Skip to main content

Glutamate and Neurotoxicity

  • Chapter
  • 227 Accesses

Part of the book series: Contemporary Clinical Neuroscience ((CCNE))

Abstract

The toxic effects of glutamate exposure on neurons were first recognized nearly half a century ago, when Lucas and Newhouse observed that subcutaneous administration of glutamate caused loss of neurons in the inner nuclear layer of the retina in both adult and neonatal mice (1). Olney extended these findings to other regions of brain, including neurons in the roof of the third ventricle, the hypothalamus, and the dentate gyms (2). Changes evolved rapidly, over minutes in adult mice to several hours in neonates, and were characterized by intracellular edema and pyknotic nuclei, consistent with necrosis. In the next few years the role of glutamate as the major excitatory neurotransmitter in the mammalian central nervous system (CNS) became clear (3–6) and the existence of specific glutamate receptors was demonstrated. Excitotoxicity, the effect of glutamate receptor activation to trigger neuronal cell death, was proposed to play a role in many pathological conditions, in large part based on the observations that injection of glutamate agonists, notably kainate, could result in neuronal death and biochemical abnormalities resembling the pathology seen in disorders such as Huntington’s disease (7,8) and epilepsy (9,10). A role for endogenous glutamate release and subsequent glutamate receptor activation in triggering neuronal death under pathological conditions was further suggested by demonstrations that blockade of presynaptic glutamate release could attenuate neuronal injury in oxygen-deprived cultured hippocampal neurons (11) and that a blockade of the N-methyl-d-aspartate (NMDA) subtype of glutamate receptors attenuated neuronal injury in rodent models of global ischemia and hypoglycemic brain damage (12,13). Cell culture models were useful in exploring the ionic changes responsible for glutamate-mediated cell death (see Section 2). More recent observations suggest that receptor-mediated glutamate toxicity may not be limited to neurons, but may also affect oligodendrocytes (14–16). A non-receptor-mediated form of glutamate cytotoxicity due to cystine deprivation and lowering of intracellular glutathione has also been described (17,18),although the levels of sustained exposure required to induce this death are higher than expected in most in vivo situations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lucas, D. and Newhouse, J. (1957) The toxic effects of sodium L-glutamate on the inner layers of the retina. Arch, Ophthalmol. 58, 193–201.

    CAS  Google Scholar 

  2. Olney, J. W. (1969) Brain lesions, obesity, and other disturbances in mice treated with monosodium glutamate. Science 164, 719–721

    Article  PubMed  CAS  Google Scholar 

  3. Curtis, D. R., Phillis, J. W., and Watkins, J. (1960) The chemical excitation of spinal neurons by certain acidic amino acids. J. Physiol. (Lond.) 150, 656–682.

    CAS  Google Scholar 

  4. Crawford, J. M. and Curtis, D. R. (1964) The excitation and depression of mammalian cortical neurons by amino acids. Br. J. Pharm. 23, 323–329.

    Google Scholar 

  5. Krnjevic, K. (1974) Chemical nature of synaptic transmission in vertebrates. Physiol. Res. 418, 418–540.

    Google Scholar 

  6. Di Chiara, G. and Gessa, G. L. (eds.) (1981), Psychopharmacology Vol. 27 Glutamate as a Neurotransmitter, Advances in Biochemical Raven P, New York.

    Google Scholar 

  7. Coyle, J. T. and Schwarcz, R. (1976) Lesion of striatal neurones with kainic acid provides a model for Huntington’s chorea. Nature 263, 244–246.

    Article  PubMed  CAS  Google Scholar 

  8. McGeer, E. G, and McGeer, P. L. (1976) Duplication of biochemical changes of Huntington’s chorea by intrastriatal injections of glutamic and kainic acids. Nature 263, 517–519.

    Article  PubMed  CAS  Google Scholar 

  9. Nadler, J. V., Perry, B. W., and Cotman, C. W. (1978) Intraventricular kainic acid preferentially destroys hippocampal pyramidal cells. Nature 271, 676–677.

    Article  PubMed  CAS  Google Scholar 

  10. Sloviter, R. S. (1983) “Epileptic” brain damage in rats induced by sustained electrical stimulation of the perforant path. I. Acute electrophysiological and light microscopic studies. Brain Res. Bull. 10, 675–697.

    Google Scholar 

  11. Rothman, S. (1984) Synaptic release of excitatory amino acid neurotransmitter mediates anoxic neuronal death. J. Neurosci. 4, 1884–1891.

    PubMed  CAS  Google Scholar 

  12. Simon, R. P., Swan, J. H., Griffiths, T., and Meldrum, B. S. (1984) Blockade of N-methyl-n-aspartate receptors may protect against ischemic damage in the brain. Science 226, 850–850.

    Article  PubMed  CAS  Google Scholar 

  13. Wieloch, T. (1985) Hypoglycemia-induced neuronal damage prevented by an N-methyl-D-aspartate antagonist. Science 230,681–683

    Google Scholar 

  14. Yoshioka, A., Hardy, M., Younkin, D. P., Grinspan, J. B., Stern, J. L., and Pleasure, D. (1995) Alpha-amino-3-hydroxy-5-methyl4-isoxazolepropionate (AMPA) receptors mediate excitotoxicity in the oligodendroglial lineage. J. Neurochem. 64, 2442–2448.

    Article  PubMed  CAS  Google Scholar 

  15. Matute, C., Sanchez-Gomez, M. V., Martinez-Millan, L., and Miledi, R. (1997) Glutamate receptor-mediated toxicity in optic nerve oligodendrocytes. Proc. Natl. Acad. Sci. USA 94, 8830–8835.

    Article  PubMed  CAS  Google Scholar 

  16. McDonald, J. W., Althomsons, S. P., Hyrc, K. L., Choi, D. W., and Goldberg, M. P. (1998) Oligodendrocytes from forebrain are highly vulnerable to AMPA/kainate receptor-mediated excitotoxicity. Nat. Med. 4, 291–297.

    Article  PubMed  CAS  Google Scholar 

  17. Oka, A., Belliveau, M. J., Rosenberg, P. A., and Volpe, J. J. (1993) Vulnerability of oligodendroglia to glutamate: pharmacology, mechanisms, and prevention. J. Neurosci. 13, 1441–1453.

    PubMed  CAS  Google Scholar 

  18. Chen, C. J., Liao, S. L., and Kuo, J. S. (2000) Gliotoxic action of glutamate on cultured astrocytes. J. Neurochem. 75, 1557–1565.

    Article  PubMed  CAS  Google Scholar 

  19. Seeburg, P. H. (1993) The TINS/TiPS Lecture. The molecular biology of mammalian glutamate receptor channels. Trends Neurosci. 16, 359–365.

    Google Scholar 

  20. Hollmann, M. and Heinemann, S. (1994) Cloned glutamate receptors. Annu. Rev. Neurosci. 17, 31–108.

    Google Scholar 

  21. Seeburg, P. H., Higuchi, M., and Sprengel, R. (1998) RNA editing of brain glutamate receptor channels: mechanism and physiology. Brain Res. Rev. 26, 217–229.

    Article  PubMed  CAS  Google Scholar 

  22. Nakanishi, S. and Masu, M. (1994) Molecular diversity and functions of glutamate receptors. Annu. Rev. Biophys. Biomol. Struct. 23, 319–348.

    Google Scholar 

  23. Conn, P. J. and Pin, J. P. (1997) Pharmacology and functions of metabotropic glutamate receptors. Annu. Rev. Pharmacol. Toxicol. 37, 205–237.

    Google Scholar 

  24. Kerchner, G. A., Kim, A. H., and Choi, D. W., Glutamate-mediated excitotoxicity Ionotropic Glutamate Receptors in the CNSIn (P. Jonas and H. Monyer, (eds.), Springer-Verlag, Berlin, 1999, pp. 443–469.

    Google Scholar 

  25. Nicoletti, F., Bruno, V., Catania, M. V., Battaglia, G., Copani, A., Barbagallo, G., et al. (1999) Group-I metabotropic glutamate receptors: hypotheses to explain their dual role in neurotoxicity and neuroprotection. Neuropharmacology 38, 1477–1484.

    Article  PubMed  CAS  Google Scholar 

  26. Cartmell, J. and Schoepp,D. D. (2000) Regulation of neurotransmitter release by metabotropic glutamate receptors. J. Neurochem. 75, 889–907

    Google Scholar 

  27. Fagni, L., Chavis, P., Ango, F., and Bockaert, J. (2000) Complex interactions between mGluRs, intracellular Cat+ stores and ion channels in neurons. Trends Neurosci. 23, 80–88.

    Article  PubMed  CAS  Google Scholar 

  28. Choi, D. W. (1988) Calcium-mediated neurotoxicity: relationship to specific channel types and role in ischemic damage. Trends Neurosci. 11465–469.

    Google Scholar 

  29. Olney, J. W., Price, M. T., Samson, L., and Labruyere, J. (1986) The role of specific ions in glutamate neurotoxicity. Neurosci. Lett. 65, 65–71

    Google Scholar 

  30. Turetsky, D. M., Canzoniero, L. M. T., Sensi, S. L., Weiss, J. H., Goldberg, M. P., and Choi, D. W. (1994) Cortical neurones exhibiting kainate-activated Coe+ uptake are selectively vulnerable to AMPA/kainate receptor-mediated toxicity. Neurobiol. Dis. 1, 101–110.

    Article  PubMed  CAS  Google Scholar 

  31. Yu, S. P. and Choi, D. W. (1997) Na+-Ca2+ exchange currents in cortical neurons: concomitant forward and reverse operation and effect of glutamate. Eur. J. Neurosci. 9, 1273–1281.

    Article  PubMed  CAS  Google Scholar 

  32. Hartley. D. M., Kurth, M. C., Bjerkness, L., Weiss, J. H., and Choi, D. W. (1993) Glutamate receptor-induced 45Ca2+ accumulation in cortical cell culture correlates with subsequent neuronal degeneration. J. Neurosci. 13, 1993–2000.

    Google Scholar 

  33. Hyrc, K., Handran, S. D., Rothman, S. M., and Goldberg, M. P. (1997) Ionized intracellular calcium concentration predicts excitotoxic neuronal death: observations with low-affinity fluorescent calcium indicators. J. Neurosci. 17, 6669–6677.

    PubMed  CAS  Google Scholar 

  34. Grimwood, S., Gilbert, E., Ragan, C. I., and Hutson, P. H. (1996) Modulation of 45Ca2+ influx into cells stably expressing recombinant human NMDA receptors by ligands acting at distinct recognition sites. J. Neurochem. 66, 2589–2595.

    Article  PubMed  CAS  Google Scholar 

  35. Grant, E. R., Bacskai, B. J., Pleasure, D. E., Pritchett, D. B., Gallagher, M. J., Kendrick, S. J., et al. (1997) N-Methyl-Daspartate receptors expressed in a nonneuronal cell line mediate subunit-specific increases in free intracellular calcium. J. Biol. Chem. 272, 647–656.

    Article  PubMed  CAS  Google Scholar 

  36. Dugan, L. L., Sensi, S. L., Canzoniero, L. M., Handran, S. D., Rothman, S. M., Lin, T. S., et al. (1995) Mitochondrial production of reactive oxygen species in cortical neurons following exposure to N-methyl-n-aspartate. J. Neurosci. 15, 6377–6388.

    PubMed  CAS  Google Scholar 

  37. Reynolds, I. J. and Hastings, T. G. (1995) Glutamate induces the production of reactive oxygen species in cultured forebrain neurons following NMDA receptor activation. J. Neurosci. 15, 3318–3327.

    PubMed  CAS  Google Scholar 

  38. White, R. J. and Reynolds, I. J. (1995) Mitochondria and Na+/Ca2+ exchange buffer glutamate-induced calcium loads in cultured cortical neurons. J. Neurosci. 15, 1318–1328.

    PubMed  CAS  Google Scholar 

  39. Schinder, A. F., Olson, E. C., Spitzer, N. C., and Montai, M. (1996) Mitochondria] dysfunction is a primacy event in glutamate neurotoxicity. J. Neurosci. 16, 6125–6133.

    PubMed  CAS  Google Scholar 

  40. White, R. J. and Reynolds. I. J. (1996) Mitochondrial depolarization in glutamate-stimulated neurons: an early signal specific to excitotoxin exposure. J. Neurosci. 16, 5688–5697.

    PubMed  CAS  Google Scholar 

  41. Dykens, J. A., Stem, A., and Trenkner, E. (1987) Mechanism of kainate toxicity to cerebellar neurons in vitro is analogous to reperfusion tissue injury. J. Neurochem. 49, 1222–1228.

    Article  PubMed  CAS  Google Scholar 

  42. Monyer, H. Hartley, D. M., and Choi, D. W. (1990) 21-Aminosteroids attenuate excitotoxic neuronal injury in cortical cell cultures. Neuron 5 121–126.

    Google Scholar 

  43. Siman, R. Noszek, J. C., and Kegerise, C. (1989) Calpain I activation is specifically related to excitatory amino acid induction of hippocampal damage. J. Neurosci. 9 1579–1590.

    Google Scholar 

  44. Lee, K. S., Frank, S., Vanderklish, P., Arai, A., and Lynch, G. (1991) Inhibition of proteolysis protects hippocampal neurons from ischemia. Proc. Natl. Acad. Sci. USA 88, 7233–7237.

    Article  PubMed  CAS  Google Scholar 

  45. Brorson, J. R., Manzolillo, P. A., and Miller, R. J. (1994) Cat} entry via AMPA/KA receptors and excitotoxicity in cultured cerebellar Purkinje cells. J. Neurosci. 14, 187–197.

    PubMed  CAS  Google Scholar 

  46. Dessi, F., Charriaut-Marlangue, C., Khrestchatisky, M., and Ben-Ari, Y. (1993) Glutamate-induced neuronal death is not a programmed cell death in cerebellar culture. J. Neurochem. 60, 1953–1955.

    Article  PubMed  CAS  Google Scholar 

  47. Regan, R. F., Panter, S. S., Witz, A., Tilly, J. L., and Giffard, R. G. (1995) Ultrastructure of excitotoxic neuronal death in murine cortical culture. Brain Res. 705, 188–198.

    Article  PubMed  CAS  Google Scholar 

  48. Gottron, F. J., Ying, H. S., and Choi, D. W. (1997) Caspase inhibition selectively reduces the apoptotic component of oxygen-glucose deprivation-induced cortical neuronal cell death. Mol. Cell. Neurosci. 9, 159–169.

    Article  PubMed  CAS  Google Scholar 

  49. Gwag, B. J., Koh, J. Y., DeMaro, J. A., Ying, H. S., Jacquin, M., and Choi, D. W. (1997) Slowly triggered excitotoxicity occurs by necrosis in cortical cultures. Neuroscience 77, 393–401.

    Google Scholar 

  50. Ankarcrona, M., Dypbukt, J. M., Bonfoco, E., Zhivotovsky, B., Orrenius, S., Lipton, S. A., et al. (1995) Glutamate-induced neuronal death: a succession of necrosis or apoptosis depending on mitochondrial function. Neuron 15, 961–973.

    Article  PubMed  CAS  Google Scholar 

  51. Bonfoco, E., Krainc, D., Ankarcrona, M., Nicotera, P., and Lipton, S. A. (1995) Apoptosis and necrosis: two distinct events induced, respectively, by mild and intense insults with N-methyl-D-aspartate or nitric oxide/superoxide in cortical cell cultures. Proc. Natl. Acad. Sci. USA 92, 7162–7166.

    Article  PubMed  CAS  Google Scholar 

  52. Simonian, N. A., Getz, R. L., Leveque, J. C., Konradi, C., and Coyle, J. T. (1996) Kainate induces apoptosis in neurons. Neuroscience 74, 675–683.

    Article  PubMed  CAS  Google Scholar 

  53. Didier, M., Bursztajn, S., Adamec, E., Passani, L., Nixon, R. A., Coyle, J. T., et al. (1996) DNA strand breaks induced by sustained glutamate excitotoxicity in primary neuronal cultures. J. Neurosci. 16, 2238–2250.

    PubMed  CAS  Google Scholar 

  54. Dreyer, E. B., Zhang, D., and Lipton, S. A. (1995) Transcriptional or translational inhibition blocks low dose NMDA-mediated cell death. Neuroreport 6, 942–944.

    Google Scholar 

  55. Finiels, F., Robert, J. J., Samolyk, M. L., Privat, A., Mallet, J., and Revah, F. (1995) Induction of neuronal apoptosis by excitotoxins associated with long-lasting increase of 12-O-tetradecanoylphorbol 13-acetate-responsive element-binding activity. J. Neurochem. 65, 1027–1034.

    Article  PubMed  CAS  Google Scholar 

  56. Tenneti, L. D’Emilia, D. M., Troy, C. M., and Lipton, S. A. (1998) Role of caspases in N-methyl-n-aspartate-induced apoptosis in cerebrocortical neurons. J. Neurochem. 71 946–959.

    Google Scholar 

  57. Xiang, H. Kinoshita, Y., Knudson, C. M., Korsmeyer, S. J., Schwartzkroin, P. A., and Morrison, R. S. (1998) Bax involvement in p53-mediated neuronal cell death. J. Neurosci. 18 1363–1373.

    Google Scholar 

  58. McDonald, J. W., Behrens, M. I., Chung, C., Bhattacharyya, T., and Choi, D. W. (1997) Susceptibility to apoptosis is enhanced in immature cortical neurons. Brain Res. 759, 228–232.

    Article  PubMed  CAS  Google Scholar 

  59. Frederickson, C. J. (1989) Neurobiology of zinc and zinc-containing neurons. Int. Rev. Neurobiol. 31, 145–238.

    Article  PubMed  CAS  Google Scholar 

  60. Lee, J. M., Zipfel, G. J., and Choi, D. W. (1999) The changing landscape of ischaemic brain injury mechanisms. Nature 399, A7 - A14.

    Article  PubMed  CAS  Google Scholar 

  61. Weiss, J. H., Sensi, S. L., and Koh, J. Y. (2000) Zn2+: a novel ionic mediator of neural injury in brain disease. Trends Pharmacol. Sci. 21, 395–401.

    Article  PubMed  CAS  Google Scholar 

  62. Peters, S., Koh, J.-Y., and Choi, D. W. (1987) Zinc selectively blocks the action of N-methyl-n-aspartate on cortical neurons. Science 236, 589–593.

    Article  PubMed  CAS  Google Scholar 

  63. Westbrook, G. L. and Mayer, M. L. (1987) Micromolar concentrations of Zn2+ antagonize NMDA and GABA responses of hippocampal neurons. Nature 328, 640–643.

    Article  PubMed  CAS  Google Scholar 

  64. Christine, C. W. and Choi, D. W. (1988) Zinc alters NMDA receptor-mediated channel events on cortical neurons. Neurology 38 (Suppl), 274–275.

    Google Scholar 

  65. Smart, T. G., Xie, X., and Krishek, B. J. (1994) Modulation of inhibitory and excitatory amino acid receptor ion channels by zinc. Prog. Neurobiol. 42, 393–441.

    Article  PubMed  CAS  Google Scholar 

  66. Manzerra, P., Behrens, M. I., Canzoniero, L. M., Wang. X. Q., Heidinger, V., Ichinose, T., et al. (2001) Zinc induces a Src family kinase-mediated upregulation of NMDA receptor activity and excitotoxicit. Proc. Natl. Acad. Sci. USA 98, 11051–11061.

    Google Scholar 

  67. Choi, D. W. and Koh, J. Y. (1998) Zinc and brain injury. Annu. Rev. Neurosci. 21, 347–375.

    Article  PubMed  CAS  Google Scholar 

  68. Tonder, N., Johansen, F. F., Frederickson, C. J., Zimmer, J., and Diemer, N. H. (1990) Possible role of zinc in the selective degeneration of dentate hilar neurons after cerebral ischemia in the adult rat. Neurosci. Lett. 109, 247–252.

    Google Scholar 

  69. Koh, J.-Y., Suh, S. W., Gwag, B. J., He, Y. Y., Hsu, C. Y., and Choi, D. W. (1996) The role of zinc in selective neuronal death after transient global cerebral ischemia. Science 272, 1013–1016.

    Article  PubMed  CAS  Google Scholar 

  70. Frederickson, C. J., Hernandez, M. D., Goik, S. A., Morton, J. D., and McGinty. J. F. (1988) Loss of zinc staining from hippocampal mossy fibers during kainic acid induced seizures: a histofluorescence study. Brain Res. 446, 383–386.

    Article  PubMed  CAS  Google Scholar 

  71. Frederickson. C. J., Hernandez, M. D., and McGinty, J. F. (1989) Translocation of zinc may contribute to seizure-induced death of neurons. Brain Res. 480, 317–321.

    Article  Google Scholar 

  72. Yu. S. P., Yeh, C. H., Sensi, S. L., Gwag, B. J., Canzoniero, L. M., Farhangrazi, Z. S., et al. (1997) Mediation of neuronal apoptosis by enhancement of outward potassium current. Science 278, 114–117.

    Article  Google Scholar 

  73. Yu, S. P., Farhangrazi, Z. S., Ying, H. S., Yeh, C. H., and Choi, D. W. (1998) Enhancement of outward potassium current may participate in beta-amyloid peptide-induced cortical neuronal death. Neurobiol. Dis. 5, 81–88.

    Article  PubMed  CAS  Google Scholar 

  74. Yu, S. P., Yeh, C., Strasser, U., Tian, M., and Choi, D. W. (1999) NMDA receptor-mediated K’ efflux and neuronal apoptosis. Science 284, 336–339.

    Article  PubMed  CAS  Google Scholar 

  75. Choi, D. W., Yu, S. P., Wei, L., and Gottron, F. (1998) Potassium channel blockers attenuate neuronal deaths induced by hypoxic insults in cortical culture and transient focal ischemia in the rat. Soc. Neurosci. Abst. 24, 1226.

    Google Scholar 

  76. Huang, H., Gao, T. M., Gong, L. W., Zhuang, Z. Y., and Li, X. M. (2001) Potassium channel blocker TEA prevents CAI hippocampal injury following transient forebrain ischemia in adult rats. Neurosci. Lett. 305, 83–86.

    Article  PubMed  CAS  Google Scholar 

  77. Goldberg, M. P., Weiss., J. H., Pham, P. C., and Choi, D. W. (1987) N-Methyl-D-aspartate receptors mediate hypoxic neuronal injury in cortical culture. J. Pharmacol. Exp. Ther. 243, 784–791.

    PubMed  CAS  Google Scholar 

  78. Kaku, D. A., Goldberg, M. P., and Choi, D. W. (1991) Antagonism of non-NMDA receptors augments the neuroprotective effect of NMDA receptor blockade in cortical cultures subjected to prolonged deprivation of oxygen and glucose. Brain Res. 554, 344–347.

    Article  PubMed  CAS  Google Scholar 

  79. Storgaard, J., Kornblit, B. T., Zimmer, J., and Gramsbergen, J. B. (2000) 3-Nitropropionic acid neurotoxicity in organotypic striatal and corticostriatal slice cultures is dependent on glucose and glutamate. Exp. Neurol. 164, 227–235.

    Google Scholar 

  80. Goldberg, M. P. and Choi, D. W. (1990) Intracellular free calcium increases in cultured cortical neurons deprived of oxygen and glucose. Stroke 21, I1I75–I1I7.

    Google Scholar 

  81. Goldberg, M. P. and Choi, D. W. (1993) Combined oxygen and glucose deprivation in cortical cell culture: calcium-dependent and calcium-independent mechanisms of neuronal injury. J. Neurosci. 13, 3510–3524.

    PubMed  CAS  Google Scholar 

  82. Benveniste, H., Drejer, J., Schousboe, A., and Diemer, N. H. (1984) Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J Neurochem. 43, 1369–1374.

    Article  PubMed  CAS  Google Scholar 

  83. Meldrum, B. S. (1994) The role of glutamate in epilepsy and other CNS disorders. Neurology 44, S 14 - S23.

    Google Scholar 

  84. Katayama, Y., Becker, D. P., Tamura, T., and Hovda, D. A. (1990) Massive increases in extracellular potassium and the indiscriminate release of glutamate following concussive brain injury. J. Neurosurg. 73, 889–900.

    Article  PubMed  CAS  Google Scholar 

  85. Buchan, A. M., Lesiuk, H., Barnes, K. A., Li, H., Huang, Z. G., Smith, K. E., et al. (1993) AMPA antagonists: do they hold more promise for clinical stroke trials than NMDA antagonists? Stroke 24, 1148 - I152.

    Article  Google Scholar 

  86. Sheardown, M. J., Nielsen, E. O., Hansen, A. J., Jacobsen, P., and Honore, T. (1990) 2,3-Dihydroxy-6-nitro-7-sulfamoylbenzo(F)quinoxaline: a neuroprotectant for cerebral ischemia. Science 247, 571–574.

    Google Scholar 

  87. Diemer, N. H., Jorgensen, M. B., Johansen, E F., Sheardown, M., and Honore, T. (1992) Protection against ischemic hippocampal CAl damage in the rat with a new non-NMDA antagonist, NBQX. Acta Neurol. Scand. 86, 45–49.

    Article  PubMed  CAS  Google Scholar 

  88. Nellgard, B. and Wieloch, T. (1992) Postischemic blockade of AMPA but not NMDA receptors mitigates neuronal damage in the rat brain following transient severe cerebral ischemia. J. Cereb, Blood Flow Metab. 12, 2–11.

    Article  CAS  Google Scholar 

  89. Buchan, A. M., Xue, D., Huang, Z. G., Smith, K. H., and Lesiuk, H. (1991) Delayed AMPA receptor blockade reduces cerebral infarction induced by focal ischemia. Neuroreport 2, 473–476.

    Article  PubMed  CAS  Google Scholar 

  90. Gill, R., Nordholm, L., and Lodge, D. (1992) The neuroprotective actions of 2,3-dihydroxy-6-nitro-7-sulfamoylbenzo(F)quinoxaline (NBQX) in a rat focal ischaemia model. Brain Res. 580, 35–43.

    Article  PubMed  CAS  Google Scholar 

  91. Gotti, B., Duverger, D., Bertin, J., Carter, C., Dupont, R., Frost, J., et al. (1988) Ifenprodil and SL 82.0715 as cerebral antiischemic agents. I. Evidence for efficacy in models of focal cerebral ischemia. Z Pharmacol. Exp. Thee. 247, 1211–1221.

    CAS  Google Scholar 

  92. Ozyurt, E., Graham, D. I., Woodruff, G. N., and McCulloch, J. (1988) Protective effect of the glutamate antagonist, MK-801 in focal cerebral ischemia in the cat. J. Cereb. Blood Flow Metab. 8, 138–143.

    Article  PubMed  CAS  Google Scholar 

  93. Park, C. K., Nehis, D. G., Graham, D. I., Teasdale, G. M., and McCulloch, J. (1988) The glutamate antagonist MK-801 reduces focal ischemic brain damage in the rat. Ann. Neurol. 24, 543–551.

    Article  PubMed  CAS  Google Scholar 

  94. Hayes. R. L., Jenkins, L. W., Lyeth, B. G., Balster, R. L., Robinson, S. E., Clifton, G. L., et al. (1988) Pretreatment with phencyclidine, an N-methyl-o-aspartate antagonist, attenuates long-term behavioral deficits in the rat produced by traumatic brain injury. J. Neurotrauma 5, 259–274.

    Article  Google Scholar 

  95. Faden, A. I., Demediuk, P., Panter, S. S., and Vink, R. (1989) The role of excitatory amino acids and NMDA receptors in traumatic brain injury. Science 244, 798–800.

    Article  PubMed  CAS  Google Scholar 

  96. Wrathall, J. R., Teng, Y. D., Choiniere, D., and Mundt, D. J. (1992) Evidence that local non-NMDA receptors contribute to functional deficits in contusive spinal cord injury. Brain Res. 586, 140–143.

    Article  PubMed  CAS  Google Scholar 

  97. Novelli, A., Reilly, J. A., Lysko. P. G., and Henneberry, R. C. (1988) Glutamate becomes neurotoxic via the N-methyl-Daspartate receptor when intracellular energy levels are reduced. Brain Res. 451, 205–212.

    Article  PubMed  CAS  Google Scholar 

  98. Beal, M. F. (2000) Energetics in the pathogenesis of neurodegenerative diseases. Trends Neurosci. 23, 298–304.

    Article  PubMed  CAS  Google Scholar 

  99. Nicholls, D. G., and Ward, M. W. (2000) Mitochondrial membrane potential and neuronal glutamate excitotoxicity: mortality and millivolts. Trends Neurosci. 23, 166–174.

    Article  PubMed  CAS  Google Scholar 

  100. Ward, M. W., Rego, A. C., Frenguelli, B. G., and Nicholls, D. G. (2000) Mitochondrial membrane potential and glutamate excitotoxicity in cultured cerebellar granule cells. J. Neurosci. 20, 7208–7219.

    PubMed  CAS  Google Scholar 

  101. Sun, Y., Savanenin, A., Reddy, P. H., and Liu, Y. F. (2001) Polyglutamine-expanded huntingtin promotes sensitization of Nmethyl-o-aspartate receptors via post-synaptic density 95. J. Biol. Chem. 276, 24,713–24, 718.

    Google Scholar 

  102. Greenamyre, J. T. (1991) Neuronal bioenergetic defects, excitotoxicity and Alzheimer’s disease: “use it and lose it”. Neurobiol. Aging 12, 334–336; discussion 352–355.

    Google Scholar 

  103. Harkany, T., Abraham. I., Konya, C., Nyakas, C., Zarandi, M., Penke, B., et al. (2000) Mechanisms of beta-amyloid neuro-toxicity: perspectives of pharmacotherapy. Rev. Neurosci. 11, 329–382.

    PubMed  CAS  Google Scholar 

  104. Dickie, B. G., Holmes, C., and Greenfield, S. A. (1996) Neurotoxic and neurotrophic effects of chronic N-methyl-D-aspartate exposure upon mesencephalic dopaminergic neurons in organotypic culture. Neuroscience 72, 731–741.

    Article  PubMed  CAS  Google Scholar 

  105. Beal, M. F. (1998) Excitotoxicity and nitric oxide in Parkinson’s disease pathogenesis. Ann. Neurol. 44, S110 — S114.

    Article  PubMed  CAS  Google Scholar 

  106. Rothstein, J. D., Martin, L. J., and Kuncl, R. W. (1992) Decreased glutamate transport by the brain and spinal cord in amyotrophic lateral sclerosis. N. Engl. J. Med. 326, 1464–1468.

    Article  Google Scholar 

  107. Ferrer, I., Martin, F., Serrano, T., Reiriz, J., Perez-Navarro, E., Alberch, J., et al. (1995) Both apoptosis and necrosis occur following intrastriatal administration of excitotoxins. Acta Neuropathol. 90, 504–510.

    Article  Google Scholar 

  108. Portera-Cailliau, C., Hedreen, J. C., Price, D. L., and Koliatsos, V. E. (1995) Evidence for apoptotic cell death in Huntington disease and excitotoxic animal models. J. Neurosci. 15, 3775–3787.

    Google Scholar 

  109. Qin, Z. H., Wang, Y., and Chase, T. N. (1996) Stimulation of N-methyl-D-aspartate receptors induces apoptosis in rat brain. Brain Res. 725, 166–176.

    Google Scholar 

  110. Portera-Cailliau, C., Price, D. L., and Martin, L. J. (1997) Excitotoxic neuronal death in the immature brain is an apoptosis—necrosis morphological continuum. J. Comp. Neural. 378, 70–87.

    Google Scholar 

  111. Kirino, T. (1982) Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res. 239, 57–69.

    Article  PubMed  CAS  Google Scholar 

  112. Pulsinelli, W. A., Brierley, J. B., and Plum, F. (1982) Temporal profile of neuronal damage in a model of transient forebrain ischemia. Ann. Neurol. 11, 491–498.

    Article  PubMed  CAS  Google Scholar 

  113. Zeng, Y. S. and Xu, Z. C. (2000) Co-existence of necrosis and apoptosis in rat hippocampus following transient forebrain ischemia. Neurosci. Res. 37, 113–125.

    Article  PubMed  CAS  Google Scholar 

  114. Lipton, P. (1999) Ischemic cell death in brain neurons. Physiol. Rev. 79, 1431–1568.

    PubMed  CAS  Google Scholar 

  115. Kitagawa, K., Matsumoto, M., Tsujimoto, Y., Ohtsuki, T., Kuwabara, K., Matsushita, K., et al. (1998) Amelioration of hippocampal neuronal damage after global ischemia by neuronal overexpression of BCL-2 in transgenic mice. Stroke 29, 2616–2621.

    Article  PubMed  CAS  Google Scholar 

  116. Gillardon, F., Kiprianova, I., Sandkuhler, J., Hossmann, K.-A., and Spranger, M. (1999) Inhibition of caspases prevents cell death of hippocampal CA1 neurons, but not impairment of hippocampal long-term potentiation following global ischemia. Neuroscience 93, 1219–1222.

    Article  PubMed  CAS  Google Scholar 

  117. Du, C., Hu, R., Csernansky, C. A., Hsu, C. Y., and Choi, D. W. (1996) Very delayed infarction after mild focal cerebral ischemia: a role for apoptosis? J. Cereb. Blood Flow Metab. 16, 195–201.

    Article  PubMed  CAS  Google Scholar 

  118. Endres, M., Wang, Z. Q., Namura, S., Waeber, C., and Moskowitz, M. A. (1997) Ischemic brain injury is mediated by the activation of poly(ADP- ribose)polymerase. J. Cereb. Blood Flow Metab. 17, 1143–1151.

    Article  PubMed  CAS  Google Scholar 

  119. Fink, K., Zhu, J., Namura, S., Shimizu-Sasamata, M., Endres, M., Ma, J., et al. (1998) Prolonged therapeutic window for ischemic brain damage caused by delayed caspase activation. J. Cereb. Blood Flow Metab. 18, 1071–1076.

    Article  PubMed  CAS  Google Scholar 

  120. Snider, B. J., Du, C., Wei, L., and Choi, D. W. (2001) Cycloheximide reduces infarct volume when administered up to six hours after mild focal ischemia in rats. Brain Res. 917, 147–157.

    Article  PubMed  CAS  Google Scholar 

  121. Rink, A., Fung, K. M., Trojanowski, J. Q., Lee, V. M., Neugebauer, E., and McIntosh, T. K. (1995) Evidence of apoptotic cell death after experimental traumatic brain injury in the rat. Am. J. Pathol. 147, 1575–1583.

    PubMed  CAS  Google Scholar 

  122. Crowe, M. J., Bresnahan, J. C., Shuman, S. L., Masters, J. N., and Beattie, M. S. (1997) Apoptosis and delayed degeneration after spinal cord injury in rats and monkeys. Nat. Med. 3, 73–76.

    Article  PubMed  CAS  Google Scholar 

  123. Liu, X. Z., Xu, X. M., Hu, R., Du, C., Zhang, S. X., McDonald, J. W., et al. (1997) Neuronal and glial apoptosis after traumatic spinal cord injury. J. Neurosci. 17, 5395–5406.

    PubMed  CAS  Google Scholar 

  124. Yong, C., Arnold, P. M., Zoubine, M. N., Citron, B. A., Watanabe, I., Berman, N. E., et al. (1998) Apoptosis in cellular compartments of rat spinal cord after severe contusion injury. J. Neurotrauma 15, 459–472.

    Article  PubMed  CAS  Google Scholar 

  125. Lassmann, H., Bancher, C., Breitschopf, H., Wegiel, J., Bobinski, M., Jellinger, K., et al. (1995) Cell death in Alzheimer’s disease evaluated by DNA fragmentation in situ. Acta Neuropathol. (Berl.) 89, 35–41.

    Article  CAS  Google Scholar 

  126. Smale, G., Nichols, N. R., Brady, D. R., Finch, C. E., and Horton, W. E., Jr. (1995) Evidence for apoptotic cell death in Alzheimer’s disease. Exp. Neural. 133, 225–230.

    Article  CAS  Google Scholar 

  127. Anderson, A. J., Su, J. H., and Cotman, C. W. (1996) DNA damage and apoptosis in Alzheimer’s disease: colocalization with c-Jun immunoreactivity, relationship to brain area, and effect of postmortem delay. J. Neurosci. 16, 1710–1719.

    PubMed  CAS  Google Scholar 

  128. Johnson, E. M., Jr., Koike, T., and Franklin, J. (1992) A “calcium set-point hypothesis” of neuronal dependence on neurotrophic factor. Exp. Neurol. 115, 163–166.

    Article  PubMed  Google Scholar 

  129. Koike, T., Martin, D. P., and Johnson, E. M., Jr. (1989) Role of Cat+ channels in the ability of membrane depolarization to prevent neuronal death induced by trophic-factor deprivation: evidence that levels of internal Cat+ determine nerve growth factor dependence of sympathetic ganglion cells. Proc. Natl. Acad, Sci. USA 86, 6421–6425.

    Article  CAS  Google Scholar 

  130. Koike, T. and Tanaka, S. (1991) Evidence that nerve growth factor dependence of sympathetic neurons for survival in vitro may be determined by levels of cytoplasmic free Cat+. Proc. Natl. Acad. Sci. USA 88, 3892–3896.

    Article  PubMed  CAS  Google Scholar 

  131. Lasher, R. S. and Zagon, 1. S. (1972) The effect of potassium on neuronal differentiation in cultures of dissociated newborn rat cerebellum. Brain Res. 41, 482–488.

    Article  PubMed  CAS  Google Scholar 

  132. Pearson, H., Graham, M. E., and Burgoyne, R. D. (1992) Relationship between intracellular free calcium concentration and NMDA-induced cerebellar granule cell survival in vitro. Eur. J. Neurosci. 4, 1369–1375.

    Article  CAS  Google Scholar 

  133. Galli, C., Meucci, O., Scorziello, A., Werge, T. M., Calissano, P., and Schettini, G. (1995) Apoptosis in cerebellar granule cells is blocked by high KC1, forskolin, and IGF-1 through distinct mechanisms of action: the involvement of intracellular calcium and RNA synthesis. J. Neurosci. 15, 1172–1179.

    PubMed  CAS  Google Scholar 

  134. Gallo, V., Kingsbury, A., Balâzs, R., and Jgrgensen, O. S. (1987) The role of depolarization in the survival and differentiation of cerebellar granule cells in culture. J. Neurosci. 7, 2203–2213.

    PubMed  CAS  Google Scholar 

  135. Yan, G.-M., Ni, B., Weller, M., Wood, K. A., and Paul, S. M. (1994) Depolarization or glutamate receptor activation blocks apoptotic cell death of cultured cerebellar granule neurons. Brain Res. 656, 43–51.

    Article  PubMed  CAS  Google Scholar 

  136. Levick, V., Coffey, H., and D’Mello, S. R. (1995) Opposing effects of thapsigargin on the survival of developing cerebellar granule neurons in culture. Brain Res. 676, 325–335.

    Article  PubMed  CAS  Google Scholar 

  137. Babcock, D. J., Gottron, F. J., and Choi, D. W. (1999) Raising intracellular calcium attenuates ischemic apoptosis in vitro. Soc. Neurosci. Abst. 25, 2103.

    Google Scholar 

  138. Terro, F., Esclaire, F., Yardin, C., and Hugon, J. (2000) N-methyl-n-aspartate receptor blockade enhances neuronal apoptosis induced by serum deprivation. Neurosci. Lett. 278, 149–152.

    Article  PubMed  CAS  Google Scholar 

  139. Bansal, N., Houle, A. G., and Melnykovych, G. (1990) Dexamethasone-induced killing of neoplastic cells of lymphoid derivation: lack of early calcium involvement. J. Cell. Physiol. 143, 105–109.

    Article  PubMed  CAS  Google Scholar 

  140. Baffy, G., Miyashita, T., Williamson, J. R., and Reed, J. C. (1993) Apoptosis induced by withdrawal of interleukin-3 (IL-3) from an IL-3-dependent hematopoietic cell line is associated with repartitioning of intracellular calcium and is blocked by enforced Bc1–2 oncoprotein production. J. Biol. Chem. 268, 6511–6519.

    PubMed  CAS  Google Scholar 

  141. Kluck, R. M., McDougall, C. A., Harmon, B. V., and Haliday, J. W. (1994) Calcium chelators induce apoptosis evidence that raised intracellular ionised calcium is not essential for apoptosis. Biochim. Biophys. Acta 1223, 247–254.

    Article  PubMed  CAS  Google Scholar 

  142. Zhu, W.-H. and Loh, T.-T. (1995) Roles of calcium in the regulation of apoptosis in HL-60 promyelocytic leukemia cells. Life Sci. 57, 2091–2099.

    Article  PubMed  CAS  Google Scholar 

  143. Chiesa, R., Angeretti, N., Del Bo, R., Lucca, E., Munna, E., and Forloni, G. (1998) Extracellular calcium deprivation in astrocytes: regulation of mRNA expression and apoptosis. J. Neurochem. 70, 1474–1483.

    Article  PubMed  CAS  Google Scholar 

  144. Lam, M., Dubyak, G., and Distelhorst, C. W. (1993) Effect of glucocorticosteroid treatment on intracellular calcium homeostasis in mouse lymphoma cells. Mol. Endocrinol. 7, 686–693.

    Article  PubMed  CAS  Google Scholar 

  145. Bian, X., Hughes, F. M., Jr., Huang, Y., Cidlowski, J. A., and Putney, J. W., Jr. (1997) Roles of cytoplasmic Cat+ and intracellular Cat+ stores in induction and suppression of apoptosis in S49 cells. Am. J. Physiol. 272, C1241 — C1249.

    PubMed  CAS  Google Scholar 

  146. Bennett, M. R. and Huxlin, K. R. (1996) Neuronal cell death in the mammalian nervous system: the calmortin hypothesis. Gen Pharmacol. 27, 407–419.

    Article  PubMed  CAS  Google Scholar 

  147. McConkey, D. J. and Orrenius, S. (1997) The role of calcium in the regulation of apoptosis. Biochem. Biophys. Res. Com mun. 239, 357–366.

    Article  CAS  Google Scholar 

  148. Distelhorst, C. W. and Dubyak, G. (1998) Role of calcium in glucocorticosteroid-induced apoptosis of thymocytes and lymphoma cells: resurrection of old theories by new findings. Blood 91, 731 734.

    Google Scholar 

  149. Toescu, E. C. (1998) Apoptosis and cell death in neuronal cells: where does Cat+ fit in? Cell Calcium 24, 387–403.

    Article  PubMed  CAS  Google Scholar 

  150. Yu, S. R. and Choi, D. W. (2000) Ions, cell volume, and apoptosis. Proc. Natl. Acad. Sci. USA 97, 9360–9362.

    Article  PubMed  CAS  Google Scholar 

  151. Olney, J. W., Labruyere, J., and Price, M. T. (1989) Pathological changes induced in cerebrocortical neurons by phencyclidine and related drugs. Science 244, 1360–1362.

    Article  PubMed  CAS  Google Scholar 

  152. Onley, J. W., Labruyere, J., Wang, G., Wozniak, D. F., Price, M. T., and Sesma, M. A. (1991) NMDA antagonist neurotoxicity: mechanism and prevention. Science 254, 1515–1518.

    Article  Google Scholar 

  153. Sharp, F. R., Butman, M., Koistinaho, J., Aardalen, K., Nakki, R., Massa, S. M., et al. (1994) Phencyclidine induction of the hsp 70 stress gene in injured pyramidal neurons is mediated via multiple receptors and voltage gated calcium channels. Neuroscience 62, 1079–1092.

    Article  PubMed  CAS  Google Scholar 

  154. Hwang, J. Y., Kim, Y. H., Ahn, Y. H., Wie, M. B., and Koh, J. Y. (1999) N-Methyl-n-aspartate receptor blockade induces neuronal apoptosis in cortical culture. Exp. Neurol. 159, 124–130.

    Article  PubMed  CAS  Google Scholar 

  155. Ikonomidou, C., Bosch, F., Miksa, M., Bittigau, P., Vockler, J., Dikranian, K., et al. (1999) Blockade of NMDA receptors and apoptotic neurodegeneration in the developing brain. Science 283, 70–74.

    Article  PubMed  CAS  Google Scholar 

  156. Ikonomidou, C., Bittigau, P., Ishimaru, M. J., Wozniak, D. F., Koch, C., Genz, K., et al. (2000) Ethanol-induced apoptotic neurodegeneration and fetal alcohol syndrome. Science 287, 1056–1060.

    Article  PubMed  CAS  Google Scholar 

  157. Phol, D., Bittigau, P., Ishimaru, M. J., Stadthaus, D., Hubner, C., Onley, J. W., et al. (1999) N-methyl-n-aspartate antagonists and apoptotic cell death triggered by head trauma in developing rat brain. Proc. Natl. Acad. Sci. USA 96, 2508–2573.

    Article  Google Scholar 

  158. Davis, S. M., Lees, K. R., Albers, G. W., Diener, H. C., Markabi, S., Karlsson, G. et al. (2000) Selfotel in acute ischemic stroke: possible neurotoxic effects of an NMDA antagonist. Stroke 31, 347–354.

    Article  PubMed  CAS  Google Scholar 

  159. Kieburtz, K., Feigin, A., McDermott, M., Como, P., Abwender, D., Zimmerman, C., et al. (1996) A controlled trial of remacemide hydrochloride in Huntington’s disease. Mov. Cement Disord. 11, 273–277.

    Article  CAS  Google Scholar 

  160. Murman, D. L., Giordani, B., Mellow, A. M., Johanns, J. R., Little, R. J. A., Hariharan, M., et al. (1997) Cognitive, behavioral, and motor effects of the NMDA antagonist ketamine in Huntington’s disease. Neurology 49, 153–161.

    Article  PubMed  CAS  Google Scholar 

  161. Snider, B. J., Tee, L. Y., Canzoniero, L. M., and Choi, D. W. (2002) NMDA antagonists exacerbate neuronal death caused by proteasome inhibition in cultured cortical and striatal neurons. Eur. J. Neurosci. 15, 419–428.

    Article  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Snider, B.J., Choi, D.W. (2002). Glutamate and Neurotoxicity. In: Herman, B.H., Frankenheim, J., Litten, R.Z., Sheridan, P.H., Weight, F.F., Zukin, S.R. (eds) Glutamate and Addiction. Contemporary Clinical Neuroscience. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-306-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-306-4_3

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-234-6

  • Online ISBN: 978-1-59259-306-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics