Skip to main content

Molecular Pharmacology and Physiology of Glutamate Receptors

  • Chapter
Glutamate and Addiction

Part of the book series: Contemporary Clinical Neuroscience ((CCNE))

  • 229 Accesses

Abstract

Glutamate receptors represent the main excitatory receptors in synaptic transmission in the brain and have been intensively studied over the last 15 yr. Although clinical settings involving glutamate receptor modulators or antagonists usually involve stroke, acute brain injury, epilepsy, and neuropathic pain, both metabotropic and ionotropic classes of glutamate receptor also appear to play a role in addiction and cognition. For example, sensitization to cocaine upon chronic exposure to this stimulant appears to be mediated in part by Ca2+ influx through a-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors (1), and an mGluR2 agonist attenuates the disruptive effects of phencyclidine on working memory (2). We will provide an overview of the molecular and physiological properties of glutamate receptors and review their subunit-specific pharmacology. As much as possible, we will focus on features of glutamate receptor activation and desensitization that may be most relevant to addiction and cognitive processing. More extensive information on glutamate receptor pharmacology can be found in the literature (3–5).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kelz, M. B., Chen, J., Carlezon, W. A., Jr., Whisler, K., Gilden, L., Beckmann, A. M., et al. (1999) Expression of the transcription factor deltaFosB in the brain controls sensitivity to cocaine. Nature 401, 272–276.

    Google Scholar 

  2. Moghaddam, B. and Adams, B. W. (1998) Reversal of phencyclidine effects by a group II metabotropic glutamate receptor agonist in rats. Science 281, 1349–1352.

    Article  PubMed  CAS  Google Scholar 

  3. Dingledine, R., Borges, K., Bowie, D., and Traynelis, S. F. (1999) The glutamate receptor on channels. Pharmacol. Rev. 51, 7–61.

    PubMed  CAS  Google Scholar 

  4. Bräuner-Osborne, H. Egebjerg, J., Nielsen, E. O., Madsen, U., and Krogsgaard-Larsen, P. (2000) Ligands for glutamate receptors: design and therapeutic prospects. J. Med. Chem. 43 2609–2645.

    Google Scholar 

  5. Fletcher, E. J. and Lodge, D. (1996) New developments in the molecular pharmacology of a-amino-3-hydroxy-5-methyl-4isoazole propionate and kainate receptors. Pharmacol. Ther. 70, 65–89.

    Article  PubMed  CAS  Google Scholar 

  6. Pin, J., DeColle, C., Bessis, A.-S., and Ascher, F. (1999) New perspectives for the development of selective metabotropic glutamate receptor ligands. Eur. J. Pharmacol. 375, 277–294.

    Article  PubMed  CAS  Google Scholar 

  7. Conn, P. J. and Pin, J. (1997) Pharmacology and functions of metabotropic glutamate receptors. Annu. Rev. Pharmacol. Toxicol. 37, 205–237.

    Google Scholar 

  8. Schoepp, D. D., Jane, D. E., and Monn, J. A. (1999) Pharmacological agents acting at subtypes of metabotropic glutamate receptors. Neuropharmacology 38, 1431–1476.

    Google Scholar 

  9. Cartmell, J. and Schoepp, D. D. (2000) Regulation of neurotransmitter release by metabotropic glutamate receptors. J. Neurochem. 75, 889–907.

    Article  PubMed  CAS  Google Scholar 

  10. Takumi, Y., Matsubara, A., Rinvik, E., and Ottersen, O. R. (1999) The arrangment of glutamate receptors in excitatory synapses. Ann. NYAcad. Sci. 868, 474–482.

    Article  CAS  Google Scholar 

  11. Condorelli, D. F., Conti, F., Gallo, V., Kirchhoff, F., Seifert, G., Steinhäuser, C., et al. (1999) Expression and functional analysis of glutamate receptors in glial cells. Adv. Exp. Med. Biol. 468, 49–67.

    Article  PubMed  CAS  Google Scholar 

  12. Gill, S. S., Pulido, O. M., Mueller, R. W. and McGuire, P. F. (1999) Immunochemical localization of the metabotropic glutamate receptors in the rat heart. Brain Res. Bull. 48, 143–146.

    Article  PubMed  CAS  Google Scholar 

  13. Conn, P. J. (1999) Metabotropic glutamate receptors. Sci. Med. 6, 28–37.

    CAS  Google Scholar 

  14. Flor, P. J., Van Der Putten, H., Rüegg, D., Lukic, S., Leonhardt, T., Bence, M., et al. (1997) A novel splice variant of a metabotropic glutamate receptor, human mGluR 7b. Neuropharmacology 36, 153–159.

    Google Scholar 

  15. Corti, C., Restituito, S., Rimland, J. M., Brabet, I., Corsi, M., Pin, J. R, and Ferraguti, F. (1998) Cloning and characterization of alternative mRNA forms for the rat metabotropic glutamate receptors mGluR7 and mGluR8. Eue J. Neurosci. 10, 3629–3641.

    Google Scholar 

  16. Xiao, B., Tu, J. C., and Worley, P. F. (2000) Homer: a link between neural activity and glutamate receptor function. Cure Opin. Neurobiol. 10, 370–374.

    Article  CAS  Google Scholar 

  17. Kammermeier, P. J., Xiao, B., Tu, J. C., Worley, P. F., and Ikeda, S. R. (2000) Homer proteins regulate coupling of group I metabotropic glutamate receptors to N-type calcium and M-type potassium channels. J. Neurosci. 20, 7238–7245.

    PubMed  CAS  Google Scholar 

  18. Roche, K. W., Tu, J. C., Petralia, R. S., Xiao, B., Wenthold, R. J., and Worley, P. F. (1999) Homer lb regulates the trafficking of group I metabotropic glutamate receptors. J. Biol. Chem. 274, 25,953–25, 957.

    Google Scholar 

  19. Stowell, J. N. and Craig, MC. (1999) Axon/dendrite targeting of metabotropic glutamate receptors by their cytoplasmic carboxy-terminal domains. Neuron 22, 525–536.

    Article  PubMed  CAS  Google Scholar 

  20. Minakami, R., Jinnai, N., and Sugiyama, H. (1997) Phosphorylation and calmodulin binding of the metabotropic glutamate receptor subtype 5 (mGluR5) are antagonistic in vitro. J. Biol. Chem. 272, 20291–20298.

    Article  CAS  Google Scholar 

  21. Nakajima, Y., Yamamoto, T., Nakayama, T. and Nakanishi, S. (1999) A relationship between protein kinase C phosphorylation and calmodulin binding to the metabotropic glutamate receptor subtype 7. J. Biol. Chem. 274 27,573–27,577.

    Google Scholar 

  22. O’Connor, V., El Far, O., Bofill-Cardona, E., Nanoff, C., Freissmuth, M., Karschin, A., et al. (1999) Calmodulin dependence of presynaptic metabotropic glutamate receptor signaling. Science 286, 1180–1184.

    Article  PubMed  Google Scholar 

  23. Dev, K. K., Nakajima, Y., Kitano, J., Braithwaite, S. P., Henley, J. M., and Nakanishi, S. (2000) PICK1 interacts with and regulates PKC phosphorylation of mGluR7. J. Neurosci. 20, 7252–7257.

    PubMed  CAS  Google Scholar 

  24. Peavy, R. D. and Conn, P. J. (1998) Phosphorylation of mitogen-activated protein kinase in cultured rat cortical glia by stimulation of metabotropic glutamate receptors. J. Neurochem. 71, 603–612.

    Article  PubMed  CAS  Google Scholar 

  25. Ferraguti, F., Baldani-Guerra, B., Corsi, M., Nakanishi, S. and Corti, C. (1999) Activation of the extracellular signal-regulated kinase 2 by metabotropic glutamate receptors. Eue. J Neurosci. 11, 2073–2082.

    Article  CAS  Google Scholar 

  26. Heuss, C., Scanziani, M., Gähwiler, B. H., and Gerber, U. (1999) G-Protein-independent signaling mediated by metabotropic glutamate receptors. Nat. Neurosci. 2, 1070–1077.

    Article  PubMed  CAS  Google Scholar 

  27. Ozawa, S., Kamiya, H., and Tsuzuki, K. (1998) Glutamate receptors in the mammalian central nervous system. Prog. Neurobiol. 54, 581–618.

    Google Scholar 

  28. Hollmann, M. and Heinemann, S. (1994) Cloned glutamate receptors. Annu. Rev. Neurosci. 17, 31–108.

    Article  PubMed  CAS  Google Scholar 

  29. Sprengel, R. and Single F. N. (1999) Mice with genetically modified NMDA and AMPA receptors. Ann. NYAcad. Sci. 868, 494–501.

    Article  CAS  Google Scholar 

  30. Myers, S. J., Dingledine, R., and Borges, K. (1999) Genetic regulation of glutamate receptors. Annu. Rev. Pharmacol. Toxicol. 39, 221–241.

    Article  PubMed  CAS  Google Scholar 

  31. Zuo, J., DeJager, P. L., Takahashi, K. A., Jiang, W., Linden, D. J., and Heintz, N. (1997) Neurodegeneration in Lurcher mice caused by mutation in 82 glutamate receptor gene. Nature 388, 769–767.

    Article  PubMed  CAS  Google Scholar 

  32. Wollmuth, L. P., Kuner, T., Jatzke, C., Seeburg, P. H., Heintz, N., and Zuo, J. (2000) The Lurcher mutation identifies delta 2 as an AMPA/kainate receptor-like channel that is potentiated by Ca(2±). J. Neurosci. 20, 5973–5980.

    PubMed  CAS  Google Scholar 

  33. Verkhratsky, A. and Steinhäuser, C. (2000) Ion channels in gu al cells. Brain Res. Rev. 32, 380–412.

    Article  PubMed  CAS  Google Scholar 

  34. Noda, M., Nakanishi, H., Nabekura, J., and Akaike, N. (2000) AMPA—kainate subtypes of glutamate receptor in rat cerebral microglia. J. Neurosci. 20, 251–258.

    PubMed  CAS  Google Scholar 

  35. Gill, S. S., Pulido, O. M., Mueller, R. W., and McGuire, P. E (1998) Molecular and immunochemical characterization of the ionotropic glutamate receptors in the rat heart. Brain Res. Bull. 46, 429–434.

    Article  PubMed  CAS  Google Scholar 

  36. Gonzalez-Cadavid, N. F., Ryndin, 1., Vernet, D., Magee, T. R., and Rajfer, J. (2000) Presence of NMDA receptor subunits in the male lower urogenital tract. J. Androl. 21, 566–578.

    CAS  Google Scholar 

  37. Inagaki, N., Kuromi, H., Gonoi, T., Okamoto, Y., Ishida, H., Se no, Y., et al. (1995) Expression and role of ionotropic glutamate receptors in pancreatic islet cells. FASEB J. 9, 686–691.

    Google Scholar 

  38. Weaver, C. D., Yao, T. L. Powers, A. C., and Verdoorn, T. A. (1996) Differential expression of glutamate receptor subtypes in rat pancreatic islets. J. Biol. Chem. 271 12,977–12,984.

    Google Scholar 

  39. Omote, K., Kawamata, T., Kawamata, M., and Namiki A. (1998) Formalin-induced release of excitatory amino acids in the skin of the rat hindpaw. Brain Res. 787, 161–164.

    Google Scholar 

  40. Van Bockstaele, E. J. and Colago, E. E. (1996) Selective distribution of the NMDA-R1 glutamate receptor in astrocytes and presynaptic axon terminals in the nucleus locus coeruleus of the rat brain: an immunoelectron microscopic study. J. Comp. Neurot. 369, 483–496.

    Article  Google Scholar 

  41. Paquet, M. and Smith, Y. (2000) Presynaptic NMDA receptor subunit immunoreactivity in GABAergic terminals in rat brain. J. Comp. Neurol. 423, 330–347.

    Article  PubMed  CAS  Google Scholar 

  42. Burnashev, N., Villarroel, A., and Sakmann, B. (1996) Dimensions and ion selectivity of recombinant AMPA and kainate receptor channels and their dependence on Q/R site residues. J. Physiol. 496, 165–173.

    PubMed  CAS  Google Scholar 

  43. Chazot, P. L. and Stephenson, F. A. (1997) Molecular dissection of native mammalian forebrain NMDA receptors containing the NR1 C2 exon: direct demonstration of NMDA receptors comprising NR1, NR2A, and NR2B subunits within the same complex. J. Neurochem. 69, 2138–2144.

    Article  PubMed  CAS  Google Scholar 

  44. Luo, J., Wang, Y., Yasuda, R. P., Dunah, A. W., and Wolfe, B. B. (1997) The majority of N-methyl-D-aspartate receptor complexes in adult rat cerebral cortex contain at least three different subunits (NR1/NR2AJNR2B). Mol. Pharmacol. 51, 79–86.

    PubMed  CAS  Google Scholar 

  45. Sheng, M., Cummings, J., Roldan, L. A., Jan, Y. N., and Jan LY. (1994) Changing subunit composition of heteromeric NMDA receptors during development of rat cortex. Nature 368, 144–147.

    Article  PubMed  CAS  Google Scholar 

  46. Dunah, A. W., Luo, J., Wang, Y. H., Yasuda, R. P., and Wolfe, B. B. (1998) Subunit composition of N-methyl-D-aspartate receptors in the central nervous system that contain the NR2D subunit. Mol. Pharmacol. 53, 429–437.

    PubMed  CAS  Google Scholar 

  47. Wenthold, R. J., Petralia, R. S., Blahos, J., II, and Niedzielski, A. S. (1996) Evidence for multiple AMPA receptor complexes in hippocampal CA1/CA2 neurons. J. Neurosci. 16, 1982–1989.

    PubMed  CAS  Google Scholar 

  48. Ripellino, J. A., Neve, R. L., and Howe J. R. (1998) Expression and heteromeric interactions of non-N-methyl-n-aspartate glutamate receptor subunits in the developing and adult cerebellum. Neuroscience 82, 485–497.

    Article  PubMed  CAS  Google Scholar 

  49. Dunah, A. W., Yasuda, R. P., Luo, J., Wang, Y. H., Prybylowski, K. L., and Wolfe, B. B. (1999) Biochemical studies of the structure and function of the N-methyl-D-aspartate subtype of glutamate receptors. Mol. Neurobiol. 19, 151–179.

    Article  PubMed  CAS  Google Scholar 

  50. Leuschner, W. D. and Hoch, W. (1999) Subtype-specific assembly of a-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor subunits is mediated by their N-terminal domains. J. Biol. Chem. 274, 16,907–16, 916.

    Google Scholar 

  51. Kuusinen. A., Abele, R., Madden, D. R., and Keinänen, K. (1999) Oligomerization and ligand-binding properties of the ectodomain of the a-amino-3-hydroxy-5methyl-4-isoxazole propionic acid receptor subunit GIuRD. J. Biol. Chem. 274, 28,937–28, 943.

    Google Scholar 

  52. Chazot, P. L. and Stephenson, F. A (1997) Biochemical evidence for the existence of a pool of unassembled C2 exon-containing NR1 subunits of the mamalian forebrain NMDA receptor. J. Neurochem. 68, 507–516.

    Article  PubMed  CAS  Google Scholar 

  53. Blahos, J, 2nd and Wenthold, R. J. (1996) Relationship between N-methyl-D-aspartate receptor NR1 splice variants and NR2 subunits. J. Biot. Chem. 271, 15,669–15, 674.

    Google Scholar 

  54. Hawkins, L. M., Chazot, P. L., and Stephenson, F. A. (1999) Biochemical evidence for the co-association of three Nmethyl-D-aspartate (NMDA) R2 subunits in recombinant NMDA receptors. J. Biol. Chem. 274, 27,211–27, 218.

    Google Scholar 

  55. Laube, B., Kuhse, J. and Betz, H. (1998) Evidence for a tetrameric structure of recombinant NMDA receptors. J. Neurosci. 18, 2954–2961.

    Google Scholar 

  56. Rosenmund, C., Stern-Bach, Y., and Stevens, C. F. (1998) The tetrameric structure of a glutamate receptor channel. Science 280, 1596–1599.

    Article  PubMed  CAS  Google Scholar 

  57. Behe, P., Stern, P., Wyllie, D. J. A., Nassar, M., Schoepfer, R., and Colquhoun, D. (1995) Determination of NMDA NR1 subunit copy number in recombinant NMDA receptors. Proc. Roy. Soc. (Lond.) B 262, 205–213.

    Article  CAS  Google Scholar 

  58. Premkumar, L. S. and Auerbach, A. (1997) Stoichiometry of recombinant N-methyl-D-aspartate receptor channels inferred from single-channel current patterns. J. Gen. Physiol. 110, 485–502.

    Article  PubMed  CAS  Google Scholar 

  59. Ferrer-Montiel, A. V. and Montai, M. (1996) Pentameric subunit stoichiometry of a neuronal glutamate receptor. Proc. Natl. Acad. Sci. USA 93, 2741–2744.

    Article  PubMed  CAS  Google Scholar 

  60. Armstrong, N., Sun, Y., Chen, G., and Gouaux, E. (1998) Structure of a glutamate-receptor ligand-binding core in complex with kainate. Nature 395, 913–917.

    Article  PubMed  CAS  Google Scholar 

  61. Abele, R, Keinänen, K., and Madden, D. R. (2000) Agonist-induced isomerization in a glutamate receptor ligand-binding domain. J. Biol. Chem. 275, 21,355–21, 363.

    Google Scholar 

  62. Seeburg, P. H., Higuchi, M., and Sprengel, R. (1998) RNA editing of brain glutamate receptor channels: mechanism and physiology. Brain Res. Rev. 26, 217–229.

    Article  PubMed  CAS  Google Scholar 

  63. Bass, B. L., Nishidura, K., Keller, W., Seeburg, P. H., Emeson, R. B., O’Connell, M. A., et al. (1997) A standardized nomenclature for adenosine deaminases that act on RNA. RNA 3, 947–949.

    Google Scholar 

  64. Brusa, R., Zimmermann, F., Koh, D. S., Feldmeyer, D., Gass, P., Seeburg, P. H, et al. (1995) Early-onset epilepsy and postnatal lethality associated with an editing-deficient G1uR-B allele in mice. Science 270, 1677–1680.

    Article  PubMed  CAS  Google Scholar 

  65. Higuchi, M., Maas, S., Single, F. N., Hartner, J., Rozov, A., Burnashev, N., et al. (2000) Point mutation in an AMPA receptor gene rescues lethality in mice deficient in the RNA-editing enzyme ADAR2. Nature 406, 78–81.

    Article  PubMed  CAS  Google Scholar 

  66. Matsuda, S., Mikawa, S., and Hirai, H. (1999) Phosphorylation of serine-880 in G1uR2 by protein kinase C prevents its C terminus from binding with glutamate receptor-interacting protein. J. Neurochem. 73, 1765–8.

    Google Scholar 

  67. Chung. H. J., Xia, J., Scannevin, R. H., Zhang, X., and Huganir, R. L. (2000) Phosphorylation of the AMPA receptor subunit G1uR2 differentially regulates its interaction with PDZ domain-containing proteins. J. Neurosci. 20, 7258–7267.

    Google Scholar 

  68. Carvalho, A. L., Kameyama, K., and Huganir, R. L. (1999) Characterization of phosphorylation sites on the glutamate receptor 4 subunit of the AMPA receptors. J. Neurosci. 19, 4748–4754.

    PubMed  CAS  Google Scholar 

  69. Chen, L. and Huang, L,-Y. M. (1992) Protein kinase C reduces Mgt+ block of NMDA-receptor channels as a mechanism of modulation. Nature 356 521–523.

    Google Scholar 

  70. Tingley, W. G., Ehlers, M. D., Kameyama, K., Doherty, C., Ptak, J. B., Riley, C. T., et al. (1997) Characterization of protein kinase A and protein kinase C phosphorylation of the N-methyl-D-aspartate receptor NR1 subunit using phosphorylation site-specific antibodies. J. Biol. Chem. 272, 5157–5166.

    Article  PubMed  CAS  Google Scholar 

  71. Zheng, F., Gingrich, M. B., Traynelis, S. F., and Conn, P. J (1998) Tyrosine kinase potentiates NMDA receptor current by reducing tonic Zn2+ inhibition. Nat. Neurosci. 1, 185–191.

    Google Scholar 

  72. Lu, Y. M., Roder, J. C., Davidow, J., and Salter, M. W. (1998) Src activation in the induction of long-term potentiation in CA1 hippocampal neurons. Science 279, 1363–1367.

    Article  PubMed  CAS  Google Scholar 

  73. Grant, S. G. N., O’Dell, T. J., Karl, K. A., Stein, P. L., Soriano, P., and Kandel, E. R. (1992) Impaired long-term potentiation, spatial learning, and hippocampal development in Fyn mutant mice. Science 258, 1903–1910.

    Google Scholar 

  74. Fujita, A. and Kurachi, Y. (2000) SAP family proteins. Biochem. Biophys. Res. Commun. 269, 1–6.

    Article  PubMed  CAS  Google Scholar 

  75. Braithwaite, S. P., Meyer, G., and Henley, J. H (2000) Interactions between AMPA receptors and intracellular proteins. Neuropharmacology 39, 919–930.

    Article  PubMed  CAS  Google Scholar 

  76. Hayashi, Y., Shi, S.-H., Esteban, J. A., Piccini, A., Poncer, J.-C., and Malinow, R. (2000) Driving AMPA receptors into synapses by LTP and CaMKII: requirement for G1uR1 and PDZ domain interaction. Science 287, 2262–2267.

    Article  PubMed  CAS  Google Scholar 

  77. Lin, J. W. and Sheng, M. (1998) NSF and AMPA receptors get physical. Neuron 21, 267–270.

    Article  PubMed  CAS  Google Scholar 

  78. Kennedy, M. B. (1998) Signal transduction molecules at the glutamatergic postsynaptic membrane. Brain Res. Rev. 26, 243–257.

    Article  PubMed  CAS  Google Scholar 

  79. Husi, H., Ward, M. A., Choudhary, J. S., Blackstock, W. P., and Grant, S. G.N. (2000) Proteomic analysis of NMDA receptor-adhesion protein signaling complexes. Nat. Neurosci. 3, 661–669.

    Article  PubMed  CAS  Google Scholar 

  80. Wang, Y., Small, D. L., Stanimirovic, D. B., Morley, P., and Durkin, J. P. (1997) AMPA receptor-mediated regulation of a G; protein in cortical neurons. Nature 389, 502–504.

    Article  PubMed  CAS  Google Scholar 

  81. Wang, Y. and Durkin, J. P. (1995) a-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, but not N-methyl-D-aspartate, activates mitogen-activated protein kinase through G-protein (3y subunits in rat cortical neurons. J. Biol. Chem. 270 22,783–22,787.

    Google Scholar 

  82. Kawai, F. and Sterling, P. (1999) AMPA receptor activates a G-protein that suppresses a cGMP-gated current. J Neurosci. 19, 2954–2959.

    PubMed  CAS  Google Scholar 

  83. Hayashi, Y., Umemori, H., Mishina, M., and Yamamoto, T. (1999) The AMPA receptor interacts with and signals through the protein tyrosine kinase Lyn. Nature. 397, 72–76.

    Article  PubMed  CAS  Google Scholar 

  84. Rodriques-Moreno, A. and Lerma, J. (1998) Kainate receptor modulation of GABA release involves a metabotropic function. Neuron 20, 1211–1218.

    Article  Google Scholar 

  85. Cunha, R A, Malva, J. O., and Ribeiro, J. A. (1999) Kainate receptors coupled to G/Go proteins in the rat hippocampus. Mol. Pharmacol. 56, 429–433.

    PubMed  CAS  Google Scholar 

  86. Glover, R. T., Angiolieri, M., Kelly, S., Monaghan, D. T., Wang, J. Y., Smithgall, T. E., et al. (1998) Interaction of the Nmethyl-n-aspartic acid receptor NR2D subunit with the c-Abl tyrosine kinase. J. Biol. Chem. 275, 12725–12729.

    Article  Google Scholar 

  87. Rao, A., Harms, K. J., and Craig, A. M. (2000) Neuroligation: building synapses around the neurexin-neuroligin link. Nat. Neurosci. 3, 747–749.

    Article  PubMed  CAS  Google Scholar 

  88. Tsui, C. C., Copeland, N. G., Gilbert, D. J., Jenkins, N. A., Barnes, C., and Worley, P. F. (1996) Narp, a novel member of the pentraxin family, promotes neurite outgrowth and is dynamically regulated by neuronal activity. J. Neurosci. 16, 2463–2478.

    PubMed  CAS  Google Scholar 

  89. O’Brien, R. J., Xu, D., Petralia, R. S., Steward, O., Huganir, R. L., and Worley, P. (1999) Synaptic clustering of AMPA receptors by the extracellular immediate-early gene product Narp. Neuron 23, 309–323.

    Article  PubMed  Google Scholar 

  90. Johnson, J. W. and Ascher, P. (1987) Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature 325, 529–531.

    Article  PubMed  CAS  Google Scholar 

  91. Kleckner, N. W. and Dingledine, R. (1988) Requirement for glycine in activation of NMDA receptors expressed in Xenopus oocytes. Science 241, 835–837.

    Article  PubMed  CAS  Google Scholar 

  92. Washburn, M. S., Numberger, M., Zhang, S., and Dingledine, R. (1997) Differential dependence of GluR2 expression of three characteristic features of AMPA receptors. J. Neurosci. 17, 9393–9406.

    PubMed  CAS  Google Scholar 

  93. Burnashev, N., Schoepfer, R. Monyer, H., Ruppersberg, J. P., Gunther, W., Seeburg, P. H., et al. (1992) Control by asparagine residues of calcium permeability and magnesium blocakade in the NMDA receptor. Science 257, 1415–1419.

    Article  PubMed  CAS  Google Scholar 

  94. Kuner, T., Wollmuth, L. P., Karlin, A., Seeburg, P. H., and Sakmann, B. (1996) Structure of the NMDA receptor channel M2 segment inferred from the accessibility of substituted cysteines. Neuron 17, 343–352.

    Article  PubMed  CAS  Google Scholar 

  95. Bezzi, P., Vesce, S., Panzarasa, P., and Volterra, A. (1999) Astrocytes as active participants of glutamatergic function and regulations of its homeostasis. Adv. Exp. Med. Biol. 468, 69–80.

    Article  PubMed  CAS  Google Scholar 

  96. Bergles, D. E., Roberts, J. D. B., Somogyi, P., and Jahr, C. E. (2000) Glutamatergic synapse on oligodendrocyte precursor cells in the hippocampus. Nature 405, 187–191.

    Article  PubMed  CAS  Google Scholar 

  97. Gallo, V., Zhou, J. M., McBain, C. J., Wright, P., Knutson, P. L., and Armstrong, R. C. (1996) Oligodendrocyte progenitor cell proliferation and lineage progression are regulated by glutamate receptor-mediated K` channel block. J. Neurosci. 16, 2659–2670.

    PubMed  CAS  Google Scholar 

  98. Dani, J. W., Chernjaysky, A., and Smith S. J. (1992) Neuronal activity triggers calcium waves in hippocampal astrocyte networks. Neuron. 8, 429–440.

    Article  PubMed  CAS  Google Scholar 

  99. Porter, J. T. and McCarthy, K. D. (1996) Hippocampal astrocytes in situ respond to glutamate released from synaptic terminals. J Neurosci. 16, 5073–5081.

    PubMed  CAS  Google Scholar 

  100. Pasti, L, Volterra, A., Pozzan, T., and Carmignoto, G. (1997) Intracellular calcium oscillations in astrocytes: a highly plastic, bidirectional form of communication between neurons and astrocytes in situ. J. Neurosci. 17, 7817–7830.

    CAS  Google Scholar 

  101. Winder, D. G., Ritch, P. S., Gereau, R. W. IV, and Conn P. J. (1996) Novel glial—neuronal signalling by coactivation of metabotropic glutamate and beta-adrenergic receptors in rat hippocampus. J. Physiol. 494, 743–755.

    PubMed  CAS  Google Scholar 

  102. Peoples, R. W. and Weight, F. F. (1997) Anesthetic actions on excitatory amino acids receptors, in Anesthesia: Biologic Foundation. ( Yaksh, T., ed.) Lippincott—Raven, philadelphia/pp. 239–258.

    Google Scholar 

  103. Anders, D. L., Blevins, T., Smothers, C. T., and Woodward, J. J. (2000) Reduced ethanol inhibition of N-methyl-n-aspartate receptors by deletion of the NR1 CO domain or overexpression of alpha-actinin-2 proteins. J. Biol. Chem. 275, 15,019–15, 024.

    Google Scholar 

  104. Wyszynski, M., Kharazia, V., Shanghvi, R., Rao, A., Beggs, A. H., Craig, A. M., et al. (1998) Differential regional expression and ultrastructural localization of alpha-actinin-2, a putative NMDA receptor-anchoring protein, in rat brain. J. Neurosci. 18, 1383–1392.

    PubMed  CAS  Google Scholar 

  105. Narita, M., Soma, M., Mizoguchi, H., Tseng, L. F., and Suzuki, T. (2000) Implications of the NR2B subunit-containing NMDA receptor localized in mouse limbic forebrain in ethanol dependence. Eur. J. Pharmacol. 401, 191–195.

    Article  PubMed  CAS  Google Scholar 

  106. Frye, G. D. and Fincher, A. (2000) Sustained ethanol inhibition of native AMPA receptors on medial septum/diagonal band (MS/DB) neurons. Br. J. Pharmacol. 129, 87–94.

    Article  PubMed  CAS  Google Scholar 

  107. Cruz, S. L., Mirshahi, T., Thomas, B., Balster, R. L., and Woodward J. J. (1998) Effects of the abused solvent toluene on recombinant N-methyl-n-aspartate and non-N-methyl-o-aspartate receptors expressed in Xenopus oocytes. J. Pharmacol. Exp. Then. 286, 334–340.

    CAS  Google Scholar 

  108. Jevtovic-Todorovic, V., Todorovic, S. M., Mennerick, S., Powell, S., Dikranian, K., Benshoff, N., et al. (1998) Nitrous oxide (laughing gas) is an NMDA antagonist, neuroprotectant and neurotoxin. Nat. Med. 4, 460–463.

    Article  PubMed  CAS  Google Scholar 

  109. Traynelis, S. F, Hartley, M., and Heinemann, S. F. (1995) Control of proton sensitivity of the NMDA receptor by RNA splicing and polyamines. Science 268, 873–876.

    Article  PubMed  CAS  Google Scholar 

  110. Mott, D. D., Doherty, J. J., Zhang, S., Washburn, M. S., Fendley, M. J., Lyuboslaysky, P., et al. (1998) Enhancement of protein inhibition: a novel mechanism of inhibition of NMDA receptors by phenylethanolamines. Nat. Neurosci. 1, 659–667.

    Article  PubMed  CAS  Google Scholar 

  111. Choi, Y. B. and Lipton, S. A. (1999) Identification and mechanism of action of two histidine residues underlying high-affinity Zn2+ inhibition of the NMDA receptor. Neuron 23, 171–180.

    Article  PubMed  CAS  Google Scholar 

  112. Low, C. M., Zheng, F., Lyuboslaysky, P., and Traynelis, S. F. (2000) Molecular determinants of coordinated proton and zinc inhibition of N-methyl-o-aspartate NR1/NR2A receptors. Proc. Natl. Acad. Sci. USA 97, 11,062–11, 067.

    Google Scholar 

  113. Paoletti, P., Perin-Dureau, F., Fayyazuddin, A., Le Goff, A., Callebaut, I., and Neyton, J. (2000) Molecular organization of a zinc binding N-terminal modulatory domain in a NMDA receptor subunit. Neuron 28, 911–925.

    Article  PubMed  CAS  Google Scholar 

  114. Mosbacher, J., Schoepfer, R., Monyer, H., Burnashev, N., Seeburg, P. H., and Ruppersberg, J. P. (1994) A molecular determinant for submillisecond desensitiation in glutamate receptors. Science 266, 1059–1061.

    Article  PubMed  CAS  Google Scholar 

  115. Partin, K. M., Bowie, D., and Mayer, M. L. (1995) Structural determinants of allosteric regulation in alternatively spliced AMPA receptors. Neuron 14, 833–843.

    Article  PubMed  CAS  Google Scholar 

  116. Partin, K. M., Patneau, D. K., Winter, C. A., Mayer, M. L., and Buonanno, A. (1993) Selective modulation of desensitization at AMPA versus kainate receptors by cyclothiazide and concanavalin A. Neuron 11, 1069–1082.

    Article  PubMed  CAS  Google Scholar 

  117. Schiffer, H. H., Swanson, G. T., and Heinemann, S. F. (1997) Rat GluR 7 and a carboxyterminal splice variant, G1uR 7b, are functional kainate receptor subunits with a low sensitivity to glutamate. Neuron 19, 1141–1146.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Borges, K., Dingledine, R. (2002). Molecular Pharmacology and Physiology of Glutamate Receptors. In: Herman, B.H., Frankenheim, J., Litten, R.Z., Sheridan, P.H., Weight, F.F., Zukin, S.R. (eds) Glutamate and Addiction. Contemporary Clinical Neuroscience. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-306-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-306-4_1

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-234-6

  • Online ISBN: 978-1-59259-306-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics