Skip to main content

Roles of Glutamate, Nitric Oxide, Oxidative Stress, and Apoptosis in the Neurotoxicity of Methamphetamine

  • Chapter
Glutamate and Addiction

Part of the book series: Contemporary Clinical Neuroscience ((CCNE))

  • 228 Accesses

Abstract

Oxygen and nitric oxide (NO) are essential elements for normal life. Indeed, the reduction of molecular oxygen represents one of the most important generators of energy for aerobic organisms. This occurs through the four-election reduction of dioxygen to yield water. Nevertheless, these substances can also participate in deleterious reactions that negatively impact lipid, protein, and nucleic acid. Thus, normal physiological function depends on a balance between these potentially toxic substances and the scavenging systems that aerobic organisms have developed to counteract their deleterious effects. Both exogenous and endogenous causes can tilt that balance. In the present chapter, I will elaborate on the thesis that the neurodegenerative effects of methamphetamine are due to reactive oxygen species (ROS) overproduction in monoaminergic systems in the brain. I will also discuss the possible role of glutamate and of NO in the cascade that leads to methamphetamine (METH)-induced neuro-toxicity. Moreover, this chapter will review briefly recent data that provide conclusive evidence that METH can also cause cell death in various regions of the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stadtman, E. R. (1993). Oxidation of free amino acid residues in proteins by radiolysis and by metal catalyzed reactions. Annu. Rev. Biochem. 62, 797–821.

    Article  PubMed  CAS  Google Scholar 

  2. Fridovich, I. (1983). Superoxide radical: an endogenous toxicant. Annu. Rev. Pharmacol. 23, 239–257.

    Article  CAS  Google Scholar 

  3. Fridovich, 1. (1986). Biological effects of the superoxide radical. Arch. Biochem. Biophys. 247, 1–11.

    Article  Google Scholar 

  4. Culcasi, M., Lafon-Cazal, M., Pietri, S., and Bockaert, J. (1994). Glutamate receptors induce a burst of superoxide via activation of nitric oxide synthase in arginine-depleted neurons. J. Biol. Chem. 269, 12,589–12, 593.

    Google Scholar 

  5. Chance, B., Sies, H., and Boveris, H. (1979). Hydroperoxide metabolism in mammalian organs. Physiol. Rev. 59, 527–605.

    PubMed  CAS  Google Scholar 

  6. Mellow-Filho, A. C. and Meneghini, R. (1984). In vivo formation of single strand breaks in DNA by hydrogen peroxide is mediated by the Haber-Weiss reaction. Biochem. Biophys. Acta 781, 56–63.

    Google Scholar 

  7. Moncada, S., Palmer, R. M. J., and Higgs, E. A. (1991). Nitric oxide physiology, pathophysiology and pharmacology. Pharmacol. Rev. 43, 109–142.

    PubMed  CAS  Google Scholar 

  8. Nathan, C. (1992). Nitric oxide as a secretory product of mammalian cells. FASEB J. 6, 3051–3064.

    Google Scholar 

  9. Lipton, S., Choi, Y.-B., Pan, Z-H., Lei, S. Z., Chen, H. S., Sucker, N. J., et al. (1993). A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds. Nature 364, 626–632.

    Article  PubMed  CAS  Google Scholar 

  10. Radi, R., Beckamn, J. S., Bush, K. M., and Freeman, B. A. (1991). Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide. J. Biol. Chem. 266, 4244–4250.

    PubMed  CAS  Google Scholar 

  11. Dawson, V. L., Dawson, T. M., Bartley, D. A., Uhl, G. R., and Snyder, S. M. (1993). Mechanisms of nitric oxide-mediated neurotoxicity in primary brain cultures. J. Neurosci. 13, 2651–2661.

    PubMed  CAS  Google Scholar 

  12. Gu, H. M., Zeng, J. X., Zhao, X. N., and Zhang, Z. X. (1999). The role of NO and B-50 in neurotoxicity of excitatory amino acids.) Basic Clin. Physiol. Pharmacol. 10, 327–336.

    CAS  Google Scholar 

  13. Lafon-Cazal, M., Culcasi, M., Gaven, F., Pietri, S., and Bockaert, J. (1993a). Nitric oxide, superoxide, and peroxynitrite: putative mediators of NMDA-induced cell death in cerebellar granule cells. Neuropharmacology 32, 1259–1266.

    Article  PubMed  CAS  Google Scholar 

  14. Lafon-Cazal, M., Pietri, S., Culcasi, M., and Bockaert, J., (1993b). NMDA-dependent superoxide production and neurotoxicity. Nature 364, 535–537.

    Article  PubMed  CAS  Google Scholar 

  15. Mavelli I., Rigo, A., Federico, R., Ciriolo, M. R., and Rotilio, G. (1982). Superoxide dismutase, glutathione peroxidase and catalase in developing rat brain. Biochem. J. 204, 535–540.

    PubMed  CAS  Google Scholar 

  16. Frei, B., Englan, L., and Ames, B. N. (1989). Ascorbate is an outstanding antioxidant in human blood plasma. Proc. Natl. Acad. Sci. USA 86, 6377–6381.

    Article  PubMed  CAS  Google Scholar 

  17. Miller, M. A. (1991) Trends and patterns of methamphetamine smoking in Hawaii. NIDA Res. Monogr. 115, 72–83.

    PubMed  CAS  Google Scholar 

  18. Greberman, S. B. and Wada, K. (1994) Social and legal factors related to drug abuse in the United States and Japan. Public Health Rep. 109, 731–737.

    PubMed  CAS  Google Scholar 

  19. Shaw, K. P. (1999) Human methamphetamine-related fatalities in Taiwan during 1991–1996. J. Forensic Sci. 44, 27–31.

    PubMed  CAS  Google Scholar 

  20. Lan, K. C., Lin, Y. F., Yu, F. C., Lin, C. S., and Chu, P. (1998) Clinical manifestations and prognostic features of acute methamphetamine intoxication. J. Formos Med. Assoc. 97, 528–533.

    PubMed  CAS  Google Scholar 

  21. Murray, J. B., (1998) Pschophsiological aspects of amphetamine-methamphetamine abuse. J. Psychol. 132, 227–237.

    Google Scholar 

  22. Stephans, S. E. and Yamamoto, B. Y. (1995). Effect of repeated methamphetamine administration on dopamine and glutamate efflux in rat prefrontal cortex. Brain Res. 700, 99–106.

    Article  PubMed  CAS  Google Scholar 

  23. Cadet, J. L. and Brannock, C. (1998) Free radicals and the pathobiology of brain dopamine systems. Neurochem. Int. 32, 117–131.

    Article  PubMed  CAS  Google Scholar 

  24. Ricaurte, G. A., Guillery, R. W., Seiden, L. S., Schuster, C. R., and Moore, R. Y. (1982) Dopamine nerve terminal degeneration produced by high doses of methylamphetamine in the rat brain. Brain Res. 235, 93–103.

    Google Scholar 

  25. Matsuda, L. A. Schmidt, C. J., Gibb, J. W., and Hanson, G. R. (1988) Effects of methamphetamine on central monominergic systems in normal and ascorbic acid-deficient guinea pigs. Biochem. Pharmacol. 37, 3477–3484.

    Google Scholar 

  26. O’Callaghan, J. P. and Miller, D. E. (1994). Neurotoxicity profiles of substituted amphetamines in the C57BL/6J mouse. J. Pharmacol. Exp. Ther. 270, 741–751.

    PubMed  Google Scholar 

  27. Hirata, H. and Cadet, J. L. (1997). Methamphetamine-induced serotonin neurotoxicity is attenuated is attenuated in p53-knockout mice. Brain Res. 768, 345–348.

    Article  PubMed  CAS  Google Scholar 

  28. Hirata, H. and Cadet, J. L. (1997). p53 knockout mice are protected against the long-term effects of methamphetamine on dopaminergic terminals and cell bodies. J. Neurochem. 69, 780–790.

    Google Scholar 

  29. Fukumura, M., Cappon, G. D., Pu, C., Broening, H. W., and Vorhees, C. V. (1998) A single dose model of methamphetamineinduced neurotoxicity in rats: effects on neostriatal monoaminesand glial fibrillary acidic protein. Brain Res. 806, 1–7.

    Article  PubMed  CAS  Google Scholar 

  30. Cadet, J. L., Sheng, E, Ali, S., Rothman, R., Carlson, E., and Epstein, C. (1994). Attenuation of methamphetamine-induced neurotoxicity in copper/zinc superoxide dismutase transgenic mice. J. Neurochem. 62, 380–383.

    Google Scholar 

  31. Ricaurte, G. A., Schuster, C. R., and Seiden, L. S. (1980). Long-term effects of repeated methylamphetamine administration on dopamine and serotonin neurons in the rat brain: regional study. Brain Res. 193, 153–163.

    Google Scholar 

  32. Wagner, G. C., Ricaurte, G. A., Seiden, L. S., Schuster, C. R., Miller, C. R., Miller, R. J., and Westley, J. (1980). Long-lasting depletions of striatal dopamine and loss of dopamine uptake sites following repeated administration of methamphetamine. Brain Res. 181, 151–160.

    Article  PubMed  CAS  Google Scholar 

  33. Hotchkiss, A. J., and Gibb, J. W. (1980). Long-term effects of multiple doses of methamphetamine on tryptophan hydrosylase and tyrosine hydroxylase activity in rat brain. J. Pharmacol. Exp. Ther. 214, 257–262.

    PubMed  CAS  Google Scholar 

  34. Nakayama, M., Loyama, T., and Yamashita, I. (1993). Long-lasting decreases in dopamine uptake sites following repeated administration of methamphetamine in the rat striatum. Brain Res. 601, 209–212.

    Google Scholar 

  35. Steranka, L. R. and Sanders-Bush, E. (1980). Long-term effects of continuous exposure to amphetamine in brain dopamine concentration and synaptosomal uptake in mice. Eur. J. Pharmacol. 65, 439–443.

    Article  PubMed  CAS  Google Scholar 

  36. Preston, K. L., Wagner, G. C., Schuster, C. R., and Seiden, L. S. (1985). Long-term effects of repeated methylamphetamine administration on monoamine neurons in the rhesus monkey brain. Brain Res. 338, 243–248.

    Google Scholar 

  37. Villemagne, V., Yuan, J., Wong, D. F., Dannals, R. F., Hatzidimitriou, G., Mathews, W. B., et al. (1998). Brain dopamine neurotoxicity in baboons treated with doses of methamphetamine comparable to those recreationally abused by humans: evidence from [I’C]WIN-35, 428 positron emission tomography studies and direct in vitro determinations. J. Neurosci. 18, 419–427.

    PubMed  CAS  Google Scholar 

  38. Wilson, J. M., Kalasinsky, K. S., Levey, A. I., Bergeron, C., Reiber, G., Anthony, R. M., et al. (1996) Striatal dopamine nerve terminal markers in human, chronic methamphetamine users. Nature Med. 2, 699–703.

    Article  PubMed  CAS  Google Scholar 

  39. McCann, U. D., Wong, D. F., Yokoi, F., Villemagne, V., Dannals, R. F., and Ricaurte, G. A. (1998) Reduced striatal dopamine transporters density in abstinent methamphetamine and methcathinone users: evidence from positron emission tomography studies with [’ IC]WIN-35, 428, J. Neurosci. 18, 8417–8422.

    Google Scholar 

  40. Cubells, J. E, Rayport, S., Rajndron, G., and Sulzer, D. (1994). Methamphetamine neurotoxicity involves vacuolation of endocytic organelles and dopamine-dependent intracellular oxidative stress../. Neurosci. 14, 2260–2271.

    CAS  Google Scholar 

  41. DeVito, M. J., and Wagner, G. C. (1989). Methamphetamine-induced neuronal damage: a possible role for free radicals. Neuropharmacology 28, 1145–1150.

    Article  CAS  Google Scholar 

  42. Giovanni, A., Liang, L. P. Hastings, T. G., and Zigmond, M.J. (1995). Estimating hydroxyl radical content in rat brain using systemic and intraventricular salicylate: impact of methamphetamine. J. Neurochem. “64 1819–1825.

    Google Scholar 

  43. Hirata, H. Asanuma, M., and Cadet, J. L. (1998). Melatonin attenuates methamphetamine-induced toxic effects on dopamine and serotonin terminals in mouse brain. Synapse 30 150–155.

    Google Scholar 

  44. Wagner, G. C., Lucot, J. B., Schuster, C. R., and Seiden, L. S., (1983) Alpha-methyltyrosine attenuates and reserpine increases methamphetamine-induced neuronal changes. Brain Res. 270, 285–288.

    Google Scholar 

  45. Hirata, H., Ladenheim, B., Carlson, E., Epstein, C., and Cadet, J. L. (1996). Autoradiographic evidence for methamphetamine-induced striatal dopaminergic loss in mouse brain: attenuation in CuZn-superoxide dismutase transgenic mice. Brain Res. 714, 95–103.

    Google Scholar 

  46. Epstein, C. J., Avraham, K. B., Lovett, M., Smith, S., Elroy-Stein, O., Rotman, G., et al. (1987). Transgenic mice with increased CuZn-superoxide dismutase activity: animal model of dosage effects in Down syndrome. Proc. Natl. Acad. Sci. USA 84, 8044–8048.

    Google Scholar 

  47. Baldwin, H. A., Colado, M. I., Murry, T. K., De Souza, R. J., and Green, A. R. (1993). Striatal dopamine release in vivo following neurotoxic doses of methamphetamine and effect of the neuroprotective drugs, chlormethiazole and dizocilpine. Br. J. Pharmacol. 108, 590–596.

    Article  PubMed  CAS  Google Scholar 

  48. Marshall, J. F., O’Dell, S. J., and Weihmuller, F. B. (1993). Dopamine-glutamate interactions in methamphetamine-induced neurotoxicity. J. Neural Transm. 91, 241–254.

    Article  CAS  Google Scholar 

  49. Cadet, J. L. (1988). A unifying hypothesis of movement and madness: involvement of free radicals in disorders of the isodendritic core. Med. Hypotheses 27, 87–94.

    Article  Google Scholar 

  50. Cohen, G. and Heikkila, R. E. (1974). The generation of hydrogen peroxide, superoxide radical and hydroxyl radical by hydroxydopamine, dialuric acid, and related cytotoxic agents. J. Biol. Chem. 249, 2447–2452.

    PubMed  CAS  Google Scholar 

  51. Graham, D. G. (1978). Oxidative pathways for catecholamines in the genesis of neuromelanin and cytotoxic quinones. Mol. Pharmacol. 14, 633–643.

    PubMed  CAS  Google Scholar 

  52. Graham, D. G., Tiffany, S. M., Bell, W. R., and Gutknecht, W. F. (1978). Auto-oxidation versus covalent binding of quinones as the mechanism of toxicity of dopamine, 6-OH-dopamine, and related compounds towards C300 neuroblastoma cells in vitro. Mol. Pharmacol. 14, 644–653.

    CAS  Google Scholar 

  53. LaVoie, M. J. and Hastings, T. G. (1999). Dopamine quinone formation and protein modification associated with the striatal neurotoxicity of methamphetamine: evidence against a role for extracellular dopamine. J. Neurosci. 19, 1484–1491.

    PubMed  CAS  Google Scholar 

  54. Jayanthi, S., Ladenheim, B., and Cadet, J. L. (1998). Methamphetamine-induced changes in antioxidant enzymes and lipid peroxidation in copper/zinc-superoxide dismutase transgenic mice. Ann NYAcad. Sci. 844, 92–102.

    Google Scholar 

  55. Itzhak, Y. and Ali, S. F. (1996) The neuronal nitric oxide synthase inhibitor, 7-nitoindazole, protects against methamphetamine-induced neurtoxicity in vivo. J. Neurochem. 67, 1770–1773.

    Article  CAS  Google Scholar 

  56. Choi, D. W., Maulucci-Gedde, M., and Kriegstein, A. R. (1987). Glutamate neurotoxicity in cortical cell culture. J. Neurosci. 7, 357–368.

    PubMed  CAS  Google Scholar 

  57. Choi, D. W., Koh, J. Y., and Peter, S. (1988). Pharmacology of glutamate neurotoxicity in cortical cell culture: attenuation by NMDA antagnists. J. Neurosci. 8, 185–196.

    PubMed  CAS  Google Scholar 

  58. Dawson, V. L., Dawson, T. M., London, E. D., Bredt, D. S., and Snyder, S. H. (1991). Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures. Proc. Natl. Acad. Sci. USA 88, 6368–6371.

    Article  PubMed  CAS  Google Scholar 

  59. Beckman, J. S. (1991). The double-edged role of nitric oxide in brain and superoxide-mediated injury. J. Dev. Physiol. 15, 53–59.

    PubMed  CAS  Google Scholar 

  60. Stephans, S. E. and Yamamoto, B. Y. (1994). Methamphetamine-induced neurotoxicity: roles for glutamate and dopamine efflux. Synapse 17, 203–209.

    Article  PubMed  CAS  Google Scholar 

  61. Sonsalla, P. K., Nicklas, W. J., and Heikkila, R. E. (1989). Role for excitatory amino acids in methamphetamine-induced dopaminergic toxicity. Science 243, 398–400.

    Article  PubMed  CAS  Google Scholar 

  62. Sonsalla, P. K., Riordan, D. E., and Heikkila, R. E. (1991). Competitive and noncompetitive antagonists at N-methyl-Daspartate receptors protect against methamphetamine-induced dopaminergic damage in mice. J. Pharmacol. Exp. Thee. 256, 506–512.

    CAS  Google Scholar 

  63. O’Dell, S. J., Weihmuller, F. B., McPherson, R. J., and Marshall, J. F. (1994) Excitotoxic striatal lesions protect against subsequent methamphetamine-induced dopamine depletions. J. Pharmacol. Exp. Ther. 269, 1319–1325.

    PubMed  Google Scholar 

  64. Weihmuller, F. B., O’Dell, S. J., and Marshall, J. F. (1992). MK-801 protection against methamphetamine-induced striatal dopamine terminal injury is associated with attenuated dopamine overflow. Synapse 11, 155–163.

    Article  PubMed  CAS  Google Scholar 

  65. Ali, S. F., Newport, G. D., Holson, R. R., Slikker, W., Jr., and Bowyer, J. F. (1994). Low environmental temperatures or pharmacologic agents that produce hypothermia decrease methamphetamine neurotoxicity in mice. Brain Res. 658, 33–38.

    Google Scholar 

  66. Bowyer, J. F., Tank, A. W., Newport, G. D., Slikker, W., Jr., Ali, S. F., and Holson, R. R. (1992) The influence of environmental temperature on the transient effects of methamphetamine on dopamine levels and dopamine release in striatum. J. Pharmacol Exp. Ther. 260 817–824.

    Google Scholar 

  67. Bowyer, J. F., Davied, D. L., Schumued, L., Broening, H. W., Newport, G. D., Slikker, W., Jr., et al. (1994) Further studies of the role of hyperthermia in methamphetamine neurotoxicity. J. Pharmacol. Exp. Ther. 268, 1571–1580.

    PubMed  CAS  Google Scholar 

  68. Wagner, G. C., Carelli, R. M., and Jarvis, M. F. (1985). Pretreatment with ascorbic acid attenuates the neurotoxic effects of methamphetamine in rats. Res. Commun. Chem. Pathol. Pharmacol. 47, 221–228.

    PubMed  CAS  Google Scholar 

  69. Dawson, V. L. and Dawson, T. M. (1996). Nitric oxide neurotoxicity. J. Chem. Neuroanat. 10, 179–190.

    Article  PubMed  CAS  Google Scholar 

  70. Sheng, P., Cerruti, C., Ali, S., and Cadet, J. L. (1996) Nitric oxide is a mediator of methamphetamine (METH)-induced neurotoxicity: in vitro evidence from primary cultures of mesencephalic cells. Ann. NYAcad. Sci. 801, 174–186.

    Google Scholar 

  71. Ali, S. F. and Itzhak, Y. (1998). Effects of 7-nitroindazole, an NOS inhibitor on methamphetamine-induced dopaminergic and serotonergic neurotoxicity in mice. Ann. NYAcad. Sci. 844, 122–130.

    Google Scholar 

  72. Itzhak, Y., Martin, J. L., Black, M. D., and Ali, S. F. (1998). Effect of melatonin on methamphetamine-and 1-methyl-4phenyl-1,2,3,6-tetrahydropyridine-induced dopaminergic neurotoxicity and methamphetamine-induced behavioral sensitization. Neuropharmacology 37, 781–791.

    Article  PubMed  CAS  Google Scholar 

  73. Itzhak, Y., Gandia, C., Huang, P. L., and Ali, S. F. (1998). Resistance of neuronal nitric oxide synthase-deficient mice to methamphetamine-induced dopaminergic neurotoxicity. J. Pharmacol. Exp. Thee. 284, 1040–1047.

    CAS  Google Scholar 

  74. Deng, X. and Cadet, J. L. (1999) Methamphetamine administration causes overexpression of nNOS in the mouse striatum. Brain Res. 851, 254–257.

    Article  PubMed  CAS  Google Scholar 

  75. Bennett, B. A., Hyde, C. E., Pecore, J. R., and Coldfelter, J. E. (1993). Differing neurotoxic potencies of methamphetamine, mazindol, and cocaine in mesencephalic cultures. J. Neurochem. 60, 1444–1452.

    Article  PubMed  CAS  Google Scholar 

  76. Deng, X., Ladenheim, B., Tsao, L., and Cadet, J. L. (1999). Null mutation of c-fos causes exacerbation of methamphetamine-induced neurotoxicity. J. Neurosci. 19, 10,107–10, 115.

    Google Scholar 

  77. Eisch, A. J., Schmued, L. C., and Marshall, J. F. (1998). Characterizing cortical neuron injury with Fluoro-Jade labeling after a neurotoxic regimen of methamphetamine. Synapse 30, 329–333.

    Article  PubMed  CAS  Google Scholar 

  78. Pu, C., Broening, H. W., and Vorhees, C. (1996). Effect of methamphetamine on glutamate-positive neurons in the adult and developing rat somatosensory cortex. Synapse 23, 328–334.

    Article  PubMed  CAS  Google Scholar 

  79. Schraufstatter, I. U., Hinshaw, D. B., Hyslop, P. A., Spragg, R. G., and Conchrane, C. G. (1986). Oxidant injury of cells: DNA strand-breaks activate polyadenosine diphosphate-ribose polymerase and lead to depletion of nicotinamide adenine dinucleotide. J. Clin. Invest. 77, 1312–1320.

    Article  PubMed  CAS  Google Scholar 

  80. Zhang, J., Dawson, V. L., Dawson, T. M., and Snyder, S. H. (1994). Nitric oxide activation of poly (ADP-ribose) synthetase in neurotoxicity. Science 263, 687–689.

    Article  PubMed  CAS  Google Scholar 

  81. Cadet, J. L., Ordonez, S. V., and Ordenez, J. V. (1997) Methamphetamine induces apoptosis in immortalized neural cells: protection by the proto-ocogene, bc1–2. Synapse 25, 176–184.

    Google Scholar 

  82. Bonfoco, E., Kraine, D., Anfarcona, M., Nicotera, P., and Lipton, S. A. (1995) Apoptosis and necrosis: two distinct events induced, respectively, by mild and intense insults with N-methyl-n-asparate or nitric oxide/superoxide in cortical cell cultures. Proc. Natl. Acad. Sci. USA. 32, 7162–7166.

    Article  Google Scholar 

  83. Caron-Leslie, L. A. M., Evans, R. B., and Cidlowski, J. A. (1994). Bcl-2 inhibits glucocorticoid apoptosis but only partially blocks calcium ionophore or cycloheximide-regulated apoptosis in S49 cells. FASEB 8, 639–645.

    Google Scholar 

  84. Hockenbery, D. M., Oitvai, Z. N., Yin, X. M., Milliman, C. L., and Korsmeyer, S. J. (1993) Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell 75, 241–251.

    Google Scholar 

  85. Kane, D. J., Safarian, T. A., Anton, R., Hahn, H., Gralla, E. B., Valentine, J. S., et al. (1993) bc1–2 Inhibition of neural death: decreased generation of reactive oxygen species. Science 262, 1274–1277.

    Google Scholar 

  86. Uegaki, K., Otomo, T., Sakahira, H., Shimizu, M., Yumoto, N., Kyogoku, Y., et al. (2000). Structure of the CAD domain of caspase-activated DNase and interaction with the CAD domain of its inhibitor../. Mol. Biol. 297, 1121–1128.

    Article  CAS  Google Scholar 

  87. Sakahira, H., Iwamatsu, A., and Nagata, S. (2000). Specific chaperone-like activity of inhibitor of caspase-activated DNase for caspase-activated DNase. J. Biol. Chem. 275, 8091–8096.

    Article  PubMed  CAS  Google Scholar 

  88. Clarke, A. R., Puride, C. A., Harrison, D. J., Morris, R. G., Bird, C. C., Hooper, M. L., et al. (1993). Thymocyte apoptosis induced by p53-dependent and independent pathway. Nature 362, 849–852.

    Article  PubMed  CAS  Google Scholar 

  89. Lowe, S. W., Ruley, H. E., Jacks, T., and Housman, O. E. (1993) p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 74, 1957–1967.

    Google Scholar 

  90. Hermeking, H. and Eick, D. (1994) Mediation of c-Myc-induced apoptosis by p53. Science 265 2091–2093.

    Google Scholar 

  91. Morgenbesser, S. D., Williams, B. O., Jacks, T., and Depinho, R. A. (1994) p53-dependent apoptosis produced by Rb-deficiency in the developing mouse lens. Nature 371, 72–74.

    Google Scholar 

  92. Wagner, A. J., Kokontis, J. M., and Hay, N. (1994). Myc-mediated apoptosis requires wild-type p53 in a manner independent of cell cycle arrest and the ability of p53 to induce p21 wafl/cipl. Genes Dev. 8, 2817–2830.

    Article  PubMed  CAS  Google Scholar 

  93. Hollstein, M., Sidransky, D., Vogelstein, B., and Harris, C. C. (1991) p53 mutations in human cancers. Science 253, 49–53.

    Google Scholar 

  94. Levine, A. J., Momand, J., and Finlay, C. A. (1991) The p53 tumor suppressor gene. Nature 351, 453–456.

    Article  PubMed  CAS  Google Scholar 

  95. Donehower, L. A. and Bradley, A. (1993) The tumor suppressor p53. Biochem. Biophys. Acta 1155, 181–205.

    PubMed  CAS  Google Scholar 

  96. Lowe, S. W., Schmitt, E. M., Smith, S. W., Osborne, B. A., and Jacks, T. (1993) p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 362, 847–849.

    Google Scholar 

  97. Kastan, M. B., Onyewere, O., Sidransky, D., Vogelstein, B., and Craig, R. W. (1991) Participation of p53 protein in the cellular response to DNA damage. Cancer Res. 51, 6304–6311.

    PubMed  CAS  Google Scholar 

  98. Fritsche, M., Haessler, C., and Brandner, G. (1993) Induction of nuclear accumulation of the tumor-suppressor protein p53 by DNA-damaging agents. Oncogene 8, 307–318.

    PubMed  CAS  Google Scholar 

  99. Zhan, Q., Carrier, F., and Fornace, A. J. (1993) Induction of cellular p53 activity by DNA-damaging agents and growth arrest. Mol. Cell Biol. 13, 4242–4250.

    PubMed  CAS  Google Scholar 

  100. Yonish-Rouach, E., Resnitzky, D., Lotem, J., Sachs, L., Kimchi, A., and Oren, M. (1991) Wild-type p53 induced apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature 352, 345–347.

    Google Scholar 

  101. Mattson, M. P., Keller, J. N., and Begley, J. G. (1998) Evidence of synaptic apoptosis. Exp. Neurol. 153, 35–48.

    Article  PubMed  CAS  Google Scholar 

  102. Wood, A. K. and Youle, R. J. (1995). The role of free radicals, and p53 in neuron apoptosis in vivo. J. Neurosci. 15 5851–5859.

    Google Scholar 

  103. Crumrine, R. C., Thomas, A. L., and Morgan, P. F. (1994) Attenuation of p53 expression protects against focal ischemic damage in transgenic mice. J. Cereb. Blood Flow Metab. 14, 887–891.

    Google Scholar 

  104. Coyle, J. T., and Puttfarcken, P. (1993) Oxidative stress, glutamate, and neurodegenerative disorders. Science 262, 689–695.

    Article  PubMed  CAS  Google Scholar 

  105. Sakhi, S., Bruce, A., Sun, N., Tocco, G., Baudry, M., and Schreiber, S. S. (1994) p53 induction is associated with neuronal damage in the central nervous system. Proc. Natl. Acad. Sci. USA 91, 7525–7529.

    Google Scholar 

  106. Morrison, R. S. Wenzel, H. J., Kinoshita, Y., Robbins, C. A., Donehower, L. A., and Schwartzkroin, P. A. (1996) Loss of p53 tumore suppressor gene protects neurons from kainate-induced cell death. J. Neurosci. 16, 1337–1345.

    PubMed  CAS  Google Scholar 

  107. Nash, J. F. and Yamamoto, B. K. (1992) Methamphetamine neurotoxicity and striatal glutamate release: comparison to 3,4methylenedioxymethamphetamine. Brain Res. 581, 237–243.

    Article  PubMed  CAS  Google Scholar 

  108. Miyashita, T., Krajewski, S., Krajewski, M., Wang, H. G., Lin, H. K., Liebermann, D. A., et al. (1994) Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Onogene 9, 1799–1805.

    CAS  Google Scholar 

  109. Oltvai, Z. N., Milliman, C. L., and Korsmeyer, S. J. (1993) Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 74, 609–619.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cadet, J.L. (2002). Roles of Glutamate, Nitric Oxide, Oxidative Stress, and Apoptosis in the Neurotoxicity of Methamphetamine. In: Herman, B.H., Frankenheim, J., Litten, R.Z., Sheridan, P.H., Weight, F.F., Zukin, S.R. (eds) Glutamate and Addiction. Contemporary Clinical Neuroscience. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-306-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-306-4_13

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-234-6

  • Online ISBN: 978-1-59259-306-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics