Skip to main content

Signal Transduction Pathways Activated By CpG-DNA

  • Chapter
  • 275 Accesses

Abstract

Since the initial observation that bacterial DNA is recognized by and activates cells of the immune system (reviewed in 1), substantial progress has been made with respect to the understanding of the molecular mechanisms involved. This bears upon both sides, the immunostimulatory DNA as a ligand and the immune cell with its receptor and signaling systems. In the meantime, it has been well established that the stimulatory capacity of bacterial DNA depends on short sequences with a central, unmethylated CG, called the CpG-motif (2,3). This stimulatory information can be transferred to single-stranded oligonucleotides (ODN). So far as it is known, all stimulatory activities of bacterial DNA are reflected in such ODNs. Therefore, these single-stranded ODNs might be regarded as the active principle of immunostimulatory DNA. It is however important to note that—as worked out with sophisticated arrays of ODNs—there is a clear species specificity in respect to the sequences active in mouse vs humans. Hence, it might be speculated that double-stranded bacterial DNA represents a pool of various stimulatory sequences that are recognized by specific but species-dependent receptor systems. DNA that harbors immunostimulatory capacity owing to CpG-motifs is collectively referred to as CpG-DNA.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tokunaga, T., Yamamoto, T., and Yamamoto, S. (1999) How BCG led to the discovery of immunostimulatory DNA. Jpn. J. Infect. Dis. 52, 1–11.

    PubMed  CAS  Google Scholar 

  2. Yamamoto, S., Yamamoto, T., Kataoka, T., Kuramoto, E., Yano, O. and Tokunaga, T. (1992) Unique palindromic sequences in synthetic oligonucleotides are required to induce IFN and augment IFN- mediated natural killer activity. J. Immunol. 148, 4072–4076.

    PubMed  CAS  Google Scholar 

  3. Krieg, A. M., Yi, A. K., Matson, S., Waldschmidt, T. J., Bishop, G. A., Teasdale, R., Koretzky, G. A., and Klinman, D. M. (1995) CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 374, 546–549.

    Article  PubMed  CAS  Google Scholar 

  4. Wagner, H. (1999) Bacterial CpG DNA activates immune cells to signal infectious danger. Adv. Immunol. 73, 329–368.

    Article  PubMed  CAS  Google Scholar 

  5. Takeuchi, O., Hoshino, K., Kawai, T., et al. (1999) Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 11, 443–451.

    Article  PubMed  CAS  Google Scholar 

  6. Means, T. K., Golenbock, D. T., and Fenton, M. J. (2000) The biology of Tolllike receptors. Cytokine. Growth Factor. Rev. 11, 219–232.

    Article  PubMed  CAS  Google Scholar 

  7. Wesche, H., Henzel, W.J., Shillinglaw, W., Li, S. & Cao, Z. (1997) MyD88: an adapter that recruits IRAK to the IL-1 receptor complex. Immunity 7, 837–847.

    Article  PubMed  CAS  Google Scholar 

  8. Ishida, T., Mizushima, S., Azuma, S., et al. (1996) Identification of TRAF6, a novel tumor necrosis factor receptor- associated factor protein that mediates signaling from an amino- terminal domain of the CD40 cytoplasmic region. J. Biol. Chem. 271, 28745–28748.

    Article  PubMed  CAS  Google Scholar 

  9. Baud, V., Liu, Z. G., Bennett, B., Suzuki, N., Xia, Y., and Karin, M. (1999) Signaling by proinflammatory cytokines: oligomerization of TRAF2 and TRAF6 is sufficient for JNK and IKK activation and target gene induction via an amino-terminal effector domain. Genes Dev. 13, 1297–1308.

    Article  PubMed  CAS  Google Scholar 

  10. Ghosh, S., May, M. J., and Kopp, E. B. (1998) NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Annu. Rev. Immunol. 16, 225–260.

    Article  PubMed  CAS  Google Scholar 

  11. Karin, M. and Ben-Neriah, Y. Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity (2000). Annu. Rev. Immunol. 18, 621–663.

    Article  PubMed  CAS  Google Scholar 

  12. Rothwarf, D. M., Zandi, E., Natoli, G. and Karin, M. (1998) IKK-gamma is an essential regulatory subunit of the IkappaB kinase complex. Nature 395, 297–300.

    Article  PubMed  CAS  Google Scholar 

  13. Yamaoka, S., Courtois, G., Bessia, C., et al. (1998) Complementation cloning of NEMO, a component of the IkappaB kinase complex essential for NF-kappaB activation. Cell 93, 1231–1240.

    Article  PubMed  CAS  Google Scholar 

  14. Li, Q., Van Antwerp, D., Mercurio, F., Lee, K. F., and Verma, I. M. (1999) Severe liver degeneration in mice lacking the IkappaB kinase 2 gene. Science, 284, 321–325.

    Article  PubMed  CAS  Google Scholar 

  15. Li, Z. W., Chu, W., Hu, Y., et al. (1999) The IKKbeta subunit of IkappaB kinase (IKK) is essential for nuclear factor kappaB activation and prevention of apoptosis. J. Exp. Med. 189, 1839–1845.

    Article  PubMed  CAS  Google Scholar 

  16. Hu, Y., Baud, V., Delhase, M., et al. (1999) Abnormal morphogenesis but intact IKK activation in mice lacking the IKKalpha subunit of IkappaB kinase. Science 284, 316–320.

    Article  PubMed  CAS  Google Scholar 

  17. Karin, M. and Delhase, M. (1998) JNK or IKK, AP-1 or NF-kappaB, which are the targets for MEK kinase 1 action? Proc. Natl. Acad. Sci. USA 95, 9067–9069.

    Article  PubMed  CAS  Google Scholar 

  18. Yin, L., Wu, L., Wesche, H., et al. (2001) Defective lymphotoxin-beta receptor-induced NF-kappaB transcriptional activity in NIK-deficient mice. Science 291, 2162–2165.

    Article  PubMed  CAS  Google Scholar 

  19. Deng, L., Wang, C., Spencer, E., et al. (2000) Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 103, 351–361.

    Article  PubMed  CAS  Google Scholar 

  20. Inohara, N., Koseki, T., Lin, J., et al. (2000) An induced proximity model for NF-kappa B activation in the Nod1/RICK and RIP signaling pathways. J. Biol. Chem. 275, 27823–27831.

    PubMed  CAS  Google Scholar 

  21. Poyet, J. L., Srinivasula, S. M., Lin, J. H., et al. (2000) Activation of the Ikappa B kinases by RIP via IKKgamma /NEMO-mediated oligomerization. J. Biol. Chem. 275, 37966–37977.

    Article  PubMed  CAS  Google Scholar 

  22. Stacey, K. J., Sweet, M. J. and Hume, D.A. (1996) Macrophages ingest and are activated by bacterial DNA. J. Immunol. 157, 2116–2122.

    PubMed  CAS  Google Scholar 

  23. Yi, A. K., Tuetken, R., Redford, T., Waldschmidt, M., Kirsch, J., and Krieg, A. M. (1998) CpG motifs in bacterial DNA activate leukocytes through the pH- dependent generation of reactive oxygen species. J. Immunol. 160, 4755–4761.

    PubMed  CAS  Google Scholar 

  24. Sparwasser, T., Miethke, T., Lipford, G., et al. (1997) Macrophages sense pathogens via DNA motifs: induction of tumor necrosis factor-alpha-mediated shock. Eur. J. Immunol. 27, 1671–1679.

    Article  PubMed  CAS  Google Scholar 

  25. Yi, A. K., Klinman, D. M., Martin, T. L., Matson, S., and Krieg, A. M. (1996) Rapid immune activation by CpG motifs in bacterial DNA. Systemic induction of IL-6 transcription through an antioxidant-sensitive pathway. J. Immunol. 157, 5394–5402.

    PubMed  CAS  Google Scholar 

  26. Baeuerle, P. A. and Henkel, T. (1994) Function and activation of NF-kappa B in the immune system. Anna. Rev. Immunol. 12:141–79, 141–179.

    Article  CAS  Google Scholar 

  27. Muroi, M., Muroi, Y., and Suzuki, T. (1994) The binding of immobilized IgG2a to Fc gamma 2a receptor activates NF- kappa B via reactive oxygen intermediates and tumor necrosis factor- alpha 1. J. Biol. Chem. 269, 30561–30568.

    PubMed  CAS  Google Scholar 

  28. Muller, J. M., Rupec, R. A. and Baeuerle, P. A. (1997) Study of gene regulation by NF-kappa B and AP-1 in response to reactive oxygen intermediates. Methods 11, 301–312.

    Article  PubMed  CAS  Google Scholar 

  29. Hacker, H., Vabulas, R. M., Takeuchi, O., et al. (2000) Immune Cell Activation by Bacterial CpG-DNA through Myeloid Differentiation Marker 88 and Tumor Necrosis Factor Receptor-Associated Factor (TRAF)6. J. Exp. Med. 192, 595–600.

    Article  PubMed  CAS  Google Scholar 

  30. Chu, W., Gong, X., Li, Z., et al. (2000) DNA-PKcs Is Required for Activation of Innate Immunity by Immunostimulatory DNA. Cell 103, 909–918.

    Article  PubMed  CAS  Google Scholar 

  31. Murphy, T. L., Cleveland, M. G., Kulesza, P., Magram, J., and Murphy, K. M. (1995) Regulation of interleukin 12 p40 expression through an NF-kappa B half- site. Mol. Cell Biol. 15, 5258–5267.

    PubMed  CAS  Google Scholar 

  32. Plevy, S. E., Gemberling, J. H., Hsu, S., Dorner, A. J. and Smale, S. T. (1997) Multiple control elements mediate activation of the murine and human interleukin 12 p40 promoters: evidence of functional synergy between C/EBP and Rel proteins. Mol. Cell Biol. 17, 4572–4588.

    PubMed  CAS  Google Scholar 

  33. Sanjabi, S., Hoffmann, A., Liou, H. C., Baltimore, D., and Smale, S. T. (2000) Selective requirement for c-Rel during IL-12 P40 gene induction in macrophages. Proc. Natl. Acad. Sci. USA 97, 12705–12710.

    Article  PubMed  CAS  Google Scholar 

  34. Chang, L. and Karin, M. (2001) Mammalian MAP kinase signalling cascades. Nature 410, 37–40.

    Article  PubMed  CAS  Google Scholar 

  35. Whitmarsh, A. J., Cavanagh, J., Tournier, C., Yasuda, J., and Davis, R. J. (1998) A mammalian scaffold complex that selectively mediates MAP kinase activation. Science 281, 1671–1674.

    Article  PubMed  CAS  Google Scholar 

  36. Schaeffer, H. J., Catling, A. D., Eblen, S. T., Collier, L.S., Krauss, A., and Weber, M. J. (1998) MP 1: a MEK binding partner that enhances enzymatic activation of the MAP kinase cascade. Science 281, 1668–1671.

    Article  PubMed  CAS  Google Scholar 

  37. Roussel, M. F. (1998) Key effectors of signal transduction and G1 progression. Adv. Cancer Res. 74, 1–24.

    Article  PubMed  CAS  Google Scholar 

  38. Sluss, H. K., Barrett, T., Derijard, B. and Davis, R. J. (1994) Signal transduction by tumor necrosis factor mediated by JNK protein kinases. Mol. Cell Biol. 14, 8376–8384.

    PubMed  CAS  Google Scholar 

  39. Westwick, J. K., Weitzel, C., Minden, A., Karin, M., and Brenner, D. A. (1994) Tumor necrosis factor alpha stimulates AP-1 activity through prolonged activation of the c-Jun kinase. J. Biol. Chem. 269, 26396–26401.

    PubMed  CAS  Google Scholar 

  40. Bird, T. A., Kyriakis, J. M., Tyshler, L., Gayle, M., Milne, A. and Virca, G. D. (1994) Interleukin-1 activates p54 mitogen-activated protein (MAP) kinase/stress-activated protein kinase by a pathway that is independent of p21ras, Raf-1, and MAP kinase kinase. J. Biol. Chem. 269, 31836–31844.

    PubMed  CAS  Google Scholar 

  41. Saklatvala, J., Davis, W. and Guesdon, F. (1996) Interleukin 1 (IL 1) and tumour necrosis factor (TNF) signal transduction. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 351, 151–157.

    Article  PubMed  CAS  Google Scholar 

  42. Hambleton, J., Weinstein, S. L., Lem, L., and DeFranco, A. L. (1996) Activation of c-Jun N-terminal kinase in bacterial lipopolysaccharide- stimulated macrophages. Proc. Natl. Acad. Sci. USA 93, 2774–2778.

    Article  PubMed  CAS  Google Scholar 

  43. Hacker, H., Mischak, H., Miethke, T., et al. (1998) CpG-DNA-specific activation of antigen-presenting cells requires stress kinase activity and is preceded by non-specific endocytosis and endosomal maturation. EMBO J. 17, 6230–6240.

    Article  PubMed  CAS  Google Scholar 

  44. Karin, M., Liu Zg, and Zandi, E. (1997) AP-1 function and regulation. Curr. Opin. Cell Biol. 9, 240–246.

    Article  PubMed  CAS  Google Scholar 

  45. Smeal, T., Binetruy, B., Mercola, D., et al. (1992) Oncoprotein-mediated signalling cascade stimulates c-Jun activity by phosphorylation of serines 63 and 73. Mol. Cell Biol. 12, 3507–3513.

    PubMed  CAS  Google Scholar 

  46. Sanchez, I., Hughes, R. T., Mayer, B. J., Yee, K., Woodgett, J. R., Avruch, J., Kyriakis, J. M., and Zon, L. I. (1994) Role of SAPK/ERK kinase-1 in the stressactivated pathway regulating transcription factor c-Jun. Nature 372, 794–798.

    PubMed  CAS  Google Scholar 

  47. Gupta, S., Campbell, D., Derijard, B. and Davis, R. J. (1995) Transcription factor ATF2 regulation by the JNK signal transduction pathway. Science 267, 389–393.

    Article  PubMed  CAS  Google Scholar 

  48. Raingeaud, J., Whitmarsh, A. J., Barrett, T., Derijard, B., and Davis, R. J. (1996) MKK3- and MKK6-regulated gene expression is mediated by the p38 mitogen- activated protein kinase signal transduction pathway. Mol. Cell Biol. 16, 1247–1255.

    PubMed  CAS  Google Scholar 

  49. Yi, A. K., Chang, M., Peckham, D. W., Krieg, A. M., and Ashman, R. F. (1998) CpG oligodeoxyribonucleotides rescue mature spleen B cells from spontaneous apoptosis and promote cell cycle entry. J. Immunol. 160, 5898–5906.

    PubMed  CAS  Google Scholar 

  50. Sanghera, J. S., Weinstein, S. L., Aluwalia, M., Girn, J., and Pelech, S. L. (1996) Activation of multiple proline-directed kinases by bacterial lipopolysaccharide in murine macrophages. J. Immunol. 156, 4457–4465.

    PubMed  CAS  Google Scholar 

  51. Hacker, H., Mischak, H., Hacker, G., et al. (1999) Cell type-specific activation of mitogen-activated protein kinases by CpG-DNA controls interleukin-12 release from antigen-presenting cells. EMBO J. 18, 6973–6982.

    Article  PubMed  CAS  Google Scholar 

  52. Sester, D. P., Beasley, S. J., Sweet, M. J., et al. (1999) Bacterial/CpG DNA down-modulates colony stimulating factor-1 receptor surface expression on murine bone marrow-derived macrophages with concomitant growth arrest and factor-independent survival. J. Immunol. 163, 6541–6550.

    PubMed  CAS  Google Scholar 

  53. Buscher, D., Hipskind, R. A., Krautwald, S., Reimann, T. and Baccarini, M. (1995) Ras-dependent and -independent pathways target the mitogen-activated protein kinase network in macrophages. Mol. Cell Biol. 15, 466–475.

    PubMed  CAS  Google Scholar 

  54. Geppert, T. D., Whitehurst, C. E., Thompson, P., and Beutler, B. (1994) Lipopolysaccharide signals activation of tumor necrosis factor biosynthesis through the ras/raf-1/MEK/MAPK pathway. Mol. Med. 1, 93–103.

    PubMed  CAS  Google Scholar 

  55. Yi, A. K. and Krieg, A. M. (1998) Rapid induction of mitogen-activated protein kinases by immune stimulatory CpG DNA. J. Immunol. 161, 4493–4497.

    PubMed  CAS  Google Scholar 

  56. Lu, H. T., Yang, D. D., Wysk, M., Gatti, E., Mellman, I., Davis, R. J., and Flavell, R. A. (1999) Defective IL-12 production in mitogen-activated protein (MAP) kinase kinase 3 (Mkk3)-deficient mice. EMBO J. 18, 1845–1857.

    Article  PubMed  CAS  Google Scholar 

  57. Winzen, R., Kracht, M., Ritter, B., et al. (1999) The p38 MAP kinase pathway signals for cytokine-induced mRNA stabilization via MAP kinase-activated protein kinase 2 and an AU-rich region-targeted mechanism. EMBO J. 18, 4969–4980.

    Article  PubMed  CAS  Google Scholar 

  58. Prichett, W., Hand, A., Sheilds, J., and Dunnington, D. (1995) Mechanism of action of bicyclic imidazoles defines a translational regulatory pathway for tumor necrosis factor alpha. J. Inflamm. 45, 97–105.

    PubMed  CAS  Google Scholar 

  59. Feng, G. J., Goodridge, H. S., Harnett, M. M., et al. (1999) Extracellular signal-related kinase (ERK) and p38 mitogen-activated protein (MAP) kinases differentially regulate the lipopolysaccharide-mediated induction of inducible nitric oxide synthase and IL-12 in macrophages: Leishmania phosphoglycans subvert macrophage IL-12 production by targeting ERK MAP kinase. J. Immunol. 163, 6403–6412.

    PubMed  CAS  Google Scholar 

  60. Medzhitov, R. and Janeway, C. (2000) The Toll receptor family and microbial recognition. Trends. Microbiol. 8, 452–456.

    Article  PubMed  CAS  Google Scholar 

  61. Sparwasser, T., Koch, E. S., Vabulas, R. M., et al. (1998) Bacterial DNA and immunostimulatory CpG oligonucleotides trigger maturation and activation of murine dendritic cells. Eur. J. Immunol. 28, 2045–2054.

    Article  PubMed  CAS  Google Scholar 

  62. Schnare, M., Holt, A. C., Takeda, K., Akira, S., and Medzhitov, R. (2000) Recognition of CpG DNA is mediated by signaling pathways dependent on the adaptor protein MyD88. Curr. Biol. 10, 1139–1142.

    Article  PubMed  CAS  Google Scholar 

  63. Du, X., Poltorak, A., Wei, Y., and Beutler, B. (2000) Three novel mammalian toll-like receptors: gene structure, expression, and evolution. Eur. Cytokine. Netw. 11, 362–371.

    PubMed  CAS  Google Scholar 

  64. Chuang, T. H. and Ulevitch, R. J. Cloning and characterization of a sub-family of human toll-like receptors: hTLR7, hTLR8 and hTLR9. (2000) Eur. Cytokine. Netw., 11, 372–378.

    PubMed  CAS  Google Scholar 

  65. Hemmi, H., Takeuchi, O., Kawai, T., et al. (2000) Toll-like receptor recognizes bacterial DNA. Nature 408, 740–745.

    Article  PubMed  CAS  Google Scholar 

  66. Smith, G. C. and Jackson, S. P. (1999) The DNA-dependent protein kinase. Genes Dev. 13, 916–934.

    Article  PubMed  CAS  Google Scholar 

  67. Hammarsten, O., DeFazio, L. G. and Chu, G. (2000) Activation of DNAdependent protein kinase by single-stranded DNA ends. J. Biol. Chem. 275, 1541–1550.

    Article  PubMed  CAS  Google Scholar 

  68. Poltorak, A., He, X., Smirnova, I., et al. (1998) Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282, 2085–2088.

    Article  PubMed  CAS  Google Scholar 

  69. Hoshino, K., Takeuchi, O., Kawai, T., et al. (1999) Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J. Immunol. 162, 3749–3752.

    PubMed  CAS  Google Scholar 

  70. Inohara, N., Ogura, Y., Chen, F. F., Muto, A., and Nunez, G. (2001) Human Nod1 Confers Responsiveness to Bacterial Lipopolysaccharides. J. Biol. Chem. 276, 2551–2554

    Article  PubMed  CAS  Google Scholar 

  71. Inohara, N., Koseki, T., del Peso, L., et al. (1999) Nod 1, an Apaf-1-like activator of caspase-9 and nuclear factor-kappaB. J. Biol. Chem. 274, 14560–14567.

    Article  PubMed  CAS  Google Scholar 

  72. Ogura, Y., Inohara, N., Benito, A., Chen, F. F., Yamaoka, S., and Nunez, G. (2001) Nod2, a Nod 1 /Apaf-1 family member that is restricted to monocytes and activates NF{kappa}B. J. Biol. Chem. 276, 2551–2554.

    Article  PubMed  Google Scholar 

  73. Macfarlane, D. E. and Manzel, L. (1998) Antagonism of immunostimulatory CpG-oligodeoxynucleotides by quinacrine, chloroquine, and structurally related compounds. J. Immunol. 160, 1122–1131.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Häcker, H. (2002). Signal Transduction Pathways Activated By CpG-DNA. In: Raz, E. (eds) Microbial DNA and Host Immunity. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-305-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-305-7_3

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9728-1

  • Online ISBN: 978-1-59259-305-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics