Skip to main content

Methamphetamine Toxicity

Roles for Glutamate, Oxidative Processes, and Metabolic Stress

  • Chapter
Glutamate and Addiction

Part of the book series: Contemporary Clinical Neuroscience ((CCNE))

  • 226 Accesses

Abstract

Methamphetamine (MA) is a sympathomimetic amine with potent effects on the peripheral and central nervous systems, resulting in psychomotor activation, mood elevation, anorexia, increased mental alertness, enhanced physical endurance, and hyperthermia. The mood-elevating and positive-reinforcing effects most likely contribute to the high abuse liability of this drug. Indeed, MA abuse has increased across the United States at an alarming rate since the late 1980s. MA-related emergencies have increased sixfold in the past decade and 4–5 million people in the United States now report using MA at some time in their lives (1), highlighting the urgency for research on the pharmacology and toxicity of this drug.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Services U.S.D.H.H. (1997) Proceedings of the National Consensus Meeting on the Use, Abuse and Sequelae of Abuse of Methamphetamine with Implications for Prevention, Treatment, and Research, Substance Abuse and Mental Health Services Administration, Center for Substance Abuse Treatment, Washington, DC.

    Google Scholar 

  2. Wagner, G. C., Ricaurte, G. A., Seiden, L. S., Schuster, C. R., Miller, R. J., and Westly, J. (1980) Long-lasting depletion of striatal dopamine uptake sites following repeated administration of methamphetamine. Brain Res. 171, 151–160.

    Google Scholar 

  3. Ellison, G., Eison, M. S., Huberman, H. S., and Daniel, F. (1978) Long-term changes in dopaminergic innervation of caudate nucleus after continuous amphetamine administration. Science 201, 276–278.

    PubMed  CAS  Google Scholar 

  4. Ricaurte, G. A., Guillery, R. W., Seiden, L. S., and Schuster, C. R. (1982) Dopamine nerve terminal degeneration produced by high doses of methamphetamine in the rat brain. Brain Res. 235, 93–103.

    PubMed  CAS  Google Scholar 

  5. Ricaurte, G. A., Seiden, L. S. and Schuster, C. R. (1984) Further evidence that amphetamines produce long-lasting dopamine neurochemical deficits by destroying dopamine nerve fibers. Brain Res. 303, 359–364.

    PubMed  CAS  Google Scholar 

  6. Pu, C., Fisher, J. E., Cappon, G. D., and Vorhees, C. V. (1994) The effects of amfonelic acid, a dopamine uptake inhibitor, on methamphetamine-induced dopaminergic terminal degeneration and astrocytic response in rat striatum. Brain Res. 649, 217–224.

    PubMed  CAS  Google Scholar 

  7. Ryan, L. J., Martone, M. E., Linder, J. C., and Groves, P. M. (1988) Continuous amphetamine administration induces tyrosine hydroxylase immunoreactive patches in the adult neostriatum. Brain Res. Bull. 21, 133–137.

    Google Scholar 

  8. Ricaurte, G. A., Schuster, C. R., and Seiden, L. S. (1980) Long-term effects of repeated methylamphetamine administration on dopamine and serotonin neurons in rat brain. Brain Res. 193, 153–163.

    PubMed  CAS  Google Scholar 

  9. Stephans, S. and Yamamoto, B. (1996) Methamphetamine pretreatment and the vulnerability of the striatum to methamphetamine neurotoxicity. Neuroscience 72 (3), 593–600.

    PubMed  CAS  Google Scholar 

  10. Stephans, S. E. and Yamamoto, B. K. (1994) Methamphetamine-induced neurotoxicity: roles for glutamate and dopamine efflux. Synapse 17, 203–209.

    PubMed  CAS  Google Scholar 

  11. McCann, U. D., Wong, D. F., Yokoi, F., Villemagne, V., Dannals, R. F., and Ricaurte, G. A. (1998) Reduced striatal dopamine transporter density in abstinent methamphetamine and methcathinone users: evidence from positron emission tomography studies with [11C]WIN-35,428. J. Neurosci. 18 (20), 8417–8422.

    PubMed  CAS  Google Scholar 

  12. Wilson, J. M., Kalasinsky, K. S., Levey, A. I. Bergeron, C., Reiber, G., Anthony, R. M., et al. (1996) Striatal dopamine nerve terminal markers in human, chronic methamphetamine users. Nature Med. 2(6) 699–703.

    Google Scholar 

  13. Seiden, L. S., Commins, D. L., Vosmer, G. L., Axt, K. J., and Marek. G. J. (1998) Neurotoxicity in dopamine and 5-HT terminal fields: a regional analysis in nigrostriatal and mesolimbic projections. ANYAS 537, 161–172.

    Google Scholar 

  14. Bittner, S. E., Wagner, G. C., Aigner, T. G., and Seiden, L. S. (1981) Effects of a high dose treatment of methamphetamine on caudate dopamine and anorexia in rats. Pharmacol. Biochem. Behay. 14, 481–486.

    CAS  Google Scholar 

  15. Seiden, L. S., Fishman, M. W., and Schuster, C. R. (1975/76) Long-term methamphetamine induced changes in brain catecholamines in tolerant rhesus monkeys. Drug Alcohol Depend. 1, 215–219.

    Google Scholar 

  16. Seiden, L. S. and Ricaurte, G. A. (1987) Neurotoxicity of methamphetamine and related drugs, in Psychopharmacology: The Third Generation of Progress ( Meltzer, H. Y., ed.), Raven, New York, pp. 359–366.

    Google Scholar 

  17. Filloux, F. and Townsend, J. J. (1993) Pre-and post-synaptic neurotoxic effects of dopamine demonstrated by intrastriatal injection. Exp. Neurol. 119, 79–88.

    PubMed  CAS  Google Scholar 

  18. Michel, P. and Hefti, F. (1990) Toxicity of 6-hydroxydopamine and dopamine for dopaminergic neurons in culture. J. Neurosci. Res. 26 (4), 428–435.

    PubMed  CAS  Google Scholar 

  19. Rosenberg, P. A. (1988) Catecholamine toxicity in cerebral cortex in dissociated cell culture. J. Neurosci. 8, 2887–2894.

    PubMed  CAS  Google Scholar 

  20. Schmidt, C. J. and Gibb, J. W. (1985) Role of the dopamine uptake carrier in the neurochemical response to methamphetamine: effects of amfonelic acid. Eue. J. Pharmacol. 109, 73–80.

    CAS  Google Scholar 

  21. Marek, G. J., Vosmer, G., and Seiden, L. S. (1990) Dopamine uptake inhibitors block long-term neurotoxic effects of methamphetamine upon dopaminergic neurons. Brain Res. 513, 274–279.

    PubMed  CAS  Google Scholar 

  22. Buening, M. and Gibb, J. W. (1974) Influence of methamphetamine and neuroleptic drugs on tyrosine hydroxylase activity. Eue. J. Pharmacol. 26, 30–34.

    CAS  Google Scholar 

  23. Hotchkiss, A. J. and Gibb, J. W. (1980) Long-term effects of multiple doses of methamphetamine on tryptophan hydroxylase and tyrosine hydroxylase activity in rat brain. J. Pharmacol. Exp. Ther. 214 (2), 257–262.

    PubMed  CAS  Google Scholar 

  24. Sonsalla, P. K., Gibb, J. W., and Hanson, G. R. (1986) Roles of Dl and D2 dopamine receptor subtypes in mediating the methamphetamine-induced changes in monoamine systems. J. Pharmacol. Exp. Thee. 238, 932–937.

    CAS  Google Scholar 

  25. Burrows, K. B., Nixdorf, W. L., and Yamamoto, B. K. (2000) Central administration of methamphetamine synergizes with metabolic inhibition to deplete striatal monoamines. J. Pharmacol. Exp. Thee. 292 (3), 853–860.

    CAS  Google Scholar 

  26. LaVoie, M. and Hastings, T. (1999) Dopamine quinone formation and protein modification associated with the striatal neurotoxicity of methamphetamine: evidence against a role for extracellular dopamine. J. Neurosci. 19 (4), 1484–1491.

    PubMed  CAS  Google Scholar 

  27. Lipton, S. A. and Rosenberg, P. A. (1994) Excitatory amino acids as a final common pathway for neurologic disorders. N. Engl. J. Med. 330 (9), 613–622.

    PubMed  CAS  Google Scholar 

  28. Olney, J. W. (1990) Excitotoxic amino acids and neuropsychiatrie disorders. Annu. Rev. Pharmacol. Toxicol. 30, 47–71.

    PubMed  CAS  Google Scholar 

  29. Sonsalla, P. K., Nicklas, W. J., and Heikkila, R. E. (1989) Role for excitatory amino acids in methamphetamine-induced nigrostriatal dopaminergic toxicity. Science 243, 398–400.

    PubMed  CAS  Google Scholar 

  30. Baldwin, H. A., Colado, M. I., Murray, T. K., De Souza, R. J., and Green, A. R. (1993) Striatal dopamine release in vivo following neurotoxic doeses of methamphetamine and effect of the neuroprotective drugs chloromethiazole and dizocilpine. Br. J. Pharmacol. 108, 590–596.

    Google Scholar 

  31. Fuller, R. W., Hemrick-Luecke, S. K., and Ornstein, P. L. (1992) Protection against amphetamine-induced neurotoxicity toward striatal dopamine neurons in rodents by LY274614, an excitatory amino acid antagonist. Neuropharmacology 31 (10), 1027–1032.

    PubMed  CAS  Google Scholar 

  32. Weihmuller, F. B., O’Dell, S. J., and Marshall, J. F. (1992) MK-801 protection against methamphetamine-induced striatal dopamine terminal injury is associated with attenuated dopamine overflow. Synapse 11, 155–163.

    PubMed  CAS  Google Scholar 

  33. Nash, J. F. and Yamamoto, B. K. (1992) Methamphetamine neurotoxicity and striatal glutamate release: comparison to 3,4methylenedioxymethamphetamine. Brain Res. 581, 237–243.

    PubMed  CAS  Google Scholar 

  34. Nash, J. F. and Yamamoto, B. K. (1993) Effect of d-amphetamine on the extracellular concentrations of glutamate and dopamine in iprindole-treated rats. Brain Res. 627, 1–8.

    PubMed  CAS  Google Scholar 

  35. Abekawa, T., Ohmori, T., and Koyama, T. (1994) Effect of NO synthase inhibition on behavioral changes induced by a single administration of methamphetamine. Brain Res. 666, 147–150.

    PubMed  CAS  Google Scholar 

  36. Bowyer, J. F., Gough, B., Slikker, W., Jr., Lipe, G. W., Newport, G. D., and Holson, R. R. (1993) Effects of a cold environment or age on methamphetamine-induced dopamine release in the caudate putamen of female rats. Pharmacol. Biochem. Behay. 44, 87–98.

    CAS  Google Scholar 

  37. Mora, F. and Porras, A. (1993) Effects of amphetamine in the release of excitatory amino acid neurotransmitters in the basal ganglia of the conscious rat. Can. J. Pharmacol. 71, 348–351.

    CAS  Google Scholar 

  38. Hassler, R., Haug, P., Nitsch, C., Kim, S. J., and Paik, K. (1982) Effect of motor and premotor cortex ablation on concentrations of amino acids, monoamines, and acetylcholine, and on the ultrastructure in rat striatum: a confirmation of glutamate as the specific cortico-striatal transmitter. J. Neurochem. 38, 1087–1098.

    PubMed  CAS  Google Scholar 

  39. Burrows, K. B. and Meshul, C. K. (1997) Methamphetamine alters presynaptic glutamate immunoreactivity in the caudate nucleus and motor cortex. Synapse 27, 133–144.

    PubMed  CAS  Google Scholar 

  40. Yamamoto, B. K., Gudelsky, G. A., and Stephans, S. E. (1998) Amphetamine neurotoxicity: roles for dopamine, glutamate, and oxidative stress, in Neurochemical Markers of Degenerative Diseases & Drug Addiction (Qureshi, G. A., Parvez, H., Caudy, P., and Parvez, S., eds.), VSP, Utrecht, Vol. 7, pp. 223–244.

    Google Scholar 

  41. Broening, H. W., Pu, C., and Vorhees, C. (1997) Methamphetamine selectively damages dopaminergic innervation to the nucleus accumbens core while sparing the shell. Synapse 2, 153–160.

    Google Scholar 

  42. Abekawa, T., Ohmori, T., and Koyama, T. (1994) Effects of repeated administration of a high dose of methamphetamine on dopamine and glutamate release in rat striatum and nucleus accumbens. Brain Res. 643, 276–281.

    PubMed  CAS  Google Scholar 

  43. Alexander, G. E. and Crutcher, M. D. (1990). Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci. 13(7) 266–271.

    Google Scholar 

  44. Pu, C., Broening, H. W., and Vorhees, C. V. (1996) Effect of methamphetamine on glutamate-positive neurons in the adult and developing rat somatosensory cortex. Synapse 23, 328–334.

    PubMed  CAS  Google Scholar 

  45. Herbert, M. A. and O’Callaghan, J. P. (2000) Protein phosphorylation cascades associated with methamphetamine-induced glial activation. ANYAS 914, 238–262.

    Google Scholar 

  46. Eisch, A. J., O’Dell, S. J., and Marshall, J. F. (1996) Striatal and cortical NMDA receptors are altered by a neurotoxic regimen of methamphetamine. Synapse 22, 217–225.

    PubMed  CAS  Google Scholar 

  47. Eisch, A. J. and Marshall, J. F. (1998) Methamphetamine neurotoxicity: dissociation of striatal dopamine terminal damage from parietal cortical cell body injury. Synapse 30, 433–445.

    PubMed  CAS  Google Scholar 

  48. O’Dell, S. J. and Marshall, J. F. (2000) Repeated administration of methamphetamine damages cells in the somatosensory cortex: overlap with cytochrome oxidase-rich barrels. Synapse 37, 32–37.

    PubMed  Google Scholar 

  49. O’Dell, S. J., Weihmuller, F. B., McPherson, R. J., and Marshall, J. F. (1994) Excitotoxic striatal lesions protect against subsequent methamphetamine-induced dopamine depletions. J. Pharmacol. Exp. Ther. 269 (3), 1319–1325.

    PubMed  Google Scholar 

  50. Deniau, J. M. and Chevalier, G. (1992) The lamellar organization of the rat substantia nigra pars reticulata: distribution of projection neurons. Neuroscience 46, 361–377.

    PubMed  CAS  Google Scholar 

  51. Donoghue, J. P. and Parham, C. (1983) Afferent conditions of the lateral agranular field of the rat motor cortex. J. Comp. Neurol. 217, 390–404.

    PubMed  CAS  Google Scholar 

  52. Cicirata, F., Anagaut, E, Ciopni, M., Serapide, M. F., and Papale, A. (1986) Functional organization of the thalamic projections to the motor cortex. An anatomical and electrophysical study in the rat. Neuroscience 19, 81–99.

    PubMed  CAS  Google Scholar 

  53. Albin, R. L., Young, A. B., and Penney, J. B. (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci. 12, 366–375.

    PubMed  CAS  Google Scholar 

  54. Graybiel, A. M. (1990) Neurotransmitters and neuromodulators in the basal ganglia. Trends Neurosci. 13 (7), 244–254.

    PubMed  CAS  Google Scholar 

  55. Basse-Tomusk, A. and Rebec, G. V. (1990) Corticostriatal and thalamic regulation of amphetamine-induced ascorbate release in the neostriatum. Pharmacol. Biochem. Behay. 35, 55–660.

    CAS  Google Scholar 

  56. Matuszewich, L. and Yamamoto, B. K. (1999) Modulation of GABA release by dopamine in the substantia nigra. Synapse 32, 29–36.

    PubMed  CAS  Google Scholar 

  57. Rosales, M. G., Martinez-Fong, D., Morales, R., Nunez, A., Flores, G., Gongora, A., et al. (1997) Reciprocal interaction between glutamate and dopamine in the pars reticulata of the rat substantia nigra: a microdialysis study. Neuroscience 80, 803–810.

    Google Scholar 

  58. Timmerman, W. and Westerink, B. H. C. (1995) Extracellular y-aminobutyric acid in the substantia nigra reticulata measured by microdialysis in awake rats: effects of various stimulants. Neurosci. Lett. 197, 21–24.

    PubMed  CAS  Google Scholar 

  59. Radnikow, G. and Misgeld, U. (1998) Dopamine D1 receptors facilitate GABAA synaptic currents in the rat substantia nigra pars reticulata. J. Neurosci. 18, 2009–2016.

    PubMed  CAS  Google Scholar 

  60. Nicholson, L. F., Faull, R. L., Waldvogel, H. J., and Dragunow, M. (1992) The regional, cellular and subcellular localization of GABAA/benzodiazepine receptors in the substantia nigra of the rat. Neuroscience 50 355–370.

    Google Scholar 

  61. Commins, D. L., Axt, K. J., Vosmer, G., and Seiden, L. S. (1987) 5,6-Dihydroxytryptamine, a serotonergic neurotoxin, is formed endogenously in the rat brain. Brain Res. 403(1) 7–14.

    Google Scholar 

  62. Seiden, L. S. and Vosmer, G. L. (1984) Formation of 6-hydroxydopamine in caudate nucleus of the rat brain after a single large dose of methylamphetamine. Pharmacol. Biochem. Behay. 21, 29–31.

    Google Scholar 

  63. Hoyt, K., Reynolds, I. and Hastings, T. (1997) Mechanisms of dopamine-induced cell death in cultured rat forebrain neurons: interactions with and differences from glutamate-induced cell death. Exp. Neurol. 143, 269–281.

    PubMed  CAS  Google Scholar 

  64. Chapman, A. G., Durmuller, N., Lees, G. J., and Meldrum, B. S. (1989) Excitotoxicity of NMDA and kainic acid is modulated by nigrostriatal dopaminergic fibers. Neurosci. Lett. 107, 256–260.

    PubMed  CAS  Google Scholar 

  65. Filloux, F. and Wamsley, J. K. (1991) Dopaminergic modulation of excitotoxicity in rat striatum: evidence from nigrostriatal lesions. Synapse 8, 281–288.

    PubMed  CAS  Google Scholar 

  66. Ben-Schachar, D., Zuk, R., and Glinka, Y. (1995) Dopamine neurotoxicity: inhibition of mitochondria) respiration. J. Neurochem. 64, 718–723.

    Google Scholar 

  67. Berman, S. B. and Hastings, T. G. (1999) Dopamine oxidation alters mitochondria) respiration and induces permeability transition in brain mitochondria: implications for Parkinson’s disease. J. Neurochem. 73 (3), 1127–1137.

    PubMed  CAS  Google Scholar 

  68. Dugan, L. L., Sensi, S. L., Conzoniero, L., Handran, S. D., Rothman, S. M., Lin, T. S., et al. (1995) Mitochondrial production of reactive oxygen species in cortical neurons following exposure to N-methyl-D-aspartate. J. Neurosci. 15, 6377–6388.

    Google Scholar 

  69. Reynolds, I. J. and Hastings, T. G. (1995) Glutamate induces the production of reactive oxygen species in cultured forebrain neurons following NMDA receptor activation. J. Neurosci. 15(5) 3318–3327.

    Google Scholar 

  70. Fonnum, F. (1998) Excitotoxicity in the brain. Arch. Toxicol. 20 (Suppl.), 387–395.

    CAS  Google Scholar 

  71. Nicholls, D. G. and Budd, S. L. (1998) Neuronal excitotoxicity: the role of mitochondria. BioFactors 8, 287–299.

    Google Scholar 

  72. Choi, D. W. (1988) Glutamate neurotoxicity and diseases of the nervous system. Neuron 1, 623–634.

    Google Scholar 

  73. Dumius, A., Sebben, M., Haynes, L., Pin, J. P., and Bockaert, J. (1988) NMDA receptors activate the arachidonic acid cascade system in striatal neurons. Nature 336, 68–70.

    Google Scholar 

  74. Lasarewicz, J. W., Wroblewski, J. T., Palmer, M. E., and Costa, E. (1988) Activation of N-methyl-D-aspartate-sensitive glutamate receptors stimulates arachidonic acid release in primary cultures of cerebellar granule cells. Neuropharrnacology 27, 765–769.

    Google Scholar 

  75. Pellegrini-Giampietro, D. E., Cherici, G., Alesiani, M., Carla, V., and Moroni, F. (1990) Excitatory amino acid release and free radical formation may cooperate in the genesis of ischemia-induced neuronal damage. J. Neurosci. 10, 1035–1041.

    PubMed  CAS  Google Scholar 

  76. Volterra, A., Trotti, D., Tromba, C., Floridi, S., and Racagni, G. (1994) Glutamate uptake inhibition by oxygen free radicals in cortical astrocytes. J. Neurosci. 14, 2924–2932.

    PubMed  CAS  Google Scholar 

  77. Williams, J. H., Errington, M. L., Lynch, M. A., and Bliss, T. V. P. (1989) Arachidonic acid induces long-term activity-dependent enhancement of synaptic transmission in the hippocampus. Nature 341, 739–742.

    PubMed  CAS  Google Scholar 

  78. Bi, X., Change, V., Siman, R., Tocco, G., and Baudry, M. (1996) Regional distribution and time-course of calpain activation following kainate-induced seizure activity in adult rat brain. Brain Res. 726, 98–108.

    PubMed  CAS  Google Scholar 

  79. Siman, R. and Noszek, J. C. (1988) Excitatory amino acids activate calpain I and induce structural protein breakdown in vivo. Neuron 1, 279–287.

    PubMed  CAS  Google Scholar 

  80. Buki, A., Siman, R., Trojanowski, J. Q., and Povlishock, J. T. (1999) The role of calpain-mediated spectrin proteolysis in traumatically induced axonal injury. J. Neuropathol. Exp. Neurol. 58, 365–375.

    Google Scholar 

  81. Minger, S. L., Gegddes, J. W., Holtz, M. L., Craddock, S. D., Whireheart, S. W., Siman, R., et al. (1998) Glutamate receptor antagonists inhibit calpain-mediated cytoskeletal proteolysis in focal cerebral ischemia. Brain Res. 810, 181–189.

    PubMed  CAS  Google Scholar 

  82. Morimoto, T., Ginsberg, M. D., Dietrich, W. D., and Zhao, W. (1997) Hyperthermia enhances spectrin breakdown in transient focal cerebral ischemia. Brain Res. 746 (1–2), 43–51.

    PubMed  CAS  Google Scholar 

  83. Pike, B. R., Zhao, X., Newcomb, J. K., Posmantur, R. M., Wang, K. K., and Hayes, R. L. (1998) Regional calpain and caspase-3 proteolysis of alpha-spectrin after traumatic brain injury. NeuroReport 9, 2437–2442.

    CAS  Google Scholar 

  84. Dykens, J. A., Stern, A., and Trenkner, E. (1987) Mechanism of kainate toxicity to cerebellar neurons in vitro is analogous to reperfusion tissue injury. J. Neurochem. 49, 1222–1228.

    PubMed  CAS  Google Scholar 

  85. Yamamoto, B. K. and Zhu, W. (1998) The effects of methamphetamine on the production of free radicals and oxidative stress. J. Pharmacol. Exp. Thee. 287 (1), 107–114.

    CAS  Google Scholar 

  86. Fleckenstein, A. E., Wilkins, D. G., Gibb, J. W., and Hanson, G. R. (1997) Interaction between hyperthermia and oxygen radical formation in the 5-hydroxytryptaminergic response to a single methamphetamine administration. J. Pharmacol. Exp. Ther. 283, 281–285.

    PubMed  CAS  Google Scholar 

  87. Giovanni, A., Liang, L. P., Hastings, T. G., and Zigmond, M. J. (1995) Estimating hydroxyl radical content in rat brain using systemic and intraventricular salicylate: impact of methamphetamine. J. Neurochem. 64, 1819–1825.

    Google Scholar 

  88. Cappon, G. D., Broening, H. W., Pu, C., Morford, L. and Vorhees, C. V. (1996) Alpha-phenyl-N-tert-butyl nitrone attenuates methamphetamine-induced depletion of striatal dopamine without altering hyperthermia. Synapse 24 (2), 173–181.

    PubMed  CAS  Google Scholar 

  89. De Vito, M. J. and Wagner, G. C. (1989) Methamphetamine-induced neuronal damage: a possible role for free radicals. Neuropharmacology 28 (10), 1145–1150.

    PubMed  Google Scholar 

  90. Cadet, J. L., Sheng, P., Ali, S. E, Rothman, R., Carlson, E., and Epstein, C. (1994) Attenuation of methamphetamineinduced neurotoxicity in copper/zinc superoxide dismutase transgenic mice. J. Neurochem. 62 (1), 380–383.

    Google Scholar 

  91. Li, Y. and Jaiswal, A. K. (1992) Regulation of human NAD(P)H: quinone oxidoreductase gene. Role of API binding site contained within human antioxidant response element. J. Biol. Chem. 267, 15, 097–15, 104.

    Google Scholar 

  92. Pinkus, R. Weiner, L. M., and Daniel, V. (1995) Role of quinone-mediated generation of hydroxyl radicals in the induction of glutathione S-transferase gene expression. Biochemistry 34 81–88.

    Google Scholar 

  93. Herdegen, T. and Leah, J. D. (1998) Inducible and constitutive transcription factors in the mammalian nervous system: control of gene expression by Jun, Fos and Krox, and CREB/ATF proteins. Brain Res. Rev. 28, 370–490.

    PubMed  CAS  Google Scholar 

  94. Hirata, H., Asanuma, M., and Cadet, J. L. (1998) Superoxide radicals are mediators of the effects of methamphetamine on Zif268 (Egr-1, NGFI-A) in the brain: evidence from using CuZn superoxide dismutase transgenic mice. Mol. Brain Res. 58, 209–216.

    Google Scholar 

  95. Merchant, K. M., Hanson, G. R., and Dorsa, D. M. (1994) Induction of neurotensin and c-fos mRNA in distinct subregions of rat neostriatum after acute methamphetamine: comparison with acute haloperidol effects. J. Pharmacol. Exp. Ther. 269 (2), 806–812.

    PubMed  CAS  Google Scholar 

  96. Sheng, P., Cerruti, C., Ali, S., and Cadet, J. L. (1996) Nitric oxide is a mediator of methamphetamine (METH)-induced neurotoxicity. In vitro evidence from primary cultures of mesencephalic cells. ANYAS 801, 174–186.

    Google Scholar 

  97. Deng, X., Ladenheim, B. Tsao, L., and Cadet, J. (1999) Null mutation of c-fos causes exacerbation of methamphetamineinduced neurotoxicity. J. Neurosci. 19(22) 10,107–10,115.

    Google Scholar 

  98. Halliwell, B. (1992) Reactive oxygen species and the central nervous system. J. Neurochem. 59 (5), 1609–1623.

    PubMed  CAS  Google Scholar 

  99. Cubells, J. F., Rayport, S., Rajendran, G., and Sulzer, D. (1994) Methamphetamine neurotoxicity involves vacuolation of endocytic organelles and dopamine-dependent intracellular oxidative stress. J. Neurosci. 14 (4), 2260–2271.

    PubMed  CAS  Google Scholar 

  100. Acikgoz, O., Gonenc, S., Kayatekin, B. M., Uysal, N., Pekcetin, C., Semin, I., et al. (1998) Methamphetamine causes lipid peroxidation and an increase in superoxide dismutase activity in the rat striatum. Brain Res. 813, 200–202.

    Google Scholar 

  101. Tsao, L. I. Ladenheim, B. Andrews, A. M., Chiueh, C. C., Cadet, J. L., and Su, T. P. (1998) Delta opioid peptide [D-A1a2, D-leu5] enkephalin blocks the long-term loss of dopamine transporters induced by multiple administrations of methamphetamine: involvement of opioid receptors and reactive oxygen species. J. Pharmacol. Exp. Ther. 287(1) 322–330.

    Google Scholar 

  102. Imam, S. Z. and Ali, S. F. (2000) Selenium, an antioxidant, attenuates methamphetamine-induced dopaminergic toxicity and peroxynitrite generation. Brain Res. 855 (1), 186–191.

    PubMed  CAS  Google Scholar 

  103. Imam, S. Z., Crow, J. P., Newport, G. D., Islam, F., Slikker, W. J., and Ali, S. F. (1999) Methamphetamine generates peroxynitrite and produces dopaminergic neurotoxicity in mice: protective effects of peroxynitrite decomposition catalyst. Brain Res. 837 (1–2), 15–21.

    PubMed  CAS  Google Scholar 

  104. Fornstedt, B., Brun, A., Rosengren, E., and Carlsson, A. (1989) The apparent autoxidation rate of catechols in dopamine-rich regions of human brains increases with the degree of depigmentation of substantia nigra. J. Neural Transm. 1, 279–295.

    CAS  Google Scholar 

  105. Hastings, T., Lewis, D., and Zigmond, M. (1996) Role of oxidation in the neurotoxic effects of intrastriatal dopamine injections. Proc. Natl. Acad. Sci. USA 93, 1956–1961.

    PubMed  CAS  Google Scholar 

  106. Berman, S., Zigmond, M., and Hastings, T. (1996) Modification of dopamine transporter function: effect of reactive oxygen species and dopamine. J. Neurochem. 67, 593–600.

    PubMed  CAS  Google Scholar 

  107. Fleckenstein, A. E., Metzger, R. R., Beyeler, M. L., Gibb, J. W., and Hanson, G. R. (1997) Oxygen radicals diminish dopamine transporter function in rat striatum. Eur. J. Pharmacol. 334, 111–114.

    Google Scholar 

  108. Kuhn, D. M., Arthur, R. E., Thomas, D. M., and Elferink, L. A. (1999) Tyrosine hydroxylase is inactivated by catecholquinones and converted to a redox-cycling quinoprotein: relevance to Parkinson’s disease. J. Neurochem. 73, 1309–1317.

    PubMed  CAS  Google Scholar 

  109. Jayanthi, S., Ladenheim, B., and Cadet, J. L. (1998) Methamphetamine-induced changes in antioxidant enzymes and lipid peroxidation in copper/zinc-superoxide dismutase transgenic mice. ANYAS 844, 92–102.

    Google Scholar 

  110. Moszczynska, A., Turenne, S., and Kish, S. J. (1998) Rat striatal levels of the antioxidant glutathione are decreased following binge administration of methamphetamine. Neurosci. Lett. 255 (1), 49–52.

    Google Scholar 

  111. Harold, C., Wallace, T., Friedman, R., Gudelsky, G., and Yamamoto, B. K. (2000) Methamphetamine selectively alters brain antioxidants. Eur. J. Pharmacology 400, 99–102.

    Google Scholar 

  112. Lafon-Cazal, M., Pietri, S., Culcasi, M., and Bockaert, J. (1993) NMDA-dependent superoxide production and neurotoxicity. Nature 364, 535–537.

    PubMed  CAS  Google Scholar 

  113. Murphy, T. H., Miyamoto, M., Sastre, A., Schnaar, R. L., and Coyle, J. T. (1989) Glutamate toxicity in a neuronal cell line involves inhibition of cystine transport leading to oxidative stress. Neuron 2 (6), 1547–1558.

    PubMed  CAS  Google Scholar 

  114. Garthwaite, J. Charles, S. L., and Chess-Williams, R. (1988) Endothelium-derived relaxing factor release on activation of NMDA receptors suggests a role as intracellular messenger in the brain. Nature 336 385–387.

    Google Scholar 

  115. Dawson, V. L. and Dawson, T. M. (1996) Nitric oxide neurotoxicity. J. Chem. Neuroanat. 10, 179–190.

    PubMed  CAS  Google Scholar 

  116. Schulz, J. B., Matthews, R. T., Jenkins, B. G., Ferrante, R. J., Siwek, D., Henshaw, D. R., et al. (1995) Blockade of neuronal nitric oxide synthase protects against excitotoxicity in vivo. J. Neurosci. 15, 8419–8429.

    Google Scholar 

  117. Radi, R., Beckman, J. S., Bush, K. M., and Freeman, B. A. (1991) Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide. J. Biol. Chem. 266(7) 4244–4255.

    Google Scholar 

  118. LaVoie, M. J. and Hastings, T. G. (1999) Peroxynitrite-and nitrite-induced oxidation of dopamine: implications for nitric oxide in dopaminergic cell loss. J. Neurochem. 73 (6), 2546–2554.

    PubMed  CAS  Google Scholar 

  119. Przedborski, S., Jackson-Lewis, V., Yokoyama, R. Shibata, T., Dawson, V. L. and Dawson, T. M. (1996) Role of neuronal nitric oxide in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic neurotoxicity. Proc. Natl. Acad. Sci. USA 93(10) 4565–4571.

    Google Scholar 

  120. Schulz, J. B. Matthews, R. T., Muqit, M. M., Browne, S. E., and Beal, M. F. (1995) Inhibition of neuronal nitric oxide synthase by 7-nitroindazole protects against MPTP-induced neurotoxicity in mice. J Neurochem. 64(2) 936–939.

    Google Scholar 

  121. Di Monte, D. A., Royland, J. E., Jakowec, M. W., and Langston, J. W., (1996) Role of nitric oxide in methamphetamine neurotoxicity: protection by 7-nitroindazole, an inhibitor of neuronal nitric oxide synthase. J. Neurochem. 67 (6), 2443–2450.

    PubMed  Google Scholar 

  122. Itzhak, Y. and Ali, S. F. (1996) The neuronal nitric oxide synthase inhibitor, 7-nitroindazole, protects against methamphetamine-induced neurotoxicity in vivo. J. Neurochem. 67, 1770–1773.

    PubMed  CAS  Google Scholar 

  123. Itzhak, Y., Gandia, C., Huang, P. L., and Ali, S. F. (1998) Resistance of neuronal nitric oxide synthase-deficient mice to methamphetamine-induced dopaminergic neurotoxicity. J. Pharmacol. Exp. Ther. 284, 1040–1047.

    PubMed  CAS  Google Scholar 

  124. Sheng, P., Ladenheim, B., Moran, T. H., Wang, X. B., and Cadet, J. L. (1996) Methamphetamine-induced neurotoxicity is associated with increased striatal AP-1 DNA-binding activity in mice. Mol. Brain Res. 42, 171–174.

    PubMed  CAS  Google Scholar 

  125. Sylvia, A., LaManna, J., Rosenthal, M., and Jobsis, F. (1977) Metabolite studies of methamphetamine effects based upon mitochondrial respiratory state in rat brain. J. Pharmacol. Exp. Ther. 201, 117–125.

    PubMed  CAS  Google Scholar 

  126. Pontieri, F. E., Crane, A. M., Seiden, L. S., Kleven, M. S., and Porrino, L. J. (1990) Metabolic mapping of the effects of intravenous methamphetamine administration in freely moving rats. Psychopharmacology 102(2) 175–182.

    Google Scholar 

  127. Porrino, L. J., Lucignani, G., Dow-Edwards, D., and Sokoloff, L. (1984) Correlation of dose-dependent effects of acute amphetamine administration on behavior and local cerebral metabolism in rats. Brain Res. 307 (1–2), 311–320.

    PubMed  CAS  Google Scholar 

  128. Huang, Y. H., Tsai, S. J., Su, T. W., and Sim, C. B. (1999) Effects of repeated high-dose methamphetamine on local cerebral glucose utilization in rats. Neuropsychopharmacology 21 (3), 427–434.

    PubMed  CAS  Google Scholar 

  129. Stephans, S. E., Whittingham, T. S., Douglas, A. J., Lust, W. D., and Yamamoto, B. K. (1998) Substrates of energy metabolism attenuate methamphetamine-induced neurotoxicity in striatum. J. Neurochem. 71, 613–621.

    PubMed  CAS  Google Scholar 

  130. Burrows, K. B., Gudelsky, G., and Yamamoto, B. K. (2000) Rapid and transient inhibition of mitochondria] function following methamphetamine or MDMA administration. Eur. J. Pharmacol. 398 (1), 11–18.

    PubMed  CAS  Google Scholar 

  131. Chan, R, Di Monte, D. A., Luo, J. J., DeLanney, L. E., Irwin, I., and Langston, J. W. (1994) Rapid ATP loss caused by methamphetamine in the mouse striatum: relationship between energy impairment and dopaminergic neurotoxicity. J. Neurochem. 62, 2484–2487.

    PubMed  CAS  Google Scholar 

  132. Graham, D. G., Tiffany, S. M., Bell, W. B., and Gutknecht, W. F. (1978) Autoxidation versus covalent binding of quinones as the mechanism of toxicity of dopamine, 6-hydroxy dopamine, and related compounds toward C1300 neuroblastoma cells in vitro. Mol. Pharmacol. 14, 644–653.

    PubMed  CAS  Google Scholar 

  133. McLaughlin, B. A., Nelson, D., Erecinska, M., and Chesselet, M. F. (1998) Toxicity of dopamine to striatal neurons in vitro and potentiation of cell death by a mitochondrial inhibitor. J. Neurochem. 70, 2406–2415.

    PubMed  CAS  Google Scholar 

  134. Yagi, T. and Hatefi, Y. (1987) Thiols in oxidative phosphorylation: thiols in the FO of ATP synthase essential for ATPase activity. Arch. Biochem. Biophys. 254 (1), 102–109.

    Google Scholar 

  135. Zhang, Y., Marcillat, O., Giulivi, C., Ernster, L. and Davies, K. (1990) The oxidative inactivation of mitochondrial electron transport chain components and ATPase. J. Biol. Chem. 265(27) 16,330–16,336.

    Google Scholar 

  136. Fischer, J. F., and Cho, A. K. (1979) Chemical release of dopamine from striatal homogenates: evidence for an exchange diffusion model. J. Pharmacol. Exp. Thee. 208(2) 203–209.

    Google Scholar 

  137. Huether, G., Zhou, D., and Ruther, E. (1997) Causes and consequences of the loss of serotonergic presynapses elicited by the consumption of 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”) and its congeners. J. Neural Transm. 104, 771–794.

    PubMed  CAS  Google Scholar 

  138. Raiteri, M., Cerrito, F., Cervoni, A. M., and Levi, G. (1979) Dopamine can be released by two mechanisms differentially affected by the dopamine transport inhibitor nomifensine. J. Pharmacol. Exp. Thee. 208 (2), 195–202.

    CAS  Google Scholar 

  139. Erecinska, M. and Silver, I. (1989) ATP and brain function. J. Cereb. Blood Flow Metab. 9, 2–19.

    PubMed  CAS  Google Scholar 

  140. Hevner, R., Duff, R., and Wong-Riley, M. (1992) Coordination of ATP production and consumption in brain: parallel regulation of cytochrome oxidase and Na+, K+-ATPase. Neurosci. Lett. 138, 188–192.

    Google Scholar 

  141. Siesjo, B. K. (1978) Brain Energy Metabolism, Wiley, New York.

    Google Scholar 

  142. Wong-Riley, M. (1989) Cytochrome oxidase: an endogenous metabolic marker for neuronal activity. Trends Neurosci. 12 (3), 94–101.

    PubMed  CAS  Google Scholar 

  143. Almeida, A., Heales, S. J. R., Bolanos, J. P., and Medina, J. M. (1998) Glutamate neurotoxicity is associated with nitric oxide-mediated mitochondrial dysfunction and glutathione depletion. Brain Res. 790, 209–216.

    PubMed  CAS  Google Scholar 

  144. Beal, M., Brouillet, E., Jenkins, B., Henshaw, R., Rosen, B., and Hyman, B. (1993) Age-dependent striatal excitotoxic lesions produced by the endogenous mitochondrial inhibitor malonate. J. Neurochem. 61, 1147–1150.

    PubMed  CAS  Google Scholar 

  145. Beal, M. F., Hyman, B. T., and Koroshetz, W. (1993) Do defects in mitochondrial energy metabolism underlie the pathology of neurodegenerative diseases? Trends Neurosci. 16 (4), 125–130.

    PubMed  CAS  Google Scholar 

  146. Messam, C., Greene, J., Greenamyre, J., and Robinson, M. (1995) Intrastriatal injections of the succinate dehydrogenase inhibitor, malonate, cause a rise in extracellular amino acids that is blocked by MK-801. Brain Res. 684 (2), 221–224.

    PubMed  CAS  Google Scholar 

  147. Albers, D., Zeevalk, G., and Sonsalla, P. (1996) Damage to dopaminergic nerve terminals in mice by combined treatment on intrastriatal malonate with systemic methamphetamine or MPTP. Brain Res. 718 (1–2), 217–220.

    PubMed  CAS  Google Scholar 

  148. Beal, M. F., Brouillet, E., Jenkins, B. G., Ferrante, R. J., Kowall, N. W., Miller, J. M., et al. (1993) Neurochemical and histologic characterization of striatal excitotoxic lesions produced by the mitochondrial toxin 3-nitropropionic acid. J Neurosci. 13 (10), 4181–4192.

    PubMed  CAS  Google Scholar 

  149. Ludolph, A. C., Seeling, M., Ludolph, A. G., Sabri, M. I., and Spencer, P. S. (1992) ATP deficits and neuronal degeneration induced by 3-nitropropionic acid. ANYAS 648, 3000–3002.

    Google Scholar 

  150. Abekawa, T., Ohmori, T., and Koyama, T. (1996) Effects of nitric oxide synthesis inhibition on methamphetamine-induced dopaminergic and serotonergic neurotoxicity in the rat brain. J. Neural Transm. 103 (6), 671–680.

    PubMed  CAS  Google Scholar 

  151. Lizasoain, I., Moro, M. A., Knowles, R. G., Darley-Usmar, V., and Moncada, S. (1996) Nitric oxide and peroxynitrite exert distinct effects on mitochondrial respiration which are differentially blocked by glutathione or glucose. Biochem. J. 314 (3), 877–880.

    Google Scholar 

  152. Zheng, Y. and Laverty, R. (1998) Role of brain nitric oxide in (+1-) 3,4-methylenedioxymethamphetamine (MDMA)induced neurotoxicity in rats. Brain Res. 795, 257–263.

    PubMed  CAS  Google Scholar 

  153. Cleeter, M. W., Cleeter, J. M., Darley-Usmar, V. M., Moncada, S., and Schepira, A. H. (1994) Reversible inhibition of cytochrome e oxidase, the terminal enzyme of the mitochondrial respiratory chain, by nitric oxide. Implications for neurodegenerative diseases. FEBS Lett. 345 (1), 50–54.

    PubMed  CAS  Google Scholar 

  154. Callahan, B. T., Yuan, J., Stover, G., Hatzidimitriou, G., and Ricaurte, G. A. (1998) Effects of 2-deoxy-D-glucose on methamphetamine-induced dopamine and serotonin neurotoxicity. J. Neurochem. 70 (1), 190–197.

    PubMed  CAS  Google Scholar 

  155. Wan, F. J., Lin, H. C., Kang, B. H., Tseng, C. J., and Tung, C. S. (1999) D-Amphetamine-induced depletion of energy and dopamine in the rat striatum is attenuated by nicotinamide pretreatment. Brain Res. Bull. 50 (3), 167–171.

    PubMed  CAS  Google Scholar 

  156. Marey-Semper, I., Gelman, M., and Levi-Strauss, M. (1993) The high sensitivity to rotenone of striatal dopamine uptake suggests the existence of a constitutive metabolic deficiency in dopaminergic neurons from the substantia nigra. Eur. J. Neurosci. 5 (8), 1029–1034.

    PubMed  CAS  Google Scholar 

  157. Nixdorf, W. L., Burrows, K. B., Gudelsky, G. A., and Yamamoto, B. K. (2001) Differential enhancement of serotonin and dopamine depletions by inhibition of energy metabolism: comparisons between methamphetamine and 3,4-methylenedioxymethamphetamine. J Neurochem. 77, 647–654.

    PubMed  CAS  Google Scholar 

  158. Zeevalk, G., Manzino, L., Hoppe, J., and Sonsalla, P. (1997) In vivo vulnerability of dopamine neurons to inhibition of energy metabolism. Eur. Z Pharmacol. 320, 111–119.

    CAS  Google Scholar 

  159. Finnegan, K. T. and Taraska, T. (1996) Effects of glutamate antagonists on methamphetamine and 3,4-methylenedioxymethamphetamine-induced striatal dopamine release in vivo. J. Neurochem. 66, 1949–1958.

    PubMed  CAS  Google Scholar 

  160. Albers, D. S. and Sonsalla, P. K. (1995) Methamphetamine-induced hyperthermia and dopaminergic neurotoxicity in mice: pharmacological profile of protective and nonprotective agents. J. Pharmacol. Exp. Ther. 275, (3) 1104–1114.

    PubMed  CAS  Google Scholar 

  161. Farfel, G. M., and Seiden, L. S. (1995) Role of hypothermia in the mechanism of protection against serotonergic toxicity. II. Experiments with methamphetamine, p-chloroamphetamine, fenfluramine, dizocilpine and dextromethorphan. J Pharmacol. Exp. Ther. 272 (2), 868–875.

    PubMed  CAS  Google Scholar 

  162. Sonsalla, P., Albers, D., and Zeevalk, G. (1998) Role of glutamate in neurodegeneration of dopamine neurons in several animal models of parkinsonism. Amino Acids 14, 69–74.

    PubMed  CAS  Google Scholar 

  163. DiMauro, S. (1993) Mitochondrial involvement in Parkinson’s disease: the controversy continues. Neurology 43, 2170.

    PubMed  CAS  Google Scholar 

  164. Fibiger, H. C. and McGeer, E. G. (1971) Effect of acute and chronic methamphetamine treatment on tyrosine hydroxylase activity in brain and adrenal medulla. Eur. J. Phannacol. 16, 176–180.

    CAS  Google Scholar 

  165. Koda, L. Y. and Gibb, J. W. (1973) Adrenal and striatal tyrosine hydroxylase activity after methamphetamine. J. Pharmacol. Exp. Ther. 185, 42.

    PubMed  CAS  Google Scholar 

  166. McCann, U., Szabo, Z., Scheffel, U., Dannals, R., and Ricaurte, G. (1998) Positron emission tomographic evidence of toxic effect of MDMA (“Ecstasy”) on brain serotonin neurons in human beings. Lancet 352, 1433–1437.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Burrows, K.B., Yamamoto, B.K. (2002). Methamphetamine Toxicity. In: Herman, B.H., Frankenheim, J., Litten, R.Z., Sheridan, P.H., Weight, F.F., Zukin, S.R. (eds) Glutamate and Addiction. Contemporary Clinical Neuroscience. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-306-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-306-4_14

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-234-6

  • Online ISBN: 978-1-59259-306-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics