Skip to main content

Activation of B cells by CpG Motifs in Bacterial DNA

  • Chapter
Microbial DNA and Host Immunity
  • 259 Accesses

Abstract

Although the immune system possesses exquisitely antigen-specific receptors on T cells and B cells, the generation of such adaptive immune responses relies on the assistance of the innate immune defenses, such as dendritic cells, which must be activated in order to trigger optimal immune responses. These cells of the innate immune system lack such highly specific antigen receptors, instead relying on a set of “pattern recognition receptors” (PRRs) which have a general ability to detect certain molecular structures that are common to many pathogen occasions, but are not present in self tissues (1,2). One such PRR is represented by unmethylated CpG dinucleotides in particular base contexts, which are prevalent in bacterial and many viral DNAs, but are heavily suppressed and methylated in vertebrate genomes (1–5). Thus, the immune system appears to use the presence of this molecular structure as a “danger signal” that indicates the presence of infection and activates appropriate defense pathways. B cells are one of a very small subset of immune cells that express TLR-9, the putative CpG receptor, giving them a key role in the initiation of CpG-induced immune responses. The purpose of this review is to examine the B-cell effects of CpG DNA, and consider how these may affect the activation of innate and acquired immunity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dempsey, P. W., Allison, M. E., Akkaraju, S., Goodnow, C. C., and Fearon, D. T. (1996) C3d of complement as a molecular adjuvant: bridging innate and acquired immunity. Science. 271, 348–350.

    Article  PubMed  CAS  Google Scholar 

  2. Kumar, A., Yang, Y. L., Flati, V., et al. (1997) Deficient cytokine signaling in mouse embryo fibroblasts with a targeted deletion in the PKR gene: role of IRF-1 and NF-kappaB. EMBO J. 16, 406–416.

    Article  PubMed  CAS  Google Scholar 

  3. Bird, A. P. (1987) CpG islands as gene markers in the vertebrate nucleus. Trends in Genetics. 3, 342–347.

    Article  CAS  Google Scholar 

  4. Krieg, A. M., Yi, A. K., Matson, S., et al. (1995) CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 374, 546–549.

    Article  PubMed  CAS  Google Scholar 

  5. Medzhitov, R. and Janeway, C. A., Jr. (1997) Innate immunity: impact on the adaptive immune response. Curr. Opin. Immunol. 9, 4–9.

    Article  PubMed  CAS  Google Scholar 

  6. Liang, H., Nishioka, Y., Reich, C. F., Pisetsky, D. S., and Lipsky, P. E. (1996) Activation of human B cells by phosphorothioate oligodeoxynucleotides. J. Clin. Invest. 98, 1119–1129.

    Article  PubMed  CAS  Google Scholar 

  7. Hartmann, G. and Krieg, A. M. (2000) Mechanism and function of a newly identified CpG DNA motif in human primary B cells. J. Immunol. 164, 944–953.

    PubMed  CAS  Google Scholar 

  8. Hartmann, G., Weeratna, R. D., Ballas, Z. K. (2000) Delineation of a CpG phosphorothioate oligodeoxynucleotide for activating primate immune responses in vitro and in vivo. J. Immunol. 164, 1617–1624.

    CAS  Google Scholar 

  9. Brown, W. C., Estes, D. M., Chantler, S. E., Kegerreis, K. A., and Suarez, C. E. (1998) DNA and a CpG oligonucleotide derived from Babesia bovis are mitogenic for bovine B cells. Infect. Immun. 66, 5423–5432.

    PubMed  CAS  Google Scholar 

  10. Wicker, L. S., Boltz, R. C., Jr., Nichols, E. A., Miller, B. J., Sigal, N. H., and Peterson, L. B. (1987) Large, activated B cells are the primary B-cell target of 8- bromoguanosine and 8-mercaptoguanosine. Cell Immunol. 106, 318–329.

    Article  PubMed  CAS  Google Scholar 

  11. Goodman, M. G. (1991) Cellular and biochemical studies of substituted guanine ribonucleoside immunostimulants. Immunopharmacology 21, 51–68.

    Article  PubMed  CAS  Google Scholar 

  12. Krieg, A. M. (1999) Leukocyte Stimulation by Oligodeoxynucleotides. In: Applied Antisense Oligonucleotide Technology, C. A. Stein and A.M. Krieg (eds.), Wiley & Sons, Inc., New York, pp. 431–448.

    Google Scholar 

  13. Yi, A. K., Klinman, D. M., Martin, T. L., Matson, S., and Krieg, A. M. (1996) Rapid immune activation by CpG motifs in bacterial DNA. Systemic induction of IL-6 transcription through an antioxidant-sensitive pathway. J. Immunol. 157, 5394–5402.

    PubMed  CAS  Google Scholar 

  14. Redford, T. W., Yi, A. K., Ward, C. T., and Krieg, A. M. (1998) Cyclosporin A enhances IL-12 production by CpG motifs in bacterial DNA and synthetic oligodeoxynucleotides. J. Immunol. 161, 3930–3935.

    PubMed  CAS  Google Scholar 

  15. Bohle, B., Jahn-Schmid, B., Maurer, D., Kraft, D., and Ebner, C. (1999) Oligodeoxynucleotides containing CpG motifs induce IL-12, IL-18 and IFN-γ production in cells from allergic individuals and inhibit IgE synthesis in vitro. Eu r. J. Immunol. 29, 2344–2353.

    Article  CAS  Google Scholar 

  16. Chace, J. H., Abed, N. S., Adel, G. L., and Cowdery, J. S. (1993) Regulation of differentiation in CD5+ and conventional B cells. Sensitivity to LPS-induced differentiation and interferon-g- mediated inhibition of differentiation. Clin. Immunol. Immunopathol. 68, 327–332.

    Article  PubMed  CAS  Google Scholar 

  17. Yi, A. K., Chace, J. H., Cowdery, J. S., and Krieg, A. M. (1996) IFN-γ promotes IL-6 and IgM secretion in response to CpG motifs in bacterial DNA and oligodeoxynucleotides. J. Immunol. 156, 558–564.

    PubMed  CAS  Google Scholar 

  18. Cowdery, J. S., Chace, J. H., Yi, A. K., and Krieg, A. M. (1996) Bacterial DNA induces NK cells to produce IFN-γ in vivo and increases the toxicity of lipopolysaccharides. J. Immunol. 156, 4570–4575.

    PubMed  CAS  Google Scholar 

  19. Anitescu, M., Chace, J. H., Tuetken, R., et al. (1997) Interleukin-10 functions in vitro and in vivo to inhibit bacterial DNA- induced secretion of interleukin12. J. Interferon Cytokine Res. 17, 781–788.

    Article  PubMed  CAS  Google Scholar 

  20. Davis, H. L., Weeratna, R., Waldschmidt, T. J., et al. (1998) CpG DNA is a potent enhancer of specific immunity in mice immunized with recombinant hepatitis B surface antigen J. Immunol. 160, 870–876.

    PubMed  CAS  Google Scholar 

  21. Kobayashi, H., Homer, A. A., Takabayashi, K., Nguyen, M. D., Huang, E., Cinman, N., and Raz, E. (1999) Immunostimulatory DNA pre-priming: a novel approach for prolonged Th 1- biased immunity. Cell Immunol. 198, 69–75.

    Article  PubMed  CAS  Google Scholar 

  22. Jahrsdorfer, B., Hartmann, G., Racila, E., et al. (2001) CpG DNA increases primary malignant B cell expression of costimulatory molecules and target antigens. J. Leukoc. Biol. 69, 81–88.

    PubMed  CAS  Google Scholar 

  23. Hemmi, H., Takeuchi, O., Kawai, T., et al. (2000) A Toll-like receptor recognizes bacterial DNA. Nature. 408, 740–745.

    Article  PubMed  CAS  Google Scholar 

  24. Krieg, A. M. and Wagner, H. (2000) Causing a commotion in the blood: immunotherapy progresses from bacteria to bacterial DNA. Immunol. Today 21, 521–526.

    Article  PubMed  CAS  Google Scholar 

  25. Yi, A. K., Hornbeck, P., Lafrenz, D. E., and Krieg, A. M. (1996) CpG DNA rescue of murine B lymphoma cells from anti-IgM-induced growth arrest and programmed cell death is associated with increased expression of c-myc and bcl-xL. J. Immunol. 157, 4918–4925.

    PubMed  CAS  Google Scholar 

  26. Norvell, A., Mandik, L., and Monroe, J. G. (1995) Engagement of the antigenreceptor on immature murine B lymphocytes results in death by apoptosis. J. Immunol. 154, 4404–4413.

    PubMed  CAS  Google Scholar 

  27. King, L. B., Norvell, A., and Monroe, J. G. (1999) Antigen receptor-induced signal transduction imbalances associated with the negative selection of immature B cells. J. Immunol. 162, 2655–2662.

    PubMed  CAS  Google Scholar 

  28. Lee, H., Arsura, M., Wu, M., Duyao, M., Buckler, A. J., and Sonenshein, G. E. (1995) Role of Rel-related factors in control of c-myc gene transcription in receptor-mediated apoptosis of the murine B cell WEHI 231 line. J. Exp. Med. 181, 1169–1177.

    Article  PubMed  CAS  Google Scholar 

  29. Fischer, G., Kent, S. C., Joseph, L., Green, D. R., and Scott, D. W. (1994) Lymphoma models for B cell activation and tolerance. X. Anti-mu- mediated growth arrest and apoptosis of murine B cell lymphomas is prevented by the stabilization of myc. J. Exp. Med. 179, 221–228.

    Article  PubMed  CAS  Google Scholar 

  30. McCormack, J.-E., Pepe, V. H., Kent, R. B., Dean, M., Marshak-Rothstein, A., and Sonnenshein, G. E. (1984) Specific regulation of c-myc oncogene expression in a murine B-cell lymphoma. Proc. Natl. Acad. Sci. USA 81, 5546.

    Article  PubMed  CAS  Google Scholar 

  31. Wu, M., Lee, H., Bellas, R. E., Schauer, S. L., Arsura, M., Katz, D., FitzGerald, M. J., Rothstein, T. L., Sherr, D. H., and Sonenshein, G. E. (1996) Inhibition of NF-kappaB/Rel induces apoptosis of murine B cells. EMBO J. 15, 4682–4690.

    PubMed  CAS  Google Scholar 

  32. Schauer, S. L., Wang, Z., Sonenshein, G. E., and Rothstein, T. L. (1996) Maintenance of nuclear factor-k B/Rel and c-myc expression during CD40 ligand rescue of WEHI 231 early B cells from receptor-mediated apoptosis through modulation of IκB proteins. J. Immunol. 157, 81–86.

    PubMed  CAS  Google Scholar 

  33. Yi, A. K. and Krieg, A. M. (1998) CpG DNA rescue from anti-IgM-induced WEHI-231 B lymphoma apoptosis via modulation of IkBa and IκBβ and sustained activation of nuclear factor-κ B/c-Rel. J. Immunol. 160, 1240–1245.

    PubMed  CAS  Google Scholar 

  34. Han, S. S., Chung, S. T., Robertson, D. A., Chelvarajan, R. L., and Bondada, S. (1999) CpG oligodeoxynucleotides rescue BKS-2 immature B cell lymphoma from anti-IgM-mediated growth inhibition by up-regulation of egr-1. Int. Immunol. 11, 871–879.

    Article  PubMed  CAS  Google Scholar 

  35. Ballas, Z. K., Rasmussen, W. L., and Krieg, A. M. (1996) Induction of NK activity in murine and human cells by CpG motifs in oligodeoxynucleotides and bacterial DNA. J. Immunol. 157, 1840–1845.

    PubMed  CAS  Google Scholar 

  36. Yaswen, P., Stampfer, M. R., Ghosh, K., and Cohen, J. S. (1993) Effects of sequence of thioated oligonucleotides on cultured human mammary epithelial cells. Antisense Res. Dev. 3, 67–77.

    PubMed  CAS  Google Scholar 

  37. Burgess, T. L., Fisher, E. F., Ross, S. L., et al. (1995) The antiproliferative activity of c-myb and c-myc antisense oligonucleotides in smooth muscle cells is caused by a nonantisense mechanism. Proc. Natl. Acad. Sci. USA 92, 4051–4055.

    Article  PubMed  CAS  Google Scholar 

  38. Illera, V. A., Perandones, C. E., Stunz, L. L., Mower, D. A., Jr., and Ashman, R. F. (1993) Apoptosis in splenic B lymphocytes. Regulation by protein kinase C and IL-4. J. Immunol. 151, 2965–2973.

    PubMed  CAS  Google Scholar 

  39. Mower, D. A., Jr., Peckham, D. W., Illera, V. A., Fishbaugh, J. K., Stunz, L. L., and Ashman, R. F. (1994) Decreased membrane phospholipid packing and decreased cell size precede DNA cleavage in mature mouse B cell apoptosis. J. Immunol. 152, 4832–4842.

    PubMed  CAS  Google Scholar 

  40. Yi, A. K., Chang, M., Peckham, D. W., Krieg, A. M., and Ashman, R. F. (1998) CpG oligodeoxyribonucleotides rescue mature spleen B cells from spontaneous apoptosis and promote cell cycle entry. J. Immunol. 160, 5898–5906.

    PubMed  CAS  Google Scholar 

  41. Yi, A. K., Peckham, D. W., Ashman, R. F., and Krieg, A. M. (1999) CpG DNA rescues B cells from apoptosis by activating NFkappaB and preventing mitochondrial membrane potential disruption via a chloroquine-sensitive pathway. Int. Immunol. 11, 2015–2024.

    Article  PubMed  CAS  Google Scholar 

  42. Wang, Z., Karras, J. G., Colarusso, T. P., Foote, L. C., and Rothstein, T. L. (1997) Unmethylated CpG motifs protect murine B lymphocytes against Fasmediated apoptosis. Cell Immunol. 180, 162–167.

    Article  PubMed  CAS  Google Scholar 

  43. Zhao, Q., Matson, S., Herrera, C. J., Fisher, E., Yu, H., and Krieg, A. M. (1993) Comparison of cellular binding and uptake of antisense phosphodiester, phosphorothioate, and mixed phosphorothioate and methylphosphonate oligonucleotides. Antisense Res. De. 3, 53–66.

    CAS  Google Scholar 

  44. Stein, C. A., Subasinghe, C., Shinozuka, K., and Cohen, J. S. (1988) Physicochemical properties of phosphorothioate oligodeoxynucleotides. Nucleic Acids Res. 16, 3209–3221.

    Article  PubMed  CAS  Google Scholar 

  45. Zhao, Q., Temsamani, J., Iadarola, P. L., Jiang, Z., and Agrawal, S. (1996) Effect of different chemically modified oligodeoxynucleotides on immune stimulation. Biochem. Pharmacol. 51, 173–182.

    Article  PubMed  CAS  Google Scholar 

  46. Krieg, A. M., Matson, S., and Fisher, E. (1996) Oligodeoxynucleotide modifications determine the magnitude of B cell stimulation by CpG motifs. Antisense Nucleic Acid Drug Dev. 6, 133–139.

    Article  PubMed  CAS  Google Scholar 

  47. Yu, D., Kandimalla, E. R., Roskey, A., Zhao, Q., Chen, L., Chen, J., and Agrawal, S. (2000) Stereo-enriched phosphorothioate oligodeoxynucleotides: synthesis, biophysical and biological properties [In Process Citation]. Bioorg. Med. Chem. 8, 275–284.

    Article  PubMed  CAS  Google Scholar 

  48. Matson, S. and Krieg, A. M. (1992) Nonspecific suppression of [3H]thymidine incorporation by “control” oligonucleotides. Antisense Res. De. 2, 325–330.

    CAS  Google Scholar 

  49. Kenter, A. L. and Tredup, J. (1991) High expression of a 3′-5′ exonuclease activity is specific to B lymphocytes. Mol. Cell Biol. 11, 4398–4404.

    PubMed  CAS  Google Scholar 

  50. Hartmann, G., Weiner, G. J., and Krieg, A. M. (1999) CpG DNA: a potent signal for growth, activation, and maturation of human dendritic cells. Proc. Natl. Acad. Sci. USA 96, 9305–9310.

    Article  PubMed  CAS  Google Scholar 

  51. Stein, C. A. and Cheng, Y. C. (1993) Antisense oligonucleotides as therapeutic agents is the bullet really magical? Science. 261, 1004–1012.

    Article  PubMed  CAS  Google Scholar 

  52. Stein, C. A. and Krieg, A. M. (1994) Problems in interpretation of data derived from in vitro and in vivo use of antisense oligodeoxynucleotides [editorial]. Antisense Res. De). 4, 67–69.

    CAS  Google Scholar 

  53. Zhao, Q., Waldschmidt, T., Fisher, E., Herrera, C. J., and Krieg, A. M. (1994) Stage-specific oligonucleotide uptake in murine bone marrow B-cell precursors. Blood. 84, 3660–3666.

    PubMed  CAS  Google Scholar 

  54. Crooke, R. M. (1998) In vitro cellular uptake, distribution, and metabolism of oligonucleotides. In: Antisense Research and Application, S. T. Crooke (ed.) Springer-Verlag, Heidelberg, Germany, pp. 103–140.

    Chapter  Google Scholar 

  55. Perez, J. R., Li, Y., Stein, C. A., Majumder, S., van Oorschot, A., and Narayanan, R. (1994) Sequence-independent induction of Sp 1 transcription factor activity by phosphorothioate oligodeoxynucleotides. Proc. Natl. Acad. Sci. USA 91, 5957–5961.

    Article  PubMed  CAS  Google Scholar 

  56. Wang, X. Z. and Ron, D. (1996) Stress-induced phosphorylation and activation of the transcription factor CHOP (GADD153) by p38 MAP Kinase. Science 272, 1347–1349.

    Article  PubMed  CAS  Google Scholar 

  57. Fennewald, S. M. and Rando, R. F. (1995) Inhibition of high affinity basic fibroblast growth factor binding by oligonucleotides. J. Biol. Chem. 270, 21, 718–21, 721.

    Google Scholar 

  58. Guvakova, M. A., Yakubov, L. A., Vlodaysky, I., Tonkinson, J. L., and Stein, C. A. (1995) Phosphorothioate oligodeoxynucleotides bind to basic fibroblast growth factor, inhibit its binding to cell surface receptors, and remove it from low affinity binding sites on extracellular matrix. J. Biol. Chem. 270, 2620–2627.

    Article  PubMed  CAS  Google Scholar 

  59. Kitajima, I., Unoki, K., and Maruyama, I. (1999) Phosphorothioate oligodeoxynucleotides inhibit basic fibroblast growth factor-induced angiogenesis in vitro and in vivo. Antisense Nucleic Acid Drug Dey. 9, 233–239.

    Article  CAS  Google Scholar 

  60. Brown, D. A., Kang, S. H., Gryaznov, S. M., et al. (1994) Effect of phosphorothioate modification of oligodeoxynucleotides on specific protein binding. J. Biol. Chem. 269, 26, 801–26, 805.

    Google Scholar 

  61. Khaled, Z., Benimetskaya, L., Zeltser, R., et al. (1996) Multiple mechanisms may contribute to the cellular anti-adhesive effects of phosphorothioate oligodeoxynucleotides. Nucleic Acids Res. 24, 737–745.

    Article  PubMed  CAS  Google Scholar 

  62. Hartmann, G., Krug, A., Waller-Fontaine, K., and Endres, S. (1996) Oligodeoxynucleotides enhance lipopolysaccharide-stimulated synthesis of tumor necrosis factor: dependence on phosphorothioate modification and reversal by heparin. Mol. Med. 2, 429–438.

    PubMed  CAS  Google Scholar 

  63. Monteith, D. K., Henry, S. P., Howard, R. B., et al. (1997) Immune stimulation—a class effect of phosphorothioate oligodeoxynucleotides in rodents. Anticancer Drug Des. 12, 421–432.

    PubMed  CAS  Google Scholar 

  64. Henry, S., Stecker, K., Brooks, D., Monteith, D., Conklin, B., and Bennett, C. F. (2000) Chemically modified oligonucleotides exhibit decreased immune stimulation in mice. J. Pharmacol. Exp. Ther. 292, 468–479.

    PubMed  CAS  Google Scholar 

  65. Tam, R. C., Wu-Pong, S., Pai, B., et al. (1999) Increased potency of an aptameric G-rich oligonucleotide is associated with novel functional properties of phosphorothioate linkages. Antisense Nucleic Acid Drug Dey. 9, 289–300.

    Article  CAS  Google Scholar 

  66. Krieg, A. M., Wu, T., Weeratna, R., et al. (1998) Sequence motifs in adenoviral DNA block immune activation by stimulatory CpG motifs. Proc. Natl. Acad. Sci. USA 95, 12, 631–12, 636.

    Google Scholar 

  67. Stunz, L. L., Lenert, P., Peckham, D. W., Yi, A. K., Haxhinasto, S., Chang, M., Krieg, A. M., and Ashman, R. F. (2002) Inhibitory CpG oligonucleotides specifically block effects of stimulatory CpG oligonucleotides in B cells. Eur. J. Immunol. 32, 1212–1222.

    Article  PubMed  CAS  Google Scholar 

  68. Lenert, P., Stunz, L. L., Yi, A. K., Krieg, A. M., and Ashman, R. F. (2001) CpG Stimulation of Primary Mouse B Cells is Blocked by Inhibitory Oligodeoxyribonucleotides at a Site Proximal to NF-κB Activation. Antisense Nucleic Acid Drug Dev. 11, 247–256.

    Article  PubMed  CAS  Google Scholar 

  69. Sester, D. P., Beasley, S. J., Sweet, M. J., et al. (1999) Bacterial/CpG DNA down-modulates colony stimulating factor-1 receptor surface expression on murine bone marrow-derived macrophages with concomitant growth arrest and factor-independent survival. J. Immunol. 163, 6541–6550.

    PubMed  CAS  Google Scholar 

  70. Kimura, Y., Sonehara, K., Kuramoto, E., et al. (1994) Binding of oligoguanylate to scavenger receptors is required for oligonucleotides to augment NK cell activity and induce IFN. J. Biochem. (Tokyo). 116, 991–994.

    CAS  Google Scholar 

  71. Pisetsky, D. S. and Reich, C. F., III (1998) The influence of base sequence on the immunological properties of defined oligonucleotides. Immunopharmacology 40, 199–208.

    Article  PubMed  CAS  Google Scholar 

  72. Krug, A., Rothenfusser, S., Hornung, V., et al. (2001) Identification of CpG oligonucleotide sequences with high induction of IFN-alpha/beta in plasmacytoid dendritic cells. Eur. J. Immunol. 31, 2154–2163.

    Article  PubMed  CAS  Google Scholar 

  73. Lerner, R. A., Meinke, W., and Goldstein, D. A. (1971) Membrane-associated DNA in the cytoplasm of diploid human lymphocytes. Proc. Natl. Acad. Sci. USA. 68, 1212–1216.

    Article  PubMed  CAS  Google Scholar 

  74. Aggarwal, S. K., Wagner, R. W., McAllister, P. K., and Rosenberg, B. (1975) Cell-surface-associated nucleic acid in tumorigenic cells made visible with platinum-pyrimidine complexes by electron microscopy. Proc. Natl. Acad. Sci. USA 72, 928–932.

    Article  PubMed  CAS  Google Scholar 

  75. Bennett, R. M., Gabor, G. T., and Merritt, M. M. (1985) DNA binding to human leukocytes. Evidence for a receptor-mediated association, internalization, and degradation of DNA. J. Clin. Invest. 76, 2182–2190.

    Article  PubMed  CAS  Google Scholar 

  76. Bennett, R. M. (1993) As nature intended? The uptake of DNA and oligonucleotides by eukaryotic cells. Antisense Res. Dev. 3, 235–241.

    PubMed  CAS  Google Scholar 

  77. Hefeneider, S. H., McCoy, S. L., Morton, J. I., et al. (1992) DNA binding to mouse cells is mediated by cell-surface molecules: the role of these DNA-binding molecules as target antigens in murine lupus. Lupus. 1, 167–173.

    Article  PubMed  CAS  Google Scholar 

  78. Jacob, L., Lety, M. A., Choquette, D., et al. (1987) Presence of antibodies against a cell-surface protein, cross-reactive with DNA, in systemic lupus erythematosus: a marker of the disease. Proc. Natl. Acad. Sci. USA 84, 2956–2959.

    Article  PubMed  CAS  Google Scholar 

  79. Bennett, C. F., Chiang, M. Y., Chan, H., Shoemaker, J. E., and Mirabelli, C. K. (1992) Cationic lipids enhance cellular uptake and activity of phosphorothioate antisense oligonucleotides. Mol. Pharmacol. 41, 1023–1033.

    PubMed  CAS  Google Scholar 

  80. Loke, S. L., Stein, C. A., Zhang, X. H., et al. (1989) Characterization of oligonucleotide transport into living cells. Proc. Natl. Acad. Sci. US. 86, 3474–3478.

    Article  CAS  Google Scholar 

  81. Yakubov, L. A., Deeva, E. A., Zarytova, V. F., et al. (1989) Mechanism of oligonucleotide uptake by cells: involvement of specific receptors? Proc. Natl. Acad. Sci. USA 86, 6454–6458.

    Article  PubMed  CAS  Google Scholar 

  82. Benimetskaya, L., Tonkinson, J. L., Koziolkiewicz, M., Karwowski, B., Guga, P., Zeltser, R., Stec, W., and Stein, C. A. (1995) Binding of phosphorothioate oligodeoxynucleotides to basic fibroblast growth factor, recombinant soluble CD4, laminin and fibronectin is P- chirality independent. Nucleic Acids Res. 23, 4239–4245.

    Article  PubMed  CAS  Google Scholar 

  83. Rykova, E. Y., Laktionov, P. P., and Vlassov, V. V. (1999) Activation of spleen lymphocytes by plasmid DNA. Vaccine 17, 1193–1200.

    Article  PubMed  CAS  Google Scholar 

  84. Emlen, W., Holers, V. M., Arend, W. P., and Kotzin, B. (1992) Regulation of nuclear antigen expression on the cell surface of human monocytes. J. Immunol. 148, 3042–3048.

    PubMed  CAS  Google Scholar 

  85. Yamamoto, T., Yamamoto, S., Kataoka, T., and Tokunaga, T. (1994) Lipofection of synthetic oligodeoxyribonucleotide having a palindromic sequence of AACGTT to murine splenocytes enhances interferon production and natural killer activity. Microbiol. Immunol. 38, 831–836.

    PubMed  CAS  Google Scholar 

  86. Manzel, L. and Macfarlane, D. E. (1999) Lack of immune stimulation by immobilized CpG-oligodeoxynucleotide. Antisense Nucleic Acid Drug Dev. 9, 459–464.

    Article  PubMed  CAS  Google Scholar 

  87. Hanss, B., Leal-Pinto, E., Bruggeman, L. A., Copeland, T. D., and Klotman, P. E. (1998) Identification and characterization of a cell membrane nucleic acid channel. Proc. Natl. Acad. Sci. USA 95, 1921–1926.

    Article  PubMed  CAS  Google Scholar 

  88. Krieg, A. M. (1995) Uptake and localization of phosphodiester and chimeric oligodeoxynucleotides in normal and leukemic primary cells. In: Delivery Strategies for Antisense Oligonucleotide Therapeutics, S. Akhtar (ed.), CRC Press, Boca Raton, FL, pp. 177–190.

    Google Scholar 

  89. Hanss, B., Stein, C. A., and Klotman, P. E. (1998) Cellular uptake and biodistribution of oligodeoxynucleotides. 111–127.

    Google Scholar 

  90. Beltinger, C., Saragovi, H. U., Smith, R. M., et al. (1995) Binding, uptake, and intracellular trafficking of phosphorothioate- modified oligodeoxynucleotides. J. Clin. Invest. 95, 1814–1823.

    Article  PubMed  CAS  Google Scholar 

  91. Krieg, A. M., Tonkinson, J., Matson, S., et al. (1993) Modification of antisense phosphodiester oligodeoxynucleotides by a 5′ cholesteryl moiety increases cellular association and improves efficacy. Proc. Natl. Acad. Sci. USA 90, 1048–1052.

    Article  PubMed  CAS  Google Scholar 

  92. Krieg, A. M., Gmelig-Meyling, F., Gourley, M. F., Kisch, W. J., Chrisey, L. A., and Steinberg, A. D. (1991) Uptake of oligodeoxyribonucleotides by lymphoid cells is heterogeneous and inducible. Antisense Res. Dev. 1, 161–171.

    PubMed  CAS  Google Scholar 

  93. Zhao, Q., Song, X., Waldschmidt, T., Fisher, E., and Krieg, A. M. (1996) Oligonucleotide uptake in human hematopoietic cells is increased in leukemia and is related to cellular activation. Blood. 88, 1788–1795.

    PubMed  CAS  Google Scholar 

  94. Kronenwett, R., Steidl, U., Kirsch, M., Sczakiel, G., and Haas, R. (1998) Oligodeoxyribonucleotide uptake in primary human hematopoietic cells is enhanced by cationic lipids and depends on the hematopoietic cell subset. Blood. 91, 852–862.

    PubMed  CAS  Google Scholar 

  95. Hartmann, G., Krug, A., Bidlingmaier, M., Hacker, U., Eigler, A., Albrecht, R., Strasburger, C. J., and Endres, S. (1998) Spontaneous and cationic lipidmediated uptake of antisense oligonucleotides in human monocytes and lymphocytes. J. Pharmacol. Exp. Ther. 285, 920–928.

    PubMed  CAS  Google Scholar 

  96. Nicklin, P. S., Craig, S. J., and Phillips, J. A. (1998) Pharmacokinetic Properties of Phosphorothioates in Animals — Absorption, Distribution, Metabolism and Elimination. In: Antisense Research and Application, S. T. Crooke (ed.), Springer-Verlag, Heidelberg, Germany, pp. 141–168.

    Chapter  Google Scholar 

  97. Zhao, Q., Zhou, R., Temsamani, J., Zhang, Z., Roskey, A., and Agrawal, S. (1998) Cellular distribution of phosphorothioate oligonucleotide following intravenous administration in mice. Antisense Nucleic Acid Drug Dev. 8, 451–458.

    Article  PubMed  CAS  Google Scholar 

  98. Yi, A. K., Tuetken, R., Redford, T., Waldschmidt, M., Kirsch, J., and Krieg, A. M. (1998) CpG motifs in bacterial DNA activate leukocytes through the pH-dependent generation of reactive oxygen species. J. Immunol. 160, 4755–4761.

    PubMed  CAS  Google Scholar 

  99. Macfarlane, D. E. and Manzel, L. (1998) Antagonism of immunostimulatory CpG-oligodeoxynucleotides by quinacrine, chloroquine, and structurally related compounds. J. Immunol. 160, 1122–1131.

    PubMed  CAS  Google Scholar 

  100. Strekowski, L., Zegrocka, O., Henary, M., et al. (1999) Structure-activity relationship analysis of substituted 4- quinolinamines, antagonists of immunostimulatory CpG- oligodeoxynucleotides. Bioorg. Med. Chem. Lett. 9, 1819–1824.

    Article  PubMed  CAS  Google Scholar 

  101. Hacker, H., Mischak, H., Miethke, T., et al. (1998) CpG-DNA-specific activation of antigen-presenting cells requires stress kinase activity and is preceded by non-specific endocytosis and endosomal maturation. EMBO J. 17, 6230–6240.

    Article  PubMed  CAS  Google Scholar 

  102. Yi, A. K. and Krieg, A. M. (1998) Rapid induction of mitogen-activated protein kinases by immune stimulatory CpG DNA. J. Immunol. 161, 4493–4497.

    PubMed  CAS  Google Scholar 

  103. Hacker, H., Vabulas, R. M., Takeuchi, O., Hoshino, K., Akira, S., and Wagner, H. (2000) Immune Cell Activation by Bacterial CpG-DNA through Myeloid Differentiation Marker 88 and Tumor Necrosis Factor ReceptorAssociated Factor (TRAF)6. J. Exp. Med. 192, 595–600.

    Article  PubMed  CAS  Google Scholar 

  104. Schnare, M., Holtdagger, A. C., Takeda, K., Akira, S., and Medzhitov, R. (2000) Recognition of CpG DNA is mediated by signaling pathways dependent on the adaptor protein MyD88. Curr. Biol. 10, 1139–1142.

    Article  PubMed  CAS  Google Scholar 

  105. Bauer, S., Kirschning, C. J., Hacker, H., et al. (2001) Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition. Proc. Natl. Acad. Sci. USA 98, 9237–9242.

    Article  PubMed  CAS  Google Scholar 

  106. Chuang, T. H. and Ulevitch, R. J. (2000) Cloning and characterization of a sub-family of human toll-like receptors: hTLR7, hTLR8 and hTLR9. Eur. Cytokine Netw. 11, 372–378.

    PubMed  CAS  Google Scholar 

  107. Du, X., Poltorak, A., Wei, Y., and Beutler, B. (2000) Three novel mammalian toll-like receptors: gene structure, expression, and evolution. Eur. Cytokine Netw. 11, 362–371.

    PubMed  CAS  Google Scholar 

  108. Hacker, H., Mischak, H., Hacker, G., Eser, S., Prenzel, N., Ullrich, A., and Wagner, H. (1999) Cell type-specific activation of mitogen-activated protein kinases by CpG-DNA controls interleukin-12 release from antigen-presenting cells. EMBO J. 18, 6973–6982.

    Article  PubMed  CAS  Google Scholar 

  109. Yi, A. K., Yoon, J. G., Yeo, S. J., et al. (2002) Role of mitogen-activated protein kinases in CpG DNA-mediated IL-10 and IL-12 production: central role of extracellular signal-regulated kinase in the negative feedback loop of the CpG DNA-mediated Th 1 response. J. Immunol. 168, 4711–4720.

    PubMed  CAS  Google Scholar 

  110. Kistler, B., Rolink, A., Marienfeld, R., Neumann, M., and Wirth, T. (1998) Induction of nuclear factor- B during primary B cell differentiation. J. Immunol. 160, 2308–2317.

    PubMed  CAS  Google Scholar 

  111. Sha, W. C. (1998) Regulation of immune responses by NF-κ B/Rel transcription factor [published erratum appears in J Exp Med 1998 Feb 16;187(4):661]. J. Exp. Med. 187, 143–146.

    Article  PubMed  CAS  Google Scholar 

  112. McIntyre, K. W., Lombard-Gillooly, K., Perez, J. R., et al. (1993) A sense phosphorothioate oligonucleotide directed to the initiation codon of transcription factor NF-κ B p65 causes sequence-specific immune stimulation. Antisense Res. Dev. 3, 309–322.

    PubMed  CAS  Google Scholar 

  113. Stacey, K. J., Sweet, M. J., and Hume, D. A. (1996) Macrophages ingest and are activated by bacterial DNA. J. Immunol. 157, 2116–2122.

    PubMed  CAS  Google Scholar 

  114. Sparwasser, T., Miethke, T., Lipford, G., Erdmann, A., Hacker, H., Heeg, K., and Wagner, H. (1997) Macrophages sense pathogens via DNA motifs: induction of tumor necrosis factor-a-mediated shock. Eur. J. Immunol. 27, 1671–1679.

    Article  PubMed  CAS  Google Scholar 

  115. Sen, C. K. and Packer, L. (1996) Antioxidant and redox regulation of gene transcription [see comments]. FASEB J. 10, 709–720.

    PubMed  CAS  Google Scholar 

  116. Muller, J. M., Rupec, R. A., and Baeuerle, P. A. (1997) Study of gene regulation by NF-κ B and AP-1 in response to reactive oxygen intermediates. Methods. 11, 301–312.

    Article  PubMed  CAS  Google Scholar 

  117. Gupta, R. K. and Siber, G. R. (1995) Adjuvants for human vaccines current status, problems and future prospects. Vaccine 13, 1263–1276.

    Article  PubMed  CAS  Google Scholar 

  118. Bireland, M. L. and Monroe, J. G. (1997) Biochemistry of antigen receptor signaling in mature and developing B lymphocytes. Crit. Rev. Immunol. 17, 353–385.

    Article  PubMed  CAS  Google Scholar 

  119. DeFranco, A. L. (1997) The complexity of signaling pathways activated by the BCR. Curr. Opin. Immunol. 9, 296–308.

    Article  PubMed  CAS  Google Scholar 

  120. Sweet, M. J., Stacey, K. J., Ross, I. L., Ostrowski, M. C., and Hume, D. A. (1998) Involvement of Ets, rel and Spi-like proteins in lipopolysaccharide- mediated activation of the HIV-1 LTR in macrophages. J. Inflamm. 48, 67–83.

    PubMed  CAS  Google Scholar 

  121. Sun, S., Zhang, X., Tough, D. F., and Sprent, J. (1998) Type I interferonmediated stimulation of T cells by CpG DNA. J. Exp. Med. 188, 2335–2342.

    Article  PubMed  CAS  Google Scholar 

  122. Jakob, T., Walker, P. S., Krieg, A. M., Udey, M. C., and Vogel, J. C. (1998) Activation of cutaneous dendritic cells by CpG-containing oligodeoxynucleotides: a role for dendritic cells in the augmentation of Thl responses by immunostimulatory DNA. J. Immunol. 161, 3042–3049.

    PubMed  CAS  Google Scholar 

  123. Chace, J. H., Hooker, N. A., Mildenstein, K. L., Krieg, A. M., and Cowdery, J. S. (1997) Bacterial DNA-induced NK cell IFN-γ production is dependent on macrophage secretion of IL-12. Clin. Immunol. Immunopathol. 84, 185–193.

    Article  PubMed  CAS  Google Scholar 

  124. Schwartz, D. A., Quinn, T. J., Thorne, P. S., Sayeed, S., Yi, A. K., and Krieg, A. M. (1997) CpG motifs in bacterial DNA cause inflammation in the lower respiratory tract. J. Clin. Invest. 100, 68–73.

    Article  PubMed  CAS  Google Scholar 

  125. Roman, M., Martin-Orozco, E., Goodman, J. S., et al. (1997) Immunostimulatory DNA sequences function as T helper-1-promoting adjuvants [see comments]. Nat. Med. 3, 849–854.

    Article  PubMed  CAS  Google Scholar 

  126. Zhao, Q., Temsamani, J., Zhou, R. Z., and Agrawal, S. (1997) Pattern and kinetics of cytokine production following administration of phosphorothioate oligonucleotides in mice. Antisense Nucleic Acid Drug Dev. 7, 495–502.

    Article  PubMed  CAS  Google Scholar 

  127. Yamamoto, S., Yamamoto, T., Kataoka, T., Kuramoto, E., Yano, O., and Tokunaga, T. (1992) Unique palindromic sequences in synthetic oligonucleotides are required to induce IFN and augment IFN-mediated natural killer activity. J. Immunol. 148, 4072–4076.

    PubMed  CAS  Google Scholar 

  128. Boggs, R. T., McGraw, K., Condon, T., et al. (1997) Characterization and modulation of immune stimulation by modified oligonucleotides. Antisense Nucleic Acid Drug Dev. 7, 461–471.

    Article  PubMed  CAS  Google Scholar 

  129. Sester, D. P., Naik, S., Beasley, S. J., Hume, D. A., and Stacey, K. J. (2000) Phosphorothioate backbone modification modulates macrophage activation by CpG DNA. J. Immunol. 165, 4165–4173.

    PubMed  CAS  Google Scholar 

  130. Lipford, G. B., Bendigs, S., Heeg, K., and Wagner, H. (2000) Poly-guanosine motifs costimulate antigen-reactive CD8 T cells while bacterial CpG-DNA affect T-cell activation via antigen-presenting cell- derived cytokines. Immunology 101, 46–52.

    Article  PubMed  CAS  Google Scholar 

  131. Bishop, J. S., Guy-Caffey, J. K., Ojwang, J. O., et al. (1996) Intramolecular G-quartet motifs confer nuclease resistance to a potent anti-HIV oligonucleotide. J. Biol. Chem. 271, 5698–5703.

    Article  PubMed  CAS  Google Scholar 

  132. Lang, R., Hultner, L., Lipford, G. B., Wagner, H., and Heeg, K. (1999) Guanosine-rich oligodeoxynucleotides induce proliferation of macrophage progenitors in cultures of murine bone marrow cells. Eur. J. Immunol. 29, 3496–3506.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Yi, AK., Krieg, A.M. (2002). Activation of B cells by CpG Motifs in Bacterial DNA. In: Raz, E. (eds) Microbial DNA and Host Immunity. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-305-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-305-7_9

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9728-1

  • Online ISBN: 978-1-59259-305-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics