Skip to main content

Role of the NMDA Receptor in Neuronal Apoptosis and HIV-Associated Dementia

  • Chapter
Glutamate and Addiction

Part of the book series: Contemporary Clinical Neuroscience ((CCNE))

  • 228 Accesses

Abstract

Neuronal injury and apoptosis may account, at least in part, for neurological complications associated with human immunodeficiency virus (HIV)-1 infection ranging from mild cognitive and motor impairment to dementia. The primary cell types infected in the brain are macrophages and microglia. These cells have been found in vivo and in vitro to release neurotoxic factors. Evidence has accumulated that neuronal apoptosis in HIV-related insults occurs predominantly via an indirect pathway comprising a complex cooperation of cytokines, reactive oxygen species and reactive nitrogen species, lipid mediators, and excitotoxins. These molecules lead to excessive stimulation of the N-methyl-Daspartate subtype of glutamate receptor (NMDAR). Of note, chemokine receptors, which, in conjunction with CD4, mediate HIV infection of macrophages/microglia, are present on neurons and astrocytes in addition to macrophages/microglia. Thus, these receptors potentially allow direct interaction between the virus and neurons (Fig. 2). The fact that specific chemokines ameliorate HIV/gp120induced neuronal apoptosis that is mediated by NMDARs suggests a functional connection between the receptors for chemokines and NMDA. Accordingly, here we review the role of the NMDAR in HIV-1-related and excitotoxic neuronal cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brauner-Osborne, H., Egebjerg, J., Nielsen, E. O., Madsen, U., and Krogsgaard-Larsen, P. (2000) Ligands for glutamate receptors: design and therapeutic prospects. J. Med. Chem. 43, 2609–2645.

    Google Scholar 

  2. Bigge, C. F. (1999) Ionotropic glutamate receptors. Curr. Opin. Chem. Biol. 3, 441–447.

    Google Scholar 

  3. Weiss, J. H. and Sensi, S. L. (2000) Ca2+—Zn2’ permeable AMPA or Kainate receptors: possible key factors in selective neurodegeneration. Trends Neurosci. 23, 365–371.

    Article  PubMed  CAS  Google Scholar 

  4. Gallo, V. and Ghiani, C. A. (2000) Glutamate receptors in glia: new cells, new inputs and new functions. Trends Pharmacol. Sci. 21, 252–258.

    Google Scholar 

  5. Doble, A. (1999) The role of excitotoxicity in neurodegenerative disease: implications for therapy. Pharmacol. Ther. 81, 163–221.

    Google Scholar 

  6. Olney, J. W. (1969) Brain lesions, obesity, and other disturbances in mice treated with monosodium glutamate. Science 164, 719–721.

    Article  PubMed  CAS  Google Scholar 

  7. Lipton, S. A. and Gendelman, H. E. (1995) Dementia associated with the acquired immunodeficiency syndrome. N. Engl. J. Me. 332, 934–940.

    Google Scholar 

  8. Lipton, S. A. and Rosenberg, P. A. (1994) Excitatory amino acids as a final common pathway for neurologic disorders. N. Engl. J. Med. 330, 613–622.

    Google Scholar 

  9. Choi, D. W. (1988) Glutamate neurotoxicity and diseases of the nervous system. Neuron 1, 623–634.

    Article  PubMed  CAS  Google Scholar 

  10. Choi, D. W., Koh, J. Y., and Peters, S. (1988) Pharmacology of glutamate neurotoxicity in cortical cell culture: attenuation by NMDA antagonists. J. Neurosci. 8, 185–196.

    PubMed  CAS  Google Scholar 

  11. Le, D., Das, S., Wang, Y. E, Yoshizawa, T., Sasaki, Y. F., Takasu, M., Names, A., et al. (1997) Enhanced neuronal death from focal ischemia in AMPA-receptor transgenic mice. Brain. Res. Mol. Brain. Res. 52, 235–241.

    Google Scholar 

  12. Nicotera, P, Ankarcrona, M., Bonfoco, E., Orrenius, S., and Lipton, S. A. (1997) Neuronal necrosis and apoptosis: two distinct events induced by exposure to glutamate or oxidative stress. Adv. Neurol. 72, 95–101.

    Google Scholar 

  13. Yun, H. Y., Gonzalez-Zulueta, M., Dawson, V. L., and Dawson, T. M. (1998) Nitric oxide mediates N-methyl-o-aspartate receptor-induced activation of p2lras. Proc. Natl. Acad. Sci. USA 95, 5773–5778.

    Google Scholar 

  14. Tenneti, L., DEmilia, D. M., and Lipton, S. A. (1997) Suppression of neuronal apoptosis by S-nitrosylation of caspases. Neurosci. Lett. 236, 139–142.

    Google Scholar 

  15. Sattler, R., Xiong, Z., Lu, W. Y., Hafner, M., MacDonald, J. F., and Tymianski, M. (1999) Specific coupling of NMDA receptor activation to nitric oxide neurotoxicity by PSD-95 protein. Science 284, 1845–1848.

    Article  PubMed  CAS  Google Scholar 

  16. Mukherjee, P. K., DeCoster, M. A., Campbell, F. Z., Davis, R. J., and Bazan, N. G. (1999) Glutamate receptor signaling interplay modulates stress-sensitive mitogen-activated protein kinases and neuronal cell death. J. Biol. Chem. 274, 6493–6498.

    Google Scholar 

  17. Kaul, M. and Lipton, S. A. (1999) Chemokines and activated macrophages in gp120-induced neuronal apoptosis. Proc. Natl. Acad. Sci. USA 96, 8212–8216.

    Google Scholar 

  18. Budd, S. L., Tenneti, L., Lishnak, T., and Lipton, S. A. (2000) Mitochondrial and extramitochondrial apoptotic signaling pathways in cereberocortical neurons. Proc. Natl. Acad. Sci. USA 97, 6161–6166.

    Google Scholar 

  19. Tenneti, L., D’Emilia, D. M., Troy, C. M., and Lipton, S. A. (1998) Role of caspases in N-methyl-o-asoartate-induced apoptosis in cerebrocortical neurons. J. Neurochem. 71, 946–959.

    Article  PubMed  CAS  Google Scholar 

  20. Masliah, E., Heaton, R. K., Marcotte, T. D., Ellis, R. J., Wiley, C. A., Mallory, M., et al. (1997) Dendritic injury is a pathological substrate for human immunodeficiency virus-related cognitive disorders. HNRC group. The HIV neurobehavioral research center. Ann. Neurol. 42, 963–972.

    Google Scholar 

  21. Petito, C. K. and Roberts, B. (1995) Evidence of apoptotic cell death in HIV encephalitis. Am. J. Pathol. 146, 1121–1130.

    Google Scholar 

  22. Goodkin, K., Shapshak, P., Metsch, L. R., McCoy, C. B., Crandall, K. A., Kumar, M., et al. (1998) Cocaine abuse and HIV-1 infection: epidemiology and neuropathogenesis. J. Neuroimmunol. 83, 88–101.

    Article  PubMed  CAS  Google Scholar 

  23. Tyor, W. R. and Middaugh, L. D. (1999) Do alcohol and cocaine abuse alter the course of HIV-associated dementia complex ? J. Leukocute Biol. 65, 475–481.

    CAS  Google Scholar 

  24. Bell, J. E., Brettle, R. P., Chiswick, A., and Simmonds, P. (1998) HIV encephalitis, proviral load and dementia in drug users and homosexuals with AIDS. Effect of neocortical involvement. Brain 121, 2043–2052.

    Google Scholar 

  25. Zhang, L., Looney, D., Taub, D., Chang, S. L., Way, D., Witte, M. H., et al. (1998) Cocaine opens the blood-brain barrier to HIV-1 invasion. J.Neurovirol. 4, 619–626.

    Article  PubMed  CAS  Google Scholar 

  26. Fiala, M., Gan, X. H., Zhang, L., House, S. D., Newton, T., Graves, M. C., et al. (1998) Cocaine enhances monocyte migration across the blood-brain barrier. Cocaine’s connection to AIDS dementia and vasculitis? Adv. Exp. Med. Biol. 437, 199–205.

    Google Scholar 

  27. Brack-Werner, R. and Bell, J. E. (1999) Replication of HIV-1 in human astrocytes. NeuroAlDS 2, 1 - 4 ( www.sciencemag.org/NAIDS).

    Google Scholar 

  28. Gartner, S. (2000) HIV infection and dementia. Science 287, 602–604.

    Article  PubMed  CAS  Google Scholar 

  29. Glass, J. D., Fedor, H., Wesselingh, S. L., and McArthur, J. C. (1995) Immunocytochemical quantitation of human immunodeficiency virus in the brain: correlations with dementia. Ann. Neurol. 38, 755–762.

    Google Scholar 

  30. Giulian, D., Vaca, K., and Noonan, C. A. (1990) Secretion of neurotoxins by mononuclear phagocytes infected with HIV-1 Science 250, 1593–1596.

    CAS  Google Scholar 

  31. Bleul, C. C., Farzan, M., Choe, H., Parolin, C., Clark-Lewis, I., Sodroski, J., et al. (1996) The lymphocyte chemoattractant SDF-I is a ligand for LESTR/fusin and blocks HIV-1 entry. Nature 382, 829–833.

    Article  PubMed  CAS  Google Scholar 

  32. Doranz, B. J., Rucker, J., Yi, Y., Smyth, R. J., Samson, M., Peiper, S. C., et al. (1996) A dual-tropic primary HIV-1 isolate that uses fusin and the beta-chemokine receptors CKR5, CKR3, and CKR2b as fusion cofactors. Cell 85, 1149–1158.

    Article  PubMed  CAS  Google Scholar 

  33. He, J., Chen, Y., Farzan, M., Choe, H., Ohagen, A., Gartner, S., et al. (1997) CCR3 and CCR5 are co-receptors for HIV-1 infection of microglia. Nature 385, 645–649.

    Article  PubMed  CAS  Google Scholar 

  34. Zhang, L., He, T., Talal, A., Wang, G., Frankel, S. S., and Ho, D. D. (1998) In vivo distribution of the human immunodeficiency virus/simian immunodeficiency virus coreceptors: CXCR4, CCR3, and CCR5. J. Virol. 72, 5035–5045.

    PubMed  CAS  Google Scholar 

  35. Meucci, O., Fatatis, A., Simen, A. A., Bushell, T. J., Gray, P. W., and Miller, R. J. (1998) Chemokines regulate hippocampal neuronal signaling and gp 120 neurotoxicity. Proc. Natl. Acad. Sci. USA 95, 14,500–14, 505.

    Google Scholar 

  36. Meucci, O., Fatatis, A., Simen, A. A., and Miller, R. J. (2000) Expression of CX3CR1 chemokine receptors on neurons and their role in neuronal survival. Proc. Natl. Acad. Sci. USA 97, 8075–8080.

    Google Scholar 

  37. Brenneman, D. E., Westbrook, G. L., Fitzgerald, S. P., Ennist, D. L., Elkins, K. L., Ruff, M. R., et al. (1988) Neuronal cell killing by the envelope protein of HIV and its prevention by vasoactive intestinal peptide. Nature 335, 639–642.

    Article  PubMed  CAS  Google Scholar 

  38. Toggas, S. M., Masliah, E., Rockenstein, E. M., Rall, G. F., Abraham, C. R., and Mucke, L. (1994) Central nervous system damage produced by expression of the HIV-1 coat protein gp120 in transgenic mice. Nature 367, 188–193.

    Article  PubMed  CAS  Google Scholar 

  39. Lannuzel, A., Lledo, P. M., Lamghitnia, H. O., Vincent, J. D., and Tardieu, M. (1995) HIV-1 envelope proteins gp120 and gp160 potentiate NMDA [Ca2+]; increase, alter [Ca2’]; homeostasis and induce neurotoxicity in human embryonic neurons. Eur. J Neurosci. 7, 2285–2293.

    Google Scholar 

  40. Adamson, D. C., Wildemann, B., Sasaki, M., Glass, J. D., McArthur, J. C., Christov, V. I., et al. (1996) Immunologic NO synthase: elevation in severe AIDS dementia and induction by HIV-1 gp41. Science 274, 1917–1921.

    Article  PubMed  CAS  Google Scholar 

  41. Nath, A., Geiger, J. D., Mattson, M. P., Magnuson, D. S., Jones, M., and Berger, J. R. (1998) Role of viral proteins in HIV-1 neuropathogenesis with emphasis on Tat. NeuroAids 1, 1 - 3 ( www.sciencemag.org/NAIDS).

    Google Scholar 

  42. Lipton, S. A. (1997) Neuropathogenesis of acquired immunodeficiency syndrome dementia. Cure. Opin. Neurol. 10, 247–253.

    Google Scholar 

  43. Lipton, S. A., Sucher, N. J., Kaiser, P. K., and Dreyer, E. B. (1991) Synergistic effects of HIV coat protein and NMDA receptor-mediated neurotoxicity. neuron 7, 111–118.

    CAS  Google Scholar 

  44. Sardar, A. M., Hutson, P. H., and Reynolds, G. P. (1991) Deficits of NMDA receptors and glutamate uptake sites in the frontal cortex in AIDS. Neuroreport 10, 3513–3515.

    Article  Google Scholar 

  45. Lipton, S. A. (1998) Neuronal injury associated with HIV-1: approaches to treatment. Annu. Rev. Pharmacol. Toxicol. 38, 159–177.

    Google Scholar 

  46. Savio, T. and Levi, G. (1993) Neurotoxicity of HIV coat protein gp120, NMDA receptors, and protein kinase C: a study with rat cerebellar granule cell cultures. J. Neurosci. Res. 34, 265–272.

    Google Scholar 

  47. Dreyer, E. B., Kaiser, P. K., Offermann, J. T., and Lipton, S. A. (1990) HIV-1 coat protein neurotoxicity prevented by calcium channel antagonists. Science 248, 364–367.

    Article  PubMed  CAS  Google Scholar 

  48. Toggas, S. M., Masliah, E., and Mucke, L. (1996) Prevention of HIV-1 gp120-induced neuronal damage in the central nervous system of transgenic mice by the NMDA receptor antagonist memantine. Brain Res. 706, 303–307.

    Article  PubMed  CAS  Google Scholar 

  49. Yeh, M. W., Kaul, M., Zheng, J., Nottet, H. L. M., Thylin, M., Gendelman, H. E., et al. (2000) Cytokine-stimulated but not HIV-infected human monocyte-derived macrophages produce neurotoxic levels of the NMDA agonist, L-cysteine. J. Immunol. 164, 4265–4270.

    Google Scholar 

  50. Fontana, G., Valenti, L., and Raiteri, M. (1997) Gp120 can revert antagonism at the glycine site of NMDA receptors mediating GABA release from cultured hippocampal neurons. J. Neurosci. Res. 49, 732–738.

    Google Scholar 

  51. Lo, T. M., Fallert, C. J., Piser, T. M., and Thayer, S. A. (1992) HIV-1 envelope protein evokes intracellular calcium oscillations in rat hippocampal neurons. Brain Res. 594, 189–196.

    Article  PubMed  CAS  Google Scholar 

  52. Pittaluga, A., Pattarini, R., Severi, P., and Raiteri, M. (1996) Human brain N-methyl-n-aspartate receptors regulating noradrenaline release are positively modulated by HIV-1 coat protein gp120. AIDS 10, 463–468.

    Article  PubMed  CAS  Google Scholar 

  53. Bezzi, P., Carmignoto, G., Pasti, L., Vesce, S., Rossi, D., Rizzini, B. L., et al. (1998) Prostaglandins stimulate calcium-dependent glutamate release in astrocytes. Nature 391, 281–285.

    Article  PubMed  CAS  Google Scholar 

  54. Conant, K., Garzino-Demo, A., Nath, A., McArthur, J. C., Halliday, W., Power, C., et al. (1998) Induction of monocyte chemoattractant protein-1 in HIV-1 tat-stimulated astrocytes and elevation in AIDS dementia. Proc. Natl. Acad. Sci. USA 95, 3117–3121.

    Google Scholar 

  55. Brunol, V., Copanil, A., Besong, G., Scoto, G., and Nicoletti, F. (2000) Neuroprotective activity of chemokines against Nmethyl-n-aspartate or beta-amyloid-induced toxicity in culture. Eur. J. Pharmacol. 399, 117–121.

    Google Scholar 

  56. Galasso, J. M., Harrison, J. K., and Silverstein, F. S. (1998) Excitotoxic brain injury stimulates expression of the chemokine receptor CCR5 in neonatal rats. Am. J. Pathol. 153, 1631–1640.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kaul, M., Lipton, S.A. (2002). Role of the NMDA Receptor in Neuronal Apoptosis and HIV-Associated Dementia. In: Herman, B.H., Frankenheim, J., Litten, R.Z., Sheridan, P.H., Weight, F.F., Zukin, S.R. (eds) Glutamate and Addiction. Contemporary Clinical Neuroscience. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-306-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-306-4_5

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-234-6

  • Online ISBN: 978-1-59259-306-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics