Skip to main content

Phosphorothioate Backbone Modification Changes the Pattern of Responses to CpG

  • Chapter
Microbial DNA and Host Immunity

Abstract

Bacterial DNA is immunostimulatory due to the presence of specific unmethylated CpG-containing sequences (1). The activity of bacterial DNA can be mimicked by oligonucletides (ODN) (2), and this has been critical in establishing the sequence requirements for activation. Both native phosphodiester oligonucleotides and phosphorothioate-modified oligonucleotides (PO-ODN and PS-ODN) of various sequences can activate macrophages, dendritic cells, and B lymphocytes. Although PO-ODN are the most relevant to the role of bacterial or viral DNA in the host response to infection, stabilized synthetic oligonucleotides have great potential in immunotherapy. Normal phosphodiester oligonucleotides are short-lived in vivo (3) and incapable of giving effective therapeutic immunostimulation. The most frequent means of stabilizing oligonucleotides is by phosphorothioate modification of the backbone, whereby one of the nonbridging oxygens of the phosphate group is converted to sulfur. Phosphorothioates are poor substrates for most cellular nucleases. CpG PS-ODN display many of the activities of bacterial DNA, but owing to evidence of phosphorothioate-specific activity, caution has been urged in their use as a model of bacterial DNA in infection (4,5). Although PS-ODN are now widely used in studies on the immunostimulatory effects of CpG-containing DNA, it is appropriate to ask whether they mimic all the actions of native phosphodiester DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Krieg, A. M., Yi, A.-K., Matson, S., et al. (1995) CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 374, 546–549.

    Article  PubMed  CAS  Google Scholar 

  2. Yamamoto, S., Yamamoto, T., Kataoka, T., Kuramoto, E., Yano, O., and Tokunaga, T. (1992) Unique palindromic sequences in synthetic oligonucleotides are required to induce IFN and augment IFN-mediated natural killer activity. J. Immunol. 148, 4072–4076.

    PubMed  CAS  Google Scholar 

  3. Agrawal, S., Temsamani, J., Galbraith, W., and Tang, J. (1995) Pharmacokinetics of antisense oligonucleotides. Clin. Pharmacokinet. 28, 7–16.

    Article  PubMed  CAS  Google Scholar 

  4. Pisetsky, D. S. and Reich, C. F. (1999) Influence of backbone chemistry on immune activation by synthetic oligonucleotides. Biochem. Pharmacol. 58, 1981–1988.

    Article  PubMed  CAS  Google Scholar 

  5. Pisetsky, D. S. (1999) The influence of base sequence on the immunostimulatory properties of DNA. Immunol. Res. 19, 35–46.

    Article  PubMed  CAS  Google Scholar 

  6. Zhao, Q., Song, X., Waldschmidt, T., Fisher, E., and Krieg, A. M. (1996) Oligonucleotide uptake in human hematopoietic cells is increased in leukemia and is related to cellular activation. Blood 88, 1788–1795.

    PubMed  CAS  Google Scholar 

  7. Branda, R. F., Moore, A. L., Mathews, L., McCormack, J. J. and Zon, G. (1993) Immune stimulation by an antisense oligomer complementary to the rev gene of HIV-1. Biochem. Pharmacol. 45, 2037–2043.

    Article  PubMed  CAS  Google Scholar 

  8. Krieg, A. M., Matson, S., and Fisher, E. (1996) Oligodeoxynucleotide modifications determine the magnitude of B cell stimulation by CpG motifs. Antisense Nucleic Acid Drug Dey. 6, 133–139.

    Article  CAS  Google Scholar 

  9. Monteith, D. K., Henry, S. P., Howard, R. B., et al. (1997) Immune stimulation- a class effect of phosphorothioate oligodeoxynucleotides in rodents. Anticancer Drug Res. 12, 421–432.

    CAS  Google Scholar 

  10. Liang, H., Nishioka, Y., Reich, C. F., Pisetsky, D. S., and Lipsky, P. E. (1996) Activation of human B cells by phosphorothioate oligodeoxynucleotides. J. Clin. Invest. 98, 1119–1129.

    Article  PubMed  CAS  Google Scholar 

  11. Krieg, A. M., Hartmann, G., and Yi, A.-K. (2000) Mechanism of action of CpG DNA. Curr. Top. Microbiol. Immunol. 247, 1–21.

    Article  PubMed  CAS  Google Scholar 

  12. Boggs, R. T., McGraw, K., Condon, T., Condon, S. F., Villiet, P., Bennett, F. and Monia, B. P. (1997) Characterization and modulation of immune stimulation by modified oligonucleotides. Antisense Nucl. Acid Drug Dey. 7, 461–471.

    Article  CAS  Google Scholar 

  13. Yi, A.-K., Chace, J. H., Cowdery, J. S., and Krieg, A. M. (1996) IFN-γ promotes IL-6 and IgM secretion in response to CpG motifs in bacterial DNA and oligodeoxynucleotides. J. Immunol. 156, 558–564.

    PubMed  CAS  Google Scholar 

  14. Hartmann, G., Weiner, G. J. and Krieg, A. M. (1999) CpG DNA: a potent signal for growth, activation, and maturation of human dendritic cells. Proc. Natl. Acad. Sci. USA 96, 9305–9310.

    Article  PubMed  CAS  Google Scholar 

  15. Jakob, T., Walker, P. S., Krieg, A. M., Udey, M. C., and Vogel, J. C. (1998) Activation of cutaneous dendritic cells by CpG-containing oligodeoxynucleotides: a role for dendritic cells in the augmentation of Thl responses by immunostimulatory DNA. J. Immunol. 161, 3042–3049.

    PubMed  CAS  Google Scholar 

  16. Kadowaki, N., Antonenko, S., and Liu, Y. J. (2001) Distinct CpG DNA and polyinosinic-polycytidylic acid double-stranded rna, respectively, stimulate CD 11 c(-) type 2 dendritic cell precursors and CD11 c(+) dendritic cells to produce type I IFN. J. Immunol. 166, 2291–2295.

    PubMed  CAS  Google Scholar 

  17. Lapatschek, M. S., Gilbert, R. L., Wagner, H., and Miethke, T. (1998) Activation of macrophages and B lymphocytes by an oligodeoxynucleotide derived from an acutely pathogenic simian immunodeficiency virus. Antisense Nucleic Acid Drug Dev. 8, 357–370.

    Article  PubMed  CAS  Google Scholar 

  18. Hartmann, G. and Krieg, A. M. (2000) Mechanism and function of a newly identified CpG DNA motif in human primary B cells. J. Immunol. 164, 944–953.

    PubMed  CAS  Google Scholar 

  19. Mannon, R. B., Nataraj, C. and Pisetsky, D. S. (2000) Stimulation of thymocyte proliferation by phosphorothioate DNA oligonucleotides. Cell. Immunol. 201, 14–21.

    Article  PubMed  CAS  Google Scholar 

  20. Ballas, Z. K., Rasmussen, W. L. and Krieg, A. M. (1996) Induction of NK activity in murine and human cells by CpG motifs in oligodeoxynucleotides and bacterial DNA. J. Immunol. 157, 1840–1845.

    PubMed  CAS  Google Scholar 

  21. Lee, S. W., Song, M. K., Baek, K. H., et al. (2000) Effects of a hexameric deoxyriboguanosine run conjugation into CpG oligodeoxynucleotides on their immunostimulatory potentials. J. Immunol. 165, 3631–3639.

    PubMed  CAS  Google Scholar 

  22. Verthelyi, D., Ishii, K., Gursel, M., Takeshita, F., and Klinman, D. (2001) Human peripheral blood cells differentially recognize and respond to two distinct CpG motifs. J. Immunol. 166, 2372–2377.

    PubMed  CAS  Google Scholar 

  23. Pisetsky, D. S. and Reich, C. F. (2000) Inhibition of murine macrophage IL-12 production by natural and synthetic DNA. Clin. Immunol. 96, 198–204.

    Article  PubMed  CAS  Google Scholar 

  24. Lang, R., Hultner, L., Lipford, G. B., Wagner, H., and Heeg, K. (1999) Guanosine-rich oligodeoxynucleotides induce proliferation of macrophage progenitors in cultures of murine bone marrow cells. Eur. J. Immunol. 29, 3496–3506.

    Article  PubMed  CAS  Google Scholar 

  25. Stacey, K. J., Sweet, M., and Hume, D. A. (1996) Macrophages ingest and are activated by bacterial DNA. J. Immunol. 157, 2116–2122.

    PubMed  CAS  Google Scholar 

  26. Sweet, M. J., Stacey, K. J., Kakuda, D. K., Markovich, D. and Hume, D. A. (1998) IFN-γ primes macrophage responses to bacterial DNA. J. Interferon Cytokine Res. 18, 263–271.

    Article  PubMed  CAS  Google Scholar 

  27. Sester, D. P., Naik, S., Beasley, S. J., Hume, D. A., and Stacey, K. J. (2000) Phosphorothioate backbone modification modulates macrophage activation by CpG DNA. J. Immunol. 165, 4165–4173.

    PubMed  CAS  Google Scholar 

  28. Schindler, U. and Baichwal, V. R. (1994) Three NF-kB binding sites in the human E-selectin gene required for maximal tumor necrosis factor a-induced expression. Mol. Cell Biol. 14, 5820–5831.

    Article  PubMed  CAS  Google Scholar 

  29. Sester, D. P., Beasley, S. J., Sweet, M. J., et al. (1999) Bacterial/CpG DNA Down-Modulates Colony Stimulating Factor-1 Receptor Surface Expression on Murine Bone Marrow-Derived Macrophages with Concomitant Growth Arrest and Factor-Independent Survival. J. Immunol. 163, 6541–6550.

    PubMed  CAS  Google Scholar 

  30. Häcker, H., Mischak, H., Hacker, G., et al. (1999) Cell type-specific activation of mitogen-activated protein kinases by CpG-DNA controls interleukin-12 release from antigen-presenting cells. EMBO J. 18, 6973–6982.

    Article  PubMed  Google Scholar 

  31. Yi, A. K. and Krieg, A. M. (1998) Cutting edge: Rapid induction of mitogenactivated protein kinases by immune stimulatory CpG DNA. J. Immunol. 161, 4493–4497.

    PubMed  CAS  Google Scholar 

  32. Takeshita, F., Ishii, K. J., Ueda, A., Ishigatsubo, Y., and Klinman, D. M. (2000) Positive and negative regulatory elements contribute to CpG oligonucleotide-mediated regulation of human IL-6 gene expression. Eur. J. Immunol. 30, 108–116.

    Article  PubMed  CAS  Google Scholar 

  33. Takeshita, F. and Klinman, D. M. (2000) CpG ODN-mediated regulation of IL-12 p40 transcription. Eur. J. Immunol. 30, 1967–1976.

    Article  PubMed  CAS  Google Scholar 

  34. Chu, W., Gong, X., Li, Z., et al. (2000) DNA-PKcs is required for activation of innate immunity by immunostimulatory DNA. Cell 103, 909–918.

    Article  PubMed  CAS  Google Scholar 

  35. Takakura, Y., Oka, Y., and Hashida, M. (1998) Cellular uptake properties of oligonucleotides in LLC-PK1 renal epithelial cells. Antisense Nucl. Acid Drug Dev. 8, 67–73.

    Article  CAS  Google Scholar 

  36. Zhao, Q., Matson, S., Herrara, C. J., et al. (1993) Comparison of cellular binding and uptake of antisense phosphodiester, phosphorothioate, and mixed phosphorothioate and methylphosphonate oligonucleotides. Antisense Res. Dev. 3, 53–56.

    PubMed  CAS  Google Scholar 

  37. Nakai, D., Seita, T., Terasaki, T., et al. (1996) Cellular uptake mechanism for oligonucleotides: Involvement of endocytosis in the uptake of phosphodiester oligonucleotides by a human colorectal adenocarcinoma cell line, HCT-15. J. Pharmacol. Exp. Ther. 278, 1362–1372.

    PubMed  CAS  Google Scholar 

  38. Tonkinson, J. L. and Stein, C. A. (1994) Patterns of intracellular compartmentalization, trafficking and acidification of 5′-fluorescein labeled phosphodiester and phosphorothioate oligodeoxynucleotides in HL60 cells. Nucl. Acids Res. 22, 4268–4275.

    Article  PubMed  CAS  Google Scholar 

  39. Beltinger, C., Saragovi, H. U., Smith, R. M., et al. (1995) Binding, uptake, and intracellular trafficking of phosphorothioate-modified oligodeoxynucleotides. J. Clin. Invest. 95, 1814–1823.

    Article  PubMed  CAS  Google Scholar 

  40. Bennett, R. M. (1993) As nature intended? The uptake of DNA and oligonucleotides by eukaryotic cells. Antisense Res. Dev. 3, 235–241.

    PubMed  CAS  Google Scholar 

  41. Benimetskaya, L., Loike, J. D., Khaled, Z., et al. (1997) Mac-1 (CD 11 b/CD 18) is an oligodeoxynucleotide-binding protein. Nature Med. 3, 414–420.

    Article  PubMed  CAS  Google Scholar 

  42. Häcker, H., Mischak, H., Miethke, T., et al. (1998) CpG-DNA-specific activation of antigen-presenting cells requires stress kinase activity and is preceded by nonspecific endocytosis and endosomal maturation. EMBO J. 17, 6230–6240.

    Article  PubMed  Google Scholar 

  43. Hartmann, G., Krug, A., Waller-Fontaine, K., and Endres, S. (1996) Oligodeoxynucleotides enhance lipopolysaccharide-stimulated synthesis of tumor necrosis factor:dependence on phosphorothioate modification and reversal by heparin. Mol. Med. 2, 429–438.

    PubMed  CAS  Google Scholar 

  44. Perez, J. R., Li, Y., Stein, C. A., Majumder, S., van Oorschot, A., and Narayanan, R. (1994) Sequence-independent induction of Sp 1 transcription factor activity by phosphorothioate oligodeoxynucleotides. Proc. Natl Acad. Sci. USA 91, 5957–5961.

    Article  PubMed  CAS  Google Scholar 

  45. Neckers, L. M. and Iyer, K. (1997) Non-antisense effects of antisense oligonucleotides, in Antisense oligodeoxynucleotides and antisense RNA (Weiss, B., ed.), CRC Press, Boca Raton, pp. 80–89.

    Google Scholar 

  46. Stein, C. A. (1996) Phosphorothioate antisense oligodeoxynucleotides: questions of specificity. Trends Biotechnol. 14, 147–149.

    Article  PubMed  CAS  Google Scholar 

  47. Eckstein, F. (2000) Phosphorothioate oligodeoxynucleotides: what is their origin and what is unique about them? Antisense Nucleic Acid Drug Dev. 10, 117–121.

    Article  PubMed  CAS  Google Scholar 

  48. Khaled, Z., Rideout, D., O’Driscoll, K. R., et al. (1995) Effects of suraminrelated and other clinically therapeutic polyanions on protein kinase C activity. Clin. Cancer Res. 1, 113–122.

    PubMed  CAS  Google Scholar 

  49. Rockwell, P., O’Connor, W. J., King, K., Goldstein, N. I., Zhang, L. M., and Stein, C. A. (1997) Cell-surface perturbations of the epidermal growth factor and vascular endothelial growth factor receptors by phosphorothioate oligodeoxynucleotides. Proc. Natl. Acad. Sci. USA 94, 6523–6528.

    Article  PubMed  CAS  Google Scholar 

  50. Underhill, D. M., Ozinsky, A., Hajjar, A. M., et al. (1999) The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens. Nature 401, 811–815.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Stacey, K.J., Sester, D.P., Naik, S., Roberts, T.L., Sweet, M.J., Hume, D.A. (2002). Phosphorothioate Backbone Modification Changes the Pattern of Responses to CpG. In: Raz, E. (eds) Microbial DNA and Host Immunity. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-305-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-305-7_6

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9728-1

  • Online ISBN: 978-1-59259-305-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics