Skip to main content

Mechanism of Action of Acamprosate Focusing on the Glutamatergic System

  • Chapter
Glutamate and Addiction

Part of the book series: Contemporary Clinical Neuroscience ((CCNE))

  • 225 Accesses

Abstract

The taurine analog acamprosate (calcium acetylhomotaurinate) has received considerable attention in Europe for its ability to prevent relapse in abstained alcoholics [(1); Chapter 28] and has been suggested to act by reducing craving associated with conditioned withdrawal (2,3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Garbutt, J. C., West, S. L., Carey, T. S., Lohr, K. N., and Crews, F. T. (1999) Pharmacological treatment of alcohol dependence: a review of the evidence. J. Am. Med. Assoc. 281, 1318–1325.

    Article  CAS  Google Scholar 

  2. Littleton, J. (1995) Acamprosate in alcohol dependence: how does it work? Addiction 90, 1179–1188.

    Article  PubMed  CAS  Google Scholar 

  3. Spanagel, R. and Zieglgänsberger, W. (1997) Anti-craving compounds for ethanol: new pharmacological tools to study addictive processes. Trends Pharmacol. Sci. 18, 54–59.

    CAS  Google Scholar 

  4. Spanagel, R. and Holter, S. M. (1999) Long-term alcohol self-administration with repeated alcohol deprivation phases: an animal model of alcoholism? Alcohol Alcohol. 34, 231–243.

    Article  PubMed  CAS  Google Scholar 

  5. Spanagel, R. and Holter, S. M. (2000) Pharmacological validation of a new animal model of alcoholism, J. Neural Transm. 107, 669–680.

    Article  PubMed  CAS  Google Scholar 

  6. Spanagel, R., Holter, S. M., Allingham, K., Landgraf, R., and Zieglgansberger, W. (1996) Acamprosate and alcohol: I. Effects on alcohol intake following alcohol deprivation in the rat. Eur. J. Pharmacol. 305, 39–44.

    Article  PubMed  CAS  Google Scholar 

  7. Holter, S. M., Landgraf, R., Zieglgänsberger, W., and Spanagel, R. (1997) Time course of acamprosate action on operant ethanol self-administration after ethanol deprivation. Alcohol. Clin. Exp. Res. 21, 862–868.

    Article  PubMed  CAS  Google Scholar 

  8. Heyser, C. J., Schulteis, G., Durbin, P., and Koob, G. F. (1998) Chronic acamprosate eliminates the alcohol deprivation effect while having limited effects on baseline responding for ethanol in rats. Neuropsychopharmacology. 18, 125–133.

    Article  PubMed  CAS  Google Scholar 

  9. Cole, J. C., Littleton, J. M., and Little, H. J. (2000) Acamprosate, but not naltrexone, inhibits conditioned abstinence behaviour associated with repeated ethanol administration and exposure to a plus-maze. Psychopharmacology 147, 403–411.

    Article  PubMed  CAS  Google Scholar 

  10. Boismare, F., Daoust, M., Moore, N., (1984) A homotaurine derivative reduces the voluntary intake of ethanol by rats: are cerebral GABA receptors involved? Pharmacol. Biochem. Behay. 21, 787–789.

    Article  CAS  Google Scholar 

  11. Daoust, M., Lhuintre, J. P., Saligaut, C., Moore, N., Flipo, J. L., Boismare, F. (1987) Noradrenaline and GABA brain receptors are co-involved in the voluntary intake of ethanol by rats. Alcohol Alcohol. 1 (Suppl.), 319–322.

    CAS  Google Scholar 

  12. Daoust, M., Legrand, E., Gewiss, M., (1992) Acamprosate modulates synaptosomal GABA transmission in chronically alcoholised rats. Pharmacol. Biochem. Behay. 41, 669–674.

    Article  CAS  Google Scholar 

  13. Rassnick, S., D’Amico, E., Riley, E., Pulvirenti, L., Zieglgänsberger, W., and Koob, G. F. (1992) GABA and nucleus accumbens glutamate neurotransmission modulate ethanol self-administration in rats. Ann. NYAcad. Sci. 654, 502–505.

    Article  CAS  Google Scholar 

  14. Danysz, W., Parsons, C. G., Bresink, I., and Quack, G. (1995) Glutamate in CNS disorders: a revived target for drug development? Drug News Perspect. 8, 261–277.

    Google Scholar 

  15. Parsons, C. G., Danysz, W., and Quack, G. (1998) Glutamate in CNS disorders as a target for drug development: an update. Drug News Perspect. 11, 523–569.

    Article  PubMed  CAS  Google Scholar 

  16. Danysz, W. and Parsons, C. G. (1998) Glycine and N-methyl-n-aspartate receptors: physiological significance and possible therapeutic applications. Pharmacol. Rev. 50, 597–664.

    PubMed  CAS  Google Scholar 

  17. Hollmann, M. and Heinemann, S. (1994) Cloned glutamate receptors. Annu. Rev. Neurosci. 17, 31–108.

    Article  PubMed  CAS  Google Scholar 

  18. McBain, C. J. and Mayer, M. L. (1994) N-Methyl-n-aspartic acid receptor structure and function. Physiol. Rev. 74, 723–760.

    Article  PubMed  CAS  Google Scholar 

  19. Seeburg, P. H. (1993) The molecular biology of mammalian glutamate receptor channels. Trends Pharmacol. Sci. 14, 297–303.

    CAS  Google Scholar 

  20. Laube, B., Hirai, H., Sturgess, M., Betz, H., and Kuhse, J. (1997) Molecular determinants of agonist discrimination by NMDA receptor subunits: analysis of the glutamate binding site on the NR2B subunit. Neuron 18, 493–503.

    Article  PubMed  CAS  Google Scholar 

  21. Hirai, H., Kirsch, J., Laube, B., Betz, H., and Kuhse, J., (1996) The glycine binding site of the N-methyl-D-aspartate receptor subunit NR1: identification of novel determinants of co-agonist potentiation in the extracellular M3–M4 loop region. Proc. Natl. Acad. Sci. USA 93, 6031–6036.

    Article  PubMed  CAS  Google Scholar 

  22. Das, S., Sasaki, Y. F., Rothe, T., (1998) Increased NMDA current and spine density in mice lacking the NMDA receptor subunit NR3A. Nature 393, 377–381.

    Article  PubMed  CAS  Google Scholar 

  23. Durand, G. M., Bennett, M. V., and Zukin, R. S. (1993) Splice variants of the N-methyl-n-aspartate receptor NR1 identify domains involved in regulation by polyamines and protein kinase C. [published erratum appeared in Proc. Natl. Acad. Sci. USA 1993, 90:9739] Proc. Natl. Acad. Sci. USA 90, 6731–6735.

    CAS  Google Scholar 

  24. Zukin, R. S. and Bennett, M. V. L. (1995) Alternatively spliced isoforms of the NMDARI receptor subunit. Trends Neurosci. 18, 306–313.

    Article  PubMed  CAS  Google Scholar 

  25. Barnard, E. A. (1997). Ionotropic glutamate receptors-new types and new concepts. Trends Pharmacol. Sci. 18, 141–148.

    PubMed  CAS  Google Scholar 

  26. Fadda, E., Danysz, W., Wroblewski, J. T., and Costa, E. (1988) Glycine and D-serine increase the affinity of the N-methyl-Daspartate sensitive glutamate binding sites in rat brain synaptic membranes. Neuropharmacology 27, 1183–1185.

    Article  PubMed  CAS  Google Scholar 

  27. Kleckner, N. W. and Dingledine, R. (1988) Requirement for glycine in activation of NMDA receptors expressed in Xenopus oocytes. Science 214, 835–837.

    Article  Google Scholar 

  28. Johnson, J. W. and Ascher, P. (1987) Glycine potentiates the NMDA response in cultured mouse brain neurones. Nature 325, 529–531.

    Article  PubMed  CAS  Google Scholar 

  29. Mayer, M. L., Vyklicky, L. J., and Semagor, E. (1989) A physiologist’s view of the N-methyl-D-aspartate receptor: an allosteric ion channel with multiple regulatory sites. Drug Dey. Res. 17, 263–280.

    Article  CAS  Google Scholar 

  30. Mayer, M. L., Vyklicky, L. J., and Clements, J. (1989) Regulation of NMDA receptor desensitization in mouse hippocampal neurons by glycine. Nature 338, 425–427.

    Article  PubMed  CAS  Google Scholar 

  31. Parsons, C. G., Zong, X. G., and Lux, H. D., (1993) Whole cell and single channel analysis of the kinetics of glycine-sensitive N-methyl-D-aspartate receptor desensitization. Br. J. Pharmacol. 109, 213–221.

    Article  PubMed  CAS  Google Scholar 

  32. Hashimoto, A. and Oka, T. (1997) Free D-aspartate and D-serine in the mammalian brain and periphery. Prog. Neurobiol. 52, 325–353.

    Article  PubMed  CAS  Google Scholar 

  33. Williams, K. (1997) Modulation and block of ion channels: a new biology of polyamines. Cell Signal 9, 1–13.

    Article  PubMed  CAS  Google Scholar 

  34. Johnson, T. D. (1996) Modulation of channel function by polyamines. Trends Pharmacol. Sci. 17, 22–27.

    Article  PubMed  CAS  Google Scholar 

  35. Kashiwagi, K., Pahk, A. J., Masuko, T., Igarashi, K., and Williams, K. (1997) Block and modulation of N-methyl-D-aspartate receptors by polyamines and protons: role of amino acid residues in the transmembrane and pore-forming regions of NR1 and NR2 subunits. Mol. Pharmacol. 52, 701–713.

    PubMed  CAS  Google Scholar 

  36. Williams, K., Zappia, A. M., Pritchett, D. B., Shen, Y. M., and Molinoff, P. B. (1994) Sensitivity of the N-methyl-D-aspartate receptor to polyamines is controlled by NR2 subunits. Mol. Pharmacol. 45, 803–809.

    PubMed  CAS  Google Scholar 

  37. Williams, K. (1994) Mechanisms influencing stimulatory effects of spermine at recombinant N-methyl-D-aspartate receptors. Mol. Pharmacol. 46, 161–168.

    PubMed  CAS  Google Scholar 

  38. Carter, C., Benavides, J., Legendre, P., (1998) Ifenprodil and SL 82.0715 as cerebral anti-ischemic agents. II. Evidence for N-methyl-n-aspartate receptor antagonist properties. J. Phramacol. Exp. Ther. 247, 1222–1232.

    Google Scholar 

  39. Gotti, B., Duverger, D., Bertin, J., (1988) Ifenprodil and SL 82–0715 as cerebral anti-ischemic agents. I. Evidence for efficacy in models of focal cerebral ischemia. J. Pharmacol. Exp. Ther. 247, 1211–1221.

    PubMed  CAS  Google Scholar 

  40. Carter, C., Rivy, J. P., and Scatton, B. (1989) Ifenprodil and SL 82.0715 are antagonists at the polyamine site of the Nmethyl-D-aspartate (NMDA) receptor. Eur. J. Pharmacol. 164, 611–612.

    Article  PubMed  CAS  Google Scholar 

  41. Legendre, P. and Westbrook, G. L. (1991) Ifenprodil blocks N-methyl-D-aspartate receptors by a two-component mechanism. Mol. Pharmacol. 40, 289–298.

    PubMed  CAS  Google Scholar 

  42. Williams, K. (1993) Ifenprodil discriminates subtypes of the N-methyl-D-aspartate receptor-selectivity and mechanisms at recombinant heteromeric receptors. Mol. Pharmacol. 44, 851–859.

    PubMed  CAS  Google Scholar 

  43. Buller, A. L., Larson, H. C., Morrisett, R. A., and Monaghan, D. T. (1995) Glycine modulates ethanol inhibition of heteromeric N-methyl-D-aspartate receptors expressed in Xenopus oocytes. Mol. Pharmacol. 48, 717–723.

    PubMed  CAS  Google Scholar 

  44. Morrisett, R. A. and Swartzwelder, H. S. (1993) Attenuation of hippocampal long-term potentiation by ethanol: a patch-clamp analysis of glutamatergic and GABAergic mechanisms. J. Neurosci. 13, 2264–2272.

    PubMed  CAS  Google Scholar 

  45. Mirshahi, T. and Woodward, J. J. (1995) Ethanol sensitivity of heteromeric NMDA receptors: effects of subunit assembly, glycine and NMDAR1 Mgt+-insensitive mutants. Neuropharmacology 34, 347–355.

    Article  PubMed  CAS  Google Scholar 

  46. Lovinger, D. M. and Zieglgänsberger, W. (1996) Interactions between ethanol and agents that act on the NMDA-type glutamate receptor. Alcohol. Clin. Exp. Res. 20, A187–A191.

    Article  Google Scholar 

  47. Yang, X. H., Criswell, H. E., Simson, P., Moy, S., and Breese, G. R. (1996) Evidence for a selective effect of ethanol on Nmethyl-n-aspartate responses: ethanol affects a subtype of the ifenprodil-sensitive N-methyl-n-aspartate receptors. J. Pharmacol. Exp. Ther. 278, 114–124.

    PubMed  CAS  Google Scholar 

  48. Hu, X. J., Follesa, P., and Ticku, M. K. (1996) Chronic ethanol treatment produces a selective upregulation of the NMDA receptor subunit gene expression in mammalian cultured cortical neurons. Mol. Brain Res. 36, 211–218.

    Article  PubMed  CAS  Google Scholar 

  49. Blevins, T., Mirshahi, T., and Woodward, J. J. (1995) Increased agonist and antagonist sensitivity of N-methyl-D-aspartate stimulated calcium flux in cultured neurons following chronic ethanol exposure. Neurosci. Lett. 200, 214–218.

    Article  PubMed  CAS  Google Scholar 

  50. Follesa, P. and Ticku, M. K. (1996) Chronic ethanol-mediated up-regulation of the N-methyl-D-aspartate receptor polypeptide subunits in mouse cortical neurons in culture. J. Biol. Chem. 271, 13,297–13, 299.

    Google Scholar 

  51. Follesa, P. and Ticku, M. K. (1996) NMDA receptor upregulation: molecular studies in cultured mouse cortical neurons after chronic antagonist exposure. J. Neurosci. 16, 2172– 2178.

    PubMed  CAS  Google Scholar 

  52. Hoffman, P. L., Bhave, S. V., Kumar, K. N., Iorio, K. R., Snell, L. D., Tabakoff, B., (1996) The 71 kDa glutamate-binding protein is increased in cerebellar granule cells after chronic ethanol treatment. Mol. Brain Res. 39, 167–176.

    Article  PubMed  CAS  Google Scholar 

  53. Chandler, L. J., Sutton, G., Norwood, D., Sumners, C., and Crews, F. T. (1997) Chronic ethanol increases N-methyl-Daspartate-stimulated nitric oxide formation but not receptor density in cultured cortical neurons. Mol. Pharmacol. 51, 733–740.

    PubMed  CAS  Google Scholar 

  54. Nagata, K., Aistrup, G. L., Huang, C. S., (1996) Potent modulation of neuronal nicotinic acetylcholine receptor-channel by ethanol. Neurosci. Lett. 217, 189–193.

    Article  PubMed  CAS  Google Scholar 

  55. Follesa, P. and Ticku, M. K. (1995) Chronic ethanol treatment differentially regulates NMDA receptor subunit mRNA expression in rat brain. Mol. Brain Res. 29, 99–106.

    Article  PubMed  CAS  Google Scholar 

  56. Freund, G. and Anderson, K. J. (1996) Glutamate receptors in the frontal cortex of alcoholics. Alcohol. Clin. Exp. Res. 20, 1165–1172.

    Article  PubMed  CAS  Google Scholar 

  57. Breese, C. R., Freedman, R., and Leonard, S. S. (1995) Glutamate receptor subtype expression in human postmortem brain tissue from schizophrenics and alcohol abusers. Brain Res. 674, 82–90.

    Article  PubMed  CAS  Google Scholar 

  58. Rossetti, Z. L. and Carboni, S. (1995) Ethanol withdrawal is associated with increased extracellular glutamate in the rat striatum. Eur. J. Pharmacol. 283, 177–183.

    Article  PubMed  CAS  Google Scholar 

  59. Molleman, A. and Little, H. J. (1995) Increases in non-N-methyl-D-aspartate glutamatergic transmission, but no change in gamma-aminobutyric acid (B) transmission, in CAI neurons during withdrawal from in vivo chronic ethanol treatment. J. Pharmacol. Exp. Ther. 274, 1035–1041.

    Google Scholar 

  60. Whittington, M. A., Lambert, J. D. C., and Little, H. J. (1995) Increased NMDA receptor and calcium channel activity underlying ethanol withdrawal hyperexcitability. Alcohol Alcohol. 30, 105–114.

    PubMed  CAS  Google Scholar 

  61. Karcz-Kubicha, M. and Liljequist, S. (1995) Effects of post ethanol administration of nmda and non-NMDA receptor antagonists on the development of ethanol tolerance in c57bi mice. Psychopharmacology. 120, 49–56.

    Article  PubMed  CAS  Google Scholar 

  62. Khanna, J. M., Morato, G. S., Chau, A., and Shah, G. (1995) D-Cycloserine enhances rapid tolerance to ethanol motor incoordination. Pharmacol. Biochem. Behay. 52, 609–614.

    Article  CAS  Google Scholar 

  63. Holter, S. M., Danysz, W., and Spanagel, R. (1996) Evidence for alcohol anti-craving properties of memantine. Elie J. Pharmacol. 314, R1 — R2.

    CAS  Google Scholar 

  64. Hundt, W., Danysz, W., Holter, S. M., and Spanagel, R. (1998) Ethanol and N-methyl-D-aspartate receptor complex interactions: a detailed drug discrimination study in the rat. Psychopharmacology 135, 44–51.

    Article  PubMed  CAS  Google Scholar 

  65. Bienkowski, P., Stefanski, R., and Kostowski, W. (1997) Discriminative stimulus effects of ethanol: lack of antagonism with N-methyl-D-aspartate and D-cycloserine. Alcohol 14, 345–350.

    Article  PubMed  CAS  Google Scholar 

  66. Lin, N. and Hubbard, J.I. (1995) An NMDA receptor antagonist reduces ethanol preference in untrained but not trained rats. Brain Res. Bull. 36, 421–424.

    Article  PubMed  CAS  Google Scholar 

  67. Hazell, A. S., Butterworth, R. F., and Hakim, A. M. (1993) Cerebral vulnerability is associated with selective increase in extracellular glutamate concentration in experimental thiamine deficiency. J. Neurochem. 61, 1155–1158.

    Article  PubMed  CAS  Google Scholar 

  68. Dodd, P. R., Thomas, G. J., McCloskey, A., Crane, D. I., and Smith, I.D. (1996) The neurochemical pathology of thiamine deficiency: GABA(A) and glutamate (NMDA) receptor binding sites in a goat model. Metab. Brain. Dis. 11, 39–54.

    Article  PubMed  CAS  Google Scholar 

  69. Kelly, D. F., Lee, S. M., Pinanong, P. A., and Hovda, D. A. (1997) Paradoxical effects of acute ethanolism in experimental brain injury. J. Neurosurg. 86, 876–882.

    Article  PubMed  CAS  Google Scholar 

  70. Naassila, M., Hammoumi, S., Legrand, E., Durbin, P., and Daoust, M. (1998) Mechanism of action of acamprosate. Part I. Characterization of spermidine-sensitive acamprosate binding site in rat brain. Alcohol. Clin. Exp. Res. 22, 802–809.

    Article  PubMed  CAS  Google Scholar 

  71. al Qatari, M., Bouchenafa, O., and Littleton, J. (1998) Mechanism of action of acamprosate. Part II. Ethanol dependence modifies effects of acamprosate on NMDA receptor binding in membranes from rat cerebral cortex. Alcohol. Clin. Exp. Res. 22, 810–814.

    Article  PubMed  CAS  Google Scholar 

  72. Popp. R. L. and Lovinger, D. M. (2000) Interaction of acamprosate with ethanol and spermine on NMDA receptors in primary cultured neurons. Eur. J. Pharmacol. 394, 221–231.

    Google Scholar 

  73. Ranimes G., Mahal B., Putzke J., (2001) The anti-craving compound acamprosate acts as a weak NMDA-receptor antagonist, but modulates NMDA-receptor subunit expression similar to memantine and MK-801. Neuropharmacology 40, 749–760.

    Article  Google Scholar 

  74. Berton, F., Francesconi, W. G., Madamba, S. G., Zieglgänsberger, W., and Siggins, G. R. (1998) Acamprosate enhances Nmethyl-u-apartate receptor-mediated neurotransmission but inhibits presynaptic GABA(B) receptors in nucleus accumbens neurons. Alcohol. Clin. Exp. Res. 22, 183–191.

    Article  PubMed  CAS  Google Scholar 

  75. Madamba, S. G., Schweitzer, P., Zieglgänsberger, W., and Siggins, G. R. (1996) Acamprosate (calcium acetylhomotaurinate) enhances the N-methyl-o-aspartate component of excitatory neurotransmission in rat hippocampal CAl neurons in vitro. Alcohol. Clin. Exp. Res. 20, 651–658.

    Article  PubMed  CAS  Google Scholar 

  76. Zeise, M. L., Kasparov, S., Capogna, M. and Zieglgansberger, W. (1993) Acamprosate (calciumacetylhomotaurinate) decreases postsynaptic potentials in the rat neocortex: possible involvement of excitatory amino acid receptors. Eur. J. Pharmacol. 231, 47–52.

    Article  PubMed  CAS  Google Scholar 

  77. Dahchour, A., DeWitte, P., Bolo, N., (1998) Central effects of acamprosate: Part 1. Acamprosate blocks the glutamate increase in the nucleus accumbens microdialysate in ethanol withdrawn rats. Psychiat. Res. Neuroimag. 82, 107–114.

    Article  CAS  Google Scholar 

  78. Dahchour, A., and De Witte, P. (1999) Acamprosate decreases the hypermotility during repeated ethanol withdrawal. Alcohol 18, 77–81.

    Article  PubMed  CAS  Google Scholar 

  79. Dahchour, A. and De Witte, P. (2000) Ethanol and amino acids in the central nervous system: assessment of the pharmacological actions of acamprosate. Prog. Neurobiol. 60, 343–362.

    Article  PubMed  CAS  Google Scholar 

  80. Putzke, J., Spanagel, R., Tolle, T. R., and Zieglgänsberger, W. (1996) The anti-craving drug acamprosate reduces c-fos expression in rats undergoing ethanol withdrawal. Eur. J. Pharmacol. 317, 39–48.

    Article  PubMed  CAS  Google Scholar 

  81. Spanagel, R., Sillaber, I., Zieglgänsberger, W., Corrigall, W. A., Stewart, J., and Shaham, Y. (1998) Acamprosate suppresses the expression of morphine-induced sensitization in rats but does not affect heroin self-administration or relapse induced by heroin or stress. Psychopharmacology 139, 391–401.

    Google Scholar 

  82. Spanagel, R., Putzke, J., Stefferl, A., Schobitz, B., and Zieglgansberger, W. (1996) Acamprosate and alcohol: II. Effects on alcohol withdrawal in the rat. Eur. J. Pharmacol. 305, 45–50.

    Article  PubMed  CAS  Google Scholar 

  83. Grant, K. A. and Woolverton, W. L. (1989) Reinforcing and discriminative stimulus effects of Ca-acetyl homotaurine in animals. Pharmacol. Biochem. Behay. 32, 607–611.

    Article  CAS  Google Scholar 

  84. Pascucci, T., Cioli, I., Pisetzky, F., Dupre, S., Spirito, A., and Nencini, P. (1999) Acamprosate does not antagonise the discriminative stimulus properties of amphetamine and morphine in rats. Pharmacol. Res. 40, 333–338.

    Article  PubMed  CAS  Google Scholar 

  85. Kratzer, U. and Schmidt, W. J. (1998) The anti-craving drug acamprosate inhibits the conditioned place aversion induced by naloxone-precipitated morphine withdrawal in rats. Neurosci. Lett. 252, 53–56.

    Article  PubMed  CAS  Google Scholar 

  86. Schneider, U., Wohlfahrt, K., SchulzeBonhage, A., Haacker, T., Caspary, A., Zedler, M., (1998) Lack of psychotomimetic or impairing effects on psychomotor performance of acamprosate. Pharmacopsychiatry 31, 110–113.

    Google Scholar 

  87. Spanagel, R., Zieglgänsberger, W., and Hundt, W. (1996) Acamprosate and alcohol: III. Effects on alcohol discrimination in the rat. Eur. J. Pharmacol. 305, 51–56.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zieglgänsberger, W., Rammes, G., Spanagel, R., Danysz, W., Parsons, C. (2002). Mechanism of Action of Acamprosate Focusing on the Glutamatergic System. In: Herman, B.H., Frankenheim, J., Litten, R.Z., Sheridan, P.H., Weight, F.F., Zukin, S.R. (eds) Glutamate and Addiction. Contemporary Clinical Neuroscience. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-306-4_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-306-4_27

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-234-6

  • Online ISBN: 978-1-59259-306-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics