Skip to main content

Cross-Priming of CD8+ T Cells by Immunostimulatory Sequence DNA

  • Chapter
Microbial DNA and Host Immunity
  • 261 Accesses

Abstract

Microbial DNA containing unmethylated CpG dinucleotides (Irnmunostimulatory sequence [ISS] DNA, or CpG motifs) act upon cells of the innate immune system such as phagocytes (macrophages and dendritic cells [DC]) and NK cells and upon B cells, promoting the expression of proinflammatory cytokines and surface molecules (1–4). They have little direct effect upon CD8+ and CD4+ T cells, yet animal models have shown that ISS-based vaccines promote two antigen-specific T cell responses: cytotoxic lymphocyte (CTL) activity and a Th1-type helper phenotype (5–8) (Fig. 1). This phenomenon has been observed with plasmid DNA vaccines (9), protein and synthetic ISS oligodeoxynucleotide (ISS-ODN) co-administration (6,10–12), and protein-ISS-ODN conjugate vaccines (13,14). Similar T-cell responses have been shown with distinct experimental antigens, including bacterial β-galactosidase (6), chicken ovalbumin (13), hepatitis B virus surface antigen (15), and human immunodeficiency virus gp 120 (14). Effective CTL and Th 1 priming has been observed with both intradermal (13,16) and intranasal (12) routes of immunization. Of note, priming of CTL activity with ISS-ODN and protein antigen, either coadministration or as conjugates, is independent of major histocompatibility complex (MHC) class II-restricted T helper activity, whereas priming by plasmid DNA vaccines is not (13).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yamamoto, S., Yamamoto, T., Kataoka, T., Kuramoto, E., Yano, O., and Tokunaga, T. (1992) Unique palindromic sequences in synthetic oligonucleotides are required to induce IFN and augment IFN-mediated natural killer activity. J. Immunol. 148, 4072–4076.

    PubMed  CAS  Google Scholar 

  2. Krieg, A. M., Yi, A. K., Matson, S., (1995) CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 374, 546–549.

    Article  PubMed  CAS  Google Scholar 

  3. Ballas, Z.K., Rassmussen, W. L., and Krieg, A. M. (1996) Induction of NK activity in murine and human cells by CpG motifs in oligodeoxynucleotides and bacterial DNA. J. Immunol. 157, 1840–1845.

    PubMed  CAS  Google Scholar 

  4. Martin-Orozco, E., Kobayashi, H., Van Uden, J., Nguyen, M.-D., Kornbluth, R. S., and Raz, E. (1999) Enhancement of antigen-presenting cell surface molecules involved in cognate interactions by immunostimulatory DNA sequences. Int. Immunol. 11, 1111–1118.

    Article  PubMed  CAS  Google Scholar 

  5. Raz, E., Tighe, H., Sato, Y., et al. (1996) Preferential induction of a Th 1 immune response and inhibition of specific IgE antibody formation by plasmid DNA immunization. Proc. Nat. Acad. Sci. USA 93, 5141–5145.

    Article  PubMed  CAS  Google Scholar 

  6. Roman, M., Martin-Orozco, E., Goodman, J. S., (1997) Immunostimulatory DNA sequences function as T helper- l -promoting adjuvants. Nat. Med.3, 849–854.

    Article  PubMed  CAS  Google Scholar 

  7. Chu, R. S., Targoni, O. S., Krieg, A. M., Lehmann, P. V., and Harding, C. V. (1997) CpG oligodeoxynucleotides act as adjuvants that switch on T helper 1 immunity. J. Exp. Med. 186, 1623–1631.

    Article  PubMed  CAS  Google Scholar 

  8. Jakob, T., Walker, P. S., Krieg, A. M., Udey, M. C., and Vogel, J. C. (1998) Activation of cutaneous dendritic cells by CpG-containing oligodeoxynucleotides: a role for dendritic cells in the augmentaiton of Th l responses by immunostimulatory DNA. J. Immunol. 161, 3042–3046.

    PubMed  CAS  Google Scholar 

  9. Corr, M., Lee, D. J., Carson, D. A., and Tighe, H. (1996) Gene vaccination with naked plasmid DNA: mechanism of CTL priming. J. Exp. Med. 184, 1555–1560.

    Article  PubMed  CAS  Google Scholar 

  10. Lipford, G. B., Bauer, M., Blank, C., Reiter, R., Wagner, H., and Heeg, K. (1997) CpG-containing synthetic oligonucleotides promote B and cytotoxic T cell responses to protein antigen: a new class of vaccine adjuvants. Europ. J. Immunol. 27, 2340–2344.

    Article  CAS  Google Scholar 

  11. Weiner, G. J., Liu, H-M., Wooldridge, J. E., Dahle, C. E. and Krieg, A. M. (1997) Immunostimulatory oligodeoxynucleotides containing CpG motif are effective as immune adjuvants in tumor antigen immunization. Proc. Nat. Acad. Sci. USA 94, 10,833–10,837.

    Article  Google Scholar 

  12. Horner, A. A., Ronaghy, A., Cheng, P. M., (1998) Immunostimulatory DNA is a potent mucosal adjuvant. Cell. Immunol. 190, 77–82.

    Article  PubMed  CAS  Google Scholar 

  13. Cho, H. J., Takabayashi, K., Cheng, P.-M., et al. (2000) Immunostimulatory DNA-based vaccines induce cytotoxic lymphocyte activity by a T-helper cellindependent mechanism. Nat. Biotech. 18, 509–514.

    Article  CAS  Google Scholar 

  14. Tighe, H., Takabayashi, K., Schwartz, D., (2000) Conjugation of protein to immunostimulatory DNA results in rapid, long-lasting and potent induction of cell-mediated and humoral immunity. Eur. J. Immunol. 7, 1939–1947.

    Article  Google Scholar 

  15. Davis, H. L., Weeratna, R., Waldschmidt, T. J., (1998) CpG DNA is a potent enhancer of specific immunity in mice immunized with recombinant hepatitis B surface antigen. J. Immunol. 160, 870–876.

    PubMed  CAS  Google Scholar 

  16. Sato, Y., Roman, M., Tighe, H., Lee, D., Corr, M., Nguyen, M.-D., Silverman, G. J., Lotz, M., Carson, D. A., and Raz, E. (1996) Immunostimulatory DNA sequences necessary for effective intradermal gene immunization. Science 273, 352–354.

    Article  PubMed  CAS  Google Scholar 

  17. Keene, J.-A., and Forman, J. (1982) Helper activity is required for the in vivo generation of cytotoxic lymphocytes. J. Exp. Med. 155, 768–782.

    Article  PubMed  CAS  Google Scholar 

  18. Sperling, A. I., and Bluestone, J. A. (1996) The complexities of T-cell co-stimulation: CD28 and beyond. Immunol. Rev. 153, 155–182.

    Article  PubMed  CAS  Google Scholar 

  19. Chambers, C. A., and Allison, J. P. 1997. Costimulation in T cell responses. Curr. Opin. Immunol. 9, 396–404.

    Article  PubMed  CAS  Google Scholar 

  20. Lanzavecchia, A. (1998) License to kill. Nature 393, 413–414.

    Article  PubMed  CAS  Google Scholar 

  21. Ridge, J. P., Di Rosa, F., and Matzinger, P. 1998. A conditioned dendritic cell can be a bridge between CD4+ T-helper and a T-killer cell. Nature 393, 474–478.

    Article  PubMed  CAS  Google Scholar 

  22. Schoenberger, S. P., Toes, R. E. M., van der Voort, E. I. H., Offringa, R. and Melief, C. J. M. (1998) T-cell help for cytotoxic lymphocytes is mediated by CD40-CD40L interactions. Nature 393, 480–483.

    Article  PubMed  CAS  Google Scholar 

  23. Bennett, S. R., Carbone, F. R., Karamalis, F., Flavell, R. A., Miller, J. F., and W. R. Heath. (1998) Help for cytotoxic-T-cell responses is mediated by CD40 signaling. Nature 393, 478–480.

    Article  PubMed  CAS  Google Scholar 

  24. Kovacsovics-Bankowski, M. and Rock, K. L. (1995) A phagosome-to-cytosol pathway for exogenous antigens presented on MHC class I molecules. Science 267, 243–246.

    Article  PubMed  CAS  Google Scholar 

  25. Shen, Z., Reznikoff, G., Dranoff, G., and Rock, K. (1997) Cloned dendritic cells can present exogenous antigens on both MHC class I and class II molecules. J. Immunol. 158, 2723–2730.

    PubMed  CAS  Google Scholar 

  26. Pfeifer, J. D., Wick, M. J., Roberts, R. L., Findlay, K., Normark, S. J., and Harding, C. V. (1993) Phagocytic processing of bacterial antigens for class I MHC presentation to T cells. Nature 361, 359–362.

    Article  PubMed  CAS  Google Scholar 

  27. Reis e Souza, C., and Germain, R. N. (1995) Major histocompatability complex class I presentation of peptides derived from soluble exogenous antigen by a subset of cells engaged in phagocytosis. J. Exp. Med. 182, 841–851.

    Article  Google Scholar 

  28. Gromme, M., Uytdehaag, F. G., Janssen, H. (1999) Recycling MHC class I molecules and endosomal peptide loading. Proc. Nat. Acad. Sci. USA 96, 10,326–10,331.

    Article  Google Scholar 

  29. Sigal, L. J., Crotty, S., Andino, R., and Rock, K. L. (1999) Cytotoxic T-cell immunity to virus-infected non-haematopoietic cells requires presentation of exogenous antigen. Nature 398, 77–80.

    Article  PubMed  CAS  Google Scholar 

  30. Sigal, L. J., and Rock, K. L. (2000) Bone marrow-derived antigen-presenting cells are required for the generation of cytotoxic T lymphocyte responses to viruses and use transporter associated with antigen presentation (TAP)-dependent and -independent pathways of antigen presentation. J. Exp. Med. 192, 1143–1159.

    Article  PubMed  CAS  Google Scholar 

  31. Sandberg, J. K., Chambers, B. J., Van Kaer, L., Kearre, K., and Ljunggren, H. G. (1996) TAP 1-deficient mice select a CD8+ T cell repertoire that displays both diversity and peptide specificity. Eur. J. Immunol. 26, 288–293.

    Article  PubMed  CAS  Google Scholar 

  32. Cho, H. J., Hayashi, T., Datta, S. K., Takabayashi, K., Van uden, J. H., Horner, A., Corr, M., and Raz, E. (2002). IFN-αβ promote priming of antigen-specific CD8(+) and CD4(+) T lymphocytes by immunostimulatory DNA-based vaccines. J. Immunol. 168, 4907.

    PubMed  CAS  Google Scholar 

  33. Grewal, I. S., and Flavell, R. A. (1996) The role of CD40 ligand in costimulation and T-cell activation. Immunol. Rev. 153, 85–106.

    Article  PubMed  CAS  Google Scholar 

  34. Harding, F. A., and Allison, J. P. (1993) CD28-B7 interactions allow the induction of CD8+ cytotoxic T lymphocytes in the absence of exogenous help. J. Exp. Med. 177, 1791–1796.

    Article  PubMed  CAS  Google Scholar 

  35. Sigal, L. J., Reiser, H., and Rock, K. L. (1998) The role of B7–1 and B7–2 costimulation for the generation of CTL responses in vivo. J. Immunol. 161, 2740–2745.

    PubMed  CAS  Google Scholar 

  36. Trinchieri, G. (1995) Interleukin-12: a proinflammatory cytokine with immunoregulatory functions that bridge innate resistance and antigen-specific adaptive immunity. Ann. Rev. Immunol. 13, 251–276.

    Article  CAS  Google Scholar 

  37. Linsley, P.S., Greene, J. L., Brady, W., Bajorath, J., Ledbetter, J. A., and Peach, R. (1994) Human B7–1 (CD80) and B7–2 (CD86) bind with similar avidities but distinct kinetics to CD28 and CTLA-4 receptors. Immunity 1, 793–801.

    Article  PubMed  CAS  Google Scholar 

  38. Yang, Y. and Wilson, J. M. (1996) CD40 Ligand-Dependent T Cell Activation: Requirement of B7-CD28 Signaling Through CD40. Science 273, 1862–1864.

    Article  PubMed  CAS  Google Scholar 

  39. Schoenberger, S. P., van Stipdonk, M. J. B., Prilliman, K. R., and Lemmens, E. (2000) The role of B7, ICAM-1, and APC activation in cross-priming of cytotoxic T lymphocytes. Cancer Vaccines 2000, New York, NY.

    Google Scholar 

  40. Brossart, P. and Bevan, M. (1997) Presentation of exogenous protein antigens on major histocompatability complex class I molecules by dendritic cells: pathway of presentation and regulation by cytokines. Blood 90, 1594–1599.

    PubMed  CAS  Google Scholar 

  41. Ma, W., Lehner, P. J., Cresswell, P., Pober, J. S., and Johnson, D. R. 1997. Interferon-gamma rapidly increases peptide transporter (TAP) subunit expression and peptide transport capacity in endothelial cells. J. Biol. Chem. 272, 16,585–16,590.

    Google Scholar 

  42. Kadowaki, N., Antonenko, S., Lau, J. Y.-N., and Liu, Y.-J. 2000. Natural interferon α/β-producing cells link innate and adaptive immunity. J. Exp. Med. 192, 219–225.

    Article  PubMed  CAS  Google Scholar 

  43. Chu, W., Gong, X., Li, Z., et al. (2000) DNA-PKcs is required for activation of innate immunity by immunostimulatory DNA. Cell 103, 909–918.

    Article  PubMed  CAS  Google Scholar 

  44. Hemmi, H., Takeuchi, O., Kawai, T., et al. (2000) A Toll-like receptor recognizes bacterial DNA. Nature 408, 740–745.

    Article  PubMed  CAS  Google Scholar 

  45. Hacker, H., Vabulas, R. M., Takeuchi, O., Hoshino, K., Akira, S., and Wagner, H. (2000) Immune cell activation by bacterial CpG-DNA through myeloid differentiation marker 88 and tumor necrosis factor receptor-associated factor (TRAF) 6. J. Exp. Med. 192, 595–600.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Cho, H.J., Datta, S., Raz, E. (2002). Cross-Priming of CD8+ T Cells by Immunostimulatory Sequence DNA. In: Raz, E. (eds) Microbial DNA and Host Immunity. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-305-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-305-7_11

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9728-1

  • Online ISBN: 978-1-59259-305-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics