rat: analysis of the structure and pattern of responses. Psychopharmacology 88, 66–74.

    CAS  Google Scholar 

  38. Smiley, J. F. and Goldman-Rakic, P. S. (1993) Heterogeneous targets of dopamine synapses in monkey prefrontal cortex demonstrated by serial section electron microscopy: a laminar analysis using the silver-enhanced diaminobenzidine sulfide (SEDS) immunolabeling technique. Cereb. Cortex 3 223–238.

    Google Scholar 

  39. Carr, D. B. and Sesack, S. R. (1996) Hippocampal afferents to the rat prefrontal cortex: synaptic targets and relation to dopamine terminals. J. Comp. Neurol. 369, 1–15.

    PubMed  CAS  Google Scholar 

  40. Yang. C., Seamans, J., and Gorelova, N. (1999) Developing a neuronal model for the pathophysiology of schizophrenia based on the nature of electrophysiological actions of dopamine in the prefrontal cortex. Neuropsychopharmacology 21, 161–194.

    Google Scholar 

  41. Can, D. and Sesack, S. (2000) Projections from the rat prefrontal cortex to the ventral tegmental area: target specificity in the synaptic associations with mesoaccumebens and mesocortical neurons. J. Neurosci. 20, 3864–3873.

    Google Scholar 

  42. O’Donnell, P., Greene, J., Pabello, N., Lewis, B. L., and Grace, A. A. (1999) Modulation of cell firing in the nucelus accumbens. Ann. NYAcad. Sci. 877, 157–175.

    Google Scholar 

  43. Yim, C. Y. and Mogenson, G. J. (1988) Neuromodulatory action of dopamine in the nucleus accumbens: an in vivo intracellular study. Neuroscience 26, 403–411.

    PubMed  CAS  Google Scholar 

  44. Grace. A. A. (2000) Gating of information flow within the limbic system and the pathophysiology of schizophrenia. Brain Res. Brain Res. Rev. 31, 330–341.

    PubMed  CAS  Google Scholar 

  45. Hu, X. T. and White, F. J. (1996) Glutamate receptor regulation of rat nucleus accumbens neurons in vivo. Synapse 23, 208–218.

    PubMed  CAS  Google Scholar 

  46. Cepeda, C., Colwell, C. S., Itri, J. N., Chandler, S. H., and Levine, M. S. (1998) Dopaminergic modulation of NMDA-induced whole cell currents in neostriatal neurons in slices: contribution of calcium conductances. J. Neurophysiol. 79, 82–94.

    PubMed  CAS  Google Scholar 

  47. Hernandez-Lopez, S., Bargas, J., Surmeier, D. J., Reyes, A., and Galarraga, E. (1997) Dl receptor activation enhances evoked discharge in neostriatal medium spiny neurons by modulating an L-type Cat’ conductance. J. Neurosci. 17, 3334–3342.

    PubMed  CAS  Google Scholar 

  48. Chergui, K., Charlety, R. J., Akaoka, H., Saunier, C. F., Brunet, J.-L., Buda, M., (1993) Tonic activation of NMDA receptors causes spontaneous burst discharge of rat midbrain dopamine neurons in vivo. Eue. J. Neurosci. 5, 137–144.

    CAS  Google Scholar 

  49. Tong. Z.-Y., Overton, P. G., and Clark, D. (1996) Stimulation of the prefrontal cortex in the rat induces patterns of activity in midbrain dopaminergic neurons which resemble natural burst events. Synapse 22, 195–208.

    PubMed  CAS  Google Scholar 

  50. White. F. J. (1996) Synaptic regulation of mesocorticolimbic dopamine neurons. Annu. Rev. Neurosci. 19, 405–436.

    PubMed  CAS  Google Scholar 

  51. White, F. J., and Wang, R. Y. (1984) Pharmacological characterization of dopamine autoreceptors in the rat ventral tegmental area: microiontophoretic studies. J. Pharmacol. Exp. Thee. 231, 275–280.

    CAS  Google Scholar 

  52. Wachtel, S. R., Hu, S.-T., Galloway, M. P., and White. F. J. (1989) D1 dopamine receptor stimulation enables the postsynaptic, but not autoreceptor effects of D2 dopamine agonists in nigrostriatal and mesoaccumbens dopamine systems. Synapse 4, 327–346.

    Google Scholar 

  53. Bazhenov, M., Timofeev, I., Steriade, M., and Sejnowski, T. J. (1998) Cellular and network models for intrathalamic augmenting responses during 10-Hz stimulation. J. Neurophysiol. 79, 2730–2748.

    PubMed  CAS  Google Scholar 

  54. Timofeev, I., Grenier, F., and Steriade, M. (1998) Spike-wave complexes and fast components of cortically generated seizures. IV. Paroxysmal fast runs in cortical and thalamic neurons. J. Neurophysiol. 80, 1495–1513.

    PubMed  CAS  Google Scholar 

  55. Sesack, S. R., Deutch. A. Y., Roth, R. H., and Bunney, B. S. (1989) Topographical organization of the efferent projections of the medial prefrontal cortex in rat: an anterograde tract-tracing study with Phaseolus vulgais leucoagglutinin. i. Comp. Neurol. 290, 213–242.

    CAS  Google Scholar 

  56. Peterson, S. L., Olsta, S. A., and Matthews, R. T. (1990) Cocaine enhances medial prefrontal cortex neuron response to ventral tegmental area activation. Brain Res. Bull. 24, 267–273.

    PubMed  CAS  Google Scholar 

  57. Pirot, S., Godbout, R., Mantz, J., Tassin, J. R, Glowinski, J., and Thierry, A. M. (1992) Inhibitory effects of ventral tegmental area stimulation on the activity of prefrontal cortical neurons: evidence for the involvement of both dopaminergic and GABAergic components. Neuroscience 49, 857–865.

    Google Scholar 

  58. Carr, D. B., O’Donnell, R, Card, J. P., and Sesack, S. R. (1999) Dopamine terminals in the rat prefrontal cortex synapse on pyramidal cells that project to the nucleus accumbens. J. Neurosci. 19, 11,049–11, 060.

    Google Scholar 

  59. Lavin, A. and Grace, A. A. (2001) Stimulation of Dl-type dopamine receptors enhances excitability in prefrontal cortical pyramidal neurons in a state-dependent manner. Neuroscience 104, 335–346.

    PubMed  CAS  Google Scholar 

  60. Groenewegen, H. J., Berendse, H. W., Wolters, J. G., and Lohman. A. H. (1990) The anatomical relationship of the prefrontal cortex with the striatopallidal system, the thalamus and the amygdala: evidence for a parallel organization. Prog. Brain Res. 85, 95–116.

    Google Scholar 

  61. McDonald, A. J., Mascagni, F., and Guo, L. (1996) Projections of the medial and lateral prefrontal cortices to the amygdala: a Phaseolus vulgaris leucoagglutinin study in the rat. Neuroscience 71, 55–76.

    PubMed  CAS  Google Scholar 

  62. Rosenkranz, J. A. and Grace, A. A. (1999) Modulation of basolateral amygdala neuronal firing and afferent drive by dopamine receptor activation in vivo. J Neurosci. 19, 11, 027–11, 039.

    Google Scholar 

  63. Yamamoto, B. K. and Davy, S. (1992) Dopaminergic modulation of glutamate release in striatum as measured by micro-dialysis. J. Neurochem 58, 1736–1742.

    PubMed  CAS  Google Scholar 

  64. Kalivas, P. W. and Duffy, T. (1998) Repeated cocaine administration alters extracellular glutamate levels in the ventral tegmental area. J. Neurochem. 70, 1497–1502.

    PubMed  CAS  Google Scholar 

  65. Carter, A. J. and Muller, R. E. (1991) Pramipexole, a dopamine D2 autoreceptor agonist, decreases the extracellular concentration of dopamine in vivo. Eur. J. Pharmacol. 200, 65–72.

    PubMed  CAS  Google Scholar 

  66. You, Z. B., Herrera-Marschitz, M., Nylander, I., Goiny, M., O’Connor, W. T., Ungerstedt, U., (1994) The striatonigral dynorphin pathway of the rat studied with in vivo microdialysis—II. Effects of dopamine D1 and D2 receptor agonists. Neuroscience 63, 427–434.

    PubMed  CAS  Google Scholar 

  67. Roth, R. H., Tam, S.-Y., Ida, Y., Yang, J.-X., and Deutch, A. Y. (1988) Stress and the mesocorticolimbic dopamine systems. Ann. NYAcad. Sci. 537, 138–147.

    Google Scholar 

  68. Pennartz, C. M., Delleman-ven der Weel, M. J., Kitai, S. T., and Lopes da Silva, F. H. (1992) Presynaptic dopamine Dl receptors attenuate excitatory and inhibitory limibic inputs to the shell region of the rat nucleus accumbens studied in vitro. J. Neurophysiol. 67, 1325–1334.

    CAS  Google Scholar 

  69. Nicola, S. M. and Kombian, S. B. (1996) Psychostimulants depress excitatory synaptic transmission in the nucleus accumbens via presynaptic D1-like dopamine receptors. J Neurosci. 16, 1591–1604.

    PubMed  CAS  Google Scholar 

  70. Harvey, J. and Lacey, M. G. (1997) A postsynaptic interaction between dopamine D1 and NMDA receptors promotes presynaptic inhibition in the rat nucleus accumbens via adenosine release. J. Neurosci. 17, 5271–5280.

    PubMed  CAS  Google Scholar 

  71. Taber, M. T. and Fibiger, H. C. (1997) Activation of the mesocortical dopamine system by feeding: lack of a selective response to stress. Neuroscience 77, 295–298.

    PubMed  CAS  Google Scholar 

  72. Yim, C. Y. and Mogenson, G. J. (1980) Effect of picrotoxin and nipecotic acid on inhibitory response of dopaminergic neurons in the ventral tegmental area to stimulation of the nucleus accumbens. Brain Res. 199, 466–472.

    PubMed  CAS  Google Scholar 

  73. Hu, G., Duffy, P., Swanson, C., Behnam Ghasemzadeh, M., and Kalivas. P. W. (1999) The regulation of dopamine transmission by metabotropic glutamate receptors. J. Pharmacol. 289, 412–416.

    Google Scholar 

  74. Xi, Z., Shen, H., Carson, D., Baker, D., and Kalivas, P. (2001) Inhibition of glutamate transmission by group II metabotropic glutamate receptors (mGluR2/3): enduring neuroadaptations by cocaine. Soc. Neurosci. Abstr. 27 #997.3.

    Google Scholar 

  75. Kalivas, P. W. (1993) Neurotransmitter regulation of dopamine neurons in the ventral tegmental area. Brain Res. Rev. 18, 75–113.

    PubMed  CAS  Google Scholar 

  76. Chen, N. N. and Pan, W. H. (2000) Regulatory effects of D2 receptors in the ventral tegmental area on the mesocorticolimbic dopaminergic pathway. J. Neurochem. 74, 2576–2582.

    PubMed  CAS  Google Scholar 

  77. Cameron, D. L. and Williams, J. T. (1993) Dopamine D1 receptors facilitate transmitter release. Nature 366, 344–347.

    PubMed  CAS  Google Scholar 

  78. Kalivas, P. W. and Duffy, P. (1995) Dl receptors modulate glutamate transmission in the ventral tegmental area. J. Neurosci. 15, 5379–5388.

    PubMed  CAS  Google Scholar 

  79. Rosales, M. G., Martinez-Fong, D., Morales, R., Nunez, A., Flores, G., Gongora-Alfaro, J. L., (1997) Reciprocal interaction between glutamate and dopamine in the pars reticulata of the rat substantia nigra: a microdialysis study. Neuroscience 80, 803–810.

    Google Scholar 

  80. Karreman, M. and Moghaddam, B. (1996) The prefrontal cortex regulates the basal release of dopamine in the limbic stria-turn: an effect mediated by ventral tegmental area. J. Neurochem. 66, 589–598.

    PubMed  CAS  Google Scholar 

  81. Kretschmer, B. D. (1999) Modulation of the mesolimbic dopamine system by glutamate: role of NMDA receptors. J. Neurochem. 73, 839–848.

    PubMed  CAS  Google Scholar 

  82. Takahata, R. and Moghaddam, B (1998) Glutamatergic regulation of basal and stimulus-activated dopamine release in the prefrontal cortex. J. Neurochem. 71, 1443–1449.

    PubMed  CAS  Google Scholar 

  83. Enrico, P., Bouma, M., de Vries, J. B., and Westerink, B. H. C. (1998) The role of afferents to the ventral tegmental area in the handling stress-induced increase in the release of dopamine in the medial prefrontal cortex: a dual-probe microdialysis study in the rat brain. Brain Res. 779, 205–213.

    PubMed  CAS  Google Scholar 

  84. Svensson, P. and Hurd, Y. L. (1998) Specific reductions of striatal prodynorphin and Didopamine receptor messenger RNAs during cocaine abstinence. Mol. Brain Res. 56, 162–168.

    PubMed  CAS  Google Scholar 

  85. Taber, M. T., Das, S., and Fibiger, H. C. (1995) Cortical regulation of subcortical dopamine release: mediation via the ventral tegmental area. J. Neurochem. 65, 1407–1410.

    PubMed  CAS  Google Scholar 

  86. Takahata, R. and Moghaddam, B. (2000) Target-specific glutamatergic regulation of dopamine neurons in the ventral tegmental area. J. Neurochem. 75, 1775–1778.

    PubMed  CAS  Google Scholar 

  87. Kalivas, R. W., Duffy, P., and Barrow, J. (1989) Regulation of the mesocorticolimbic dopamine system by glutamic acid receptor subtypes. J. Pharmacol. Exp. Ther. 251, 378–387.

    PubMed  CAS  Google Scholar 

  88. Wedzony, K., Klimek, V., and Golembiowska, K. (1993) MK-801 elevates the extracellular concentration of dopamine in the rat prefrontal cortex and increases the density of striatal dopamine Dl receptors. Brain Res. 622, 325–329.

    PubMed  CAS  Google Scholar 

  89. Nishijima, K., Kashiwa, A., and Nishikawa, T. (1994) Preferential stimulation of extracellular release of dopamine in rat frontal cortex to striatum following competitive inhibition of the N-methyl-D-aspartate receptor. J. Neurochem. 63, 375–378.

    PubMed  CAS  Google Scholar 

  90. Verma, A. and Moghaddam, B. (1996) NMDA receptor antagonists impair prefrontal cortex function as assessed via spatial delayed alteration performance in rats: modulation by dopamine. J. Neurosci. 16, 373–379.

    PubMed  CAS  Google Scholar 

  91. Santiago, M., Machado, A., and Cano, J. (1993) Regulation of the prefrontal cortical dopamine release by GABAA and GABAB receptor agonists and antagonists. Brain Res. 630, 28–31.

    PubMed  CAS  Google Scholar 

  92. Abekawa, T., Ohmori, K., and Koyama, T. (2000) D1 dopamine receptor activation reduces extracellular glutamate and GABA concentrations in the medial prefrontal cortex. Brain Res 867, 250–254.

    PubMed  CAS  Google Scholar 

  93. Wolf, M. E. (1998) The role of excitatory amino acids in behavioral sensitization to psychomotor stimulants. Prog. Neurobiol. 54, 679–720.

    PubMed  CAS  Google Scholar 

  94. Vanderschuren, L. and Kalivas, P. (2000) Alterations in dopaminergic and glutamatergic signaling in the induction and expression of behavioral sensitization. Psychopharmacology 15, 99–120

    Google Scholar 

  95. Mello, N. K. and Negus, S. S. (1996) Preclinical evaluation of pharmacotherapies for treatment of cocaine and opioid abuse using drug self-administration procedures. Neuropsychopharmacology 14, 375–424.

    PubMed  CAS  Google Scholar 

  96. White, F. J. and Wolf, M. E. (1991) Psychomotor stimulants, in The Biological Basis of Drug Tolerance and Dependence ( Pratt J., ed.), Academic, London, pp. 153–197.

    Google Scholar 

  97. White, F. J. and Wang, R. Y. (1984) Electrophysiological evidence for A10 dopamine autoreceptor sensitivity following chronic d-amphetamine treatment. Brain Res. 309, 283–292.

    PubMed  CAS  Google Scholar 

  98. Gao, W. Y., Lee, T. H., King, G. R., and Ellinwood, E. H. (1998) Alterations in baseline activity and quinpirole sensitivity in putative dopamine neurons in the substantia nigra and ventral tegmental area after withdrawal from cocaine pretreatment. Neuropsychopharmacology 18, 222–232.

    Google Scholar 

  99. Nestler, E. J., Terwilliger, R. Z., Walker, J. R., Sevarino, K. A., and Duman, R. S. (1990) Chronic cocaine treatment decreases levels of the G protein subunits G, and Goa in discrete regions of rat brain. J. Neurochem. 55, 1079–1082.

    Google Scholar 

  100. Striplin, C. and Kalivas, P. W. (1993) Robustness of G protein changes in cocaine sensitization shown with immunoblotting. Synapse 14, 10–15.

    PubMed  CAS  Google Scholar 

  101. Sorg, B. A., Chen, S.-Y., and Kalivas, P. W. (1993) Time course of tyrosine hydroxylase expression following behavioral sensitization to cocaine. J. Pharmacol. Exp. Ther. 266, 424–430.

    PubMed  CAS  Google Scholar 

  102. Lu, W. X. and Wolf, M. E. (1997) Expression of dopamine transporter and vesicular monoamine transporter 2 mRNAs in rat midbrain after repeated amphetamine administration. Mol. Brain Res. 49, 137–148.

    PubMed  CAS  Google Scholar 

  103. Shilling, P. D., Kelsoe, J. R., and Segal, D. S. (1997) Dopamine transporter mRNA is upregulated in the substantia nigra and the ventral tegmental area of amphetamine-sensitized rats. Neurosci. Lett. 236, 131–134.

    Google Scholar 

  104. Kalivas, P. W. and Duffy, P. (1993) Time course of extracellular dopamine and behavioral sensitization to cocaine. I. Dopamine axon terminals. J. Neurosci. 13, 266–275.

    PubMed  CAS  Google Scholar 

  105. White, F. J., Hu, X.-T., Zhang, X.-F., and Wolf, M. E. (1995) Repeated admnistration of cocaine or amphetamine alters neuronal responses to glutamate in the mesoaccumbens dopamine system. J. Pharmacol. Exp. Ther. 273, 445–454.

    Google Scholar 

  106. Zhang, X.-F., Hu, X.-T., White, F. J., and Wolf, M. E. (1997) Increased responsiveness of ventral tegmental area dopamine neurons to glutamate after repeated administration of cocaine or amphetamine is transient and selectively involves AMPA receptors. J. Pharmacol. Exp. Ther. 281, 699–706.

    Google Scholar 

  107. Fitzgerald, L. W., Ortiz, J., Hamedani, A. G., and Nestler, E. J. (1996) Drugs of abuse and stress increase the expression of GluR1 and NMDAR1 glutamate receptor subunits in the rat ventral tegmental area: common adaptations among cross-sensitizing agents. J. Neurosci. 16, 274–282.

    PubMed  CAS  Google Scholar 

  108. Churchill, L., Swanson, C. J., Urbina, M., and Kalivas, P. W. (1999) Repeated cocaine alters glutamate receptor subunits levels in the nucleus accumbens and ventral tegmental area of rats that develop behavioral sensitization. J. Neurochem. 72, 2397–2403.

    Google Scholar 

  109. Tong, Z.-Y., Overton, P. G., and Clark, D. (1995) Chronic administration of (+)-amphetamine alters the reactivity of mid-brain dopaminergic neurons to prefrontal cortex stimulation in the rat. Brain Res. 674, 63–74.

    PubMed  CAS  Google Scholar 

  110. Hooks, M. S., Duffy, P., Striplin, C., and Kalivas, P. W. (1994) Behavioral and neurochemical sensitization following cocaine self-administration. Psychopharmacology 115, 265–272.

    PubMed  CAS  Google Scholar 

  111. Sorg, B. A., Davidson, D. L., Kalivas, P. W., and Prasad, B. M. (1997) Repeated daily cocaine alters subsequent cocaine-induced increase of extracellular dopamine in the medial prefrontal cortex. J. Pharmacol. Exp. Ther. 281, 54–61.

    PubMed  CAS  Google Scholar 

  112. Robinson, T. E. and Becker, J. B. (1982) Behavioral sensitization is accompanied by an enhancement in amphetamine-stimulated dopamine release from striatal tissue in vitro. Eur. J. Pharmacol. 85, 253–254.

    PubMed  CAS  Google Scholar 

  113. Pierce, R. C., Duffy, P., and Kalivas, P. W. (1995) Sensitization to cocaine and dopamine autoreceptor subsensitivity in the nucleus accumbens. Synapse 20, 33–36.

    PubMed  CAS  Google Scholar 

  114. Pierce, R. C. and Kalivas, P. W. (1997) Repeated cocaine modifies the mechanism by which ampehtamine releases dopamine. J. Neurosci. 17, 3254–3261.

    PubMed  CAS  Google Scholar 

  115. Iwata, S.-I., Hewlett, G. H. K., Ferrell, S. T., Kantor, L., and Gnegy, M. E. (1997) Enhanced dopamine release and phosphorylation of synapsin I and neuromodulin in striatal synaptosomes after repeated amphetamine. J. Pharmacol. Exp. Ther. 283, 1445–1452.

    Google Scholar 

  116. Kantor, L. and Gnegy, M. (1998) Ca’-’, K` and calmodulim kinase II affect amphetamine-mediated dopamine release in sensitized rats. FASEB 12, A159.

    Google Scholar 

  117. Goldman-Rakic, P. S. (1995) Cellular basis of working memory. Neuron 14, 477–485.

    PubMed  CAS  Google Scholar 

  118. Jentsch, K. and Taylor, J. (1999) Impulsivity resulting form frontostriatal dysfunction in drug abuse: implications for the control of behavior by reward-related stimuli. Psychopharmacology 146, 373–390.

    PubMed  CAS  Google Scholar 

  119. Pierce, R. C., Reeder, D. C., Hicks, J., Morgan, Z. R., and Kalivas, P. W. (1998) Ibotenic acid lesions of the dorsal prefrontal cortex disrupt the expression of behavioral sensitization to cocaine. Neuroscience 82, 1103–1114.

    PubMed  CAS  Google Scholar 

  120. Cornish, J. L. and Kalivas, P. W. (2000) Glutamate Transmission in the nucleus accumbens mediates relapse in cocaine addiction. J. Neurosci. (Online) 20, RC89.

    Google Scholar 

  121. Cornish, J. L., Duffy, P., and Kalivas, P. W. (1999) a role of necleus accumbens glutamate transmission in the relapse to cocaine-seeking behavior. Neuroscience 93, 1359–1368.

    Google Scholar 

  122. McFarland, K. and Kalivas, P. (2001) Circuitry mediating cocaine-induced reinstatement of drug-seeking behavior. J. Neurosci. 21, 8655–8663.

    PubMed  CAS  Google Scholar 

  123. Meil, W. M. and See, R. E. (1997) Lesions of the basolateral amygdala abolish the ability of drug associated cues to reinstate responding during withdrawal from self-administered cocaine. Behay. Brain Res. 87, 139–148.

    CAS  Google Scholar 

  124. Fanselow, M. S. (2000) Contextual fear, gestalt memories, and the hippocampus. Behay. Brain Res. 110, 73–81.

    Google Scholar 

  125. Grimm, J. and See, R. (2000) Dissociation of primary and secondary reward-relevant limbic nuclei in an animal model of relapse. Neuropsychopharmacology 22, 473–479.

    PubMed  CAS  Google Scholar 

  126. Bell, K., Duffy, P., and Kalivas, P. W. (2000) Context-specific enhancement of glutamate transmission by cocaine. Neuropsychopharmacology 23, 335–344.

    PubMed  CAS  Google Scholar 

  127. Rothman, R. B. and Glowa, J. R. (1997) A review of the effects of dopaminergic agents on humans, animals, and drug-seeking behavior, and Its implications for medication development. Mol. Neurobiol. 11, 1–3.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Baker, D.A., Cornish, J.L., Kalivas, P.W. (2002). Glutamate and Dopamine Interactions in the Motive Circuit. In: Herman, B.H., Frankenheim, J., Litten, R.Z., Sheridan, P.H., Weight, F.F., Zukin, S.R. (eds) Glutamate and Addiction. Contemporary Clinical Neuroscience. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-306-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-306-4_9

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-234-6

  • Online ISBN: 978-1-59259-306-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics