Skip to main content

Potential Role of NSAIDs and COX-2 Blockade in Cancer Therapy

  • Chapter
COX-2 Blockade in Cancer Prevention and Therapy

Abstract

Carcinogenesis results from the long-term accumulation of diverse structural and functional molecular alterations. These changes are sequentially expressed within each, and ultimately across all, levels of biologic organization (e.g., from DNA and RNA, to protein, organelle, cell, tissue, and organ levels) (1). This multistep process typically involves an array of known molecular targets (e.g., APC, k-ras, c-myc, MLH1/MSH2/MSH6, PTEN, p53, EGFR, IGF-1, COX, β-catenin), and undoubtedly others that are not yet identified. Nevertheless, current epidemiologic and experimental evidence suggests that many tumors are associated with the overexpression of COX-2, the inducible COX isozyme that catalyzes a crucial step in prostaglandin synthesis. Indeed, COX-2 is overexpressed in stromal, endothelial, or epithelial tumor cells and appears to be important in all stages of tumori-genesis; hence it may be targeted for either cancer prevention or therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hawk ET, Viner JL, Lawrence JA. Biomarkers as surrogates for cancer development. Curr Oncol Rep 2000; 2: 242–250.

    Article  PubMed  CAS  Google Scholar 

  2. Crofford LJ, Lipsky PE, Brooks P, et al. Basic biology and clinical application of specific cyclooxygenase-2 inhibitors. Arthritis Rheum 2000; 43: 4–13.

    Article  PubMed  CAS  Google Scholar 

  3. Crofford LJ. COX-1 and COX-2 tissue expression: implications and predictions. J Rheumatol 1997; 24: 15–19.

    Google Scholar 

  4. Hatae T, Hara S, Yokoyama C, et al. Site-directed mutagenesis of human prostacyclin synthase: alteration of Cys441 of the Cys-pocket, and Glu347 and Arg350 of the EXXR motif. FEBS Lett 1996; 389: 268–272.

    Article  PubMed  CAS  Google Scholar 

  5. Michaluart P, Masferrer JL, Carothers AM, et al. Inhibitory effects of caffeic acid phenethyl ester on the activity and expression of cyclooxygenase-2 in human oral epithelial cells and in a rat model of inflammation. Cancer Res 1999; 59: 2347–2352.

    PubMed  CAS  Google Scholar 

  6. Kelley DJ, Mestre JR, Subbaramaiah K, et al. Benzo[a]pyrene up-regulates cyclooxygenase-2 gene expression in oral epithelial cells. Carcinogenesis 1997; 18: 795–799.

    Article  PubMed  CAS  Google Scholar 

  7. Mestre JR, Subbaramaiah K, Sacks PG, et al. Phorbol ester-mediated induction of cyclooxygenase-2 gene expression is inhibited by retinoids. Ann NY Acad Sci 1997; 833: 173–178.

    Article  PubMed  CAS  Google Scholar 

  8. Wilborn J, DeWitt DL, Peters-Golden M. Expression and role of cyclooxygenase isoforms in alveolar and peritoneal macrophages. Am J Physiol 1995; 268: L294 - L301.

    PubMed  CAS  Google Scholar 

  9. Jones DA, Carlton DP, McIntyre TM, et al. Molecular cloning of human prostaglandin endoperoxide synthase type II and demonstration of expression in response to cytokines. JBiol Chem 1993; 268: 90499054.

    Google Scholar 

  10. Gilbert RS, Reddy ST, Kujubu DA, et al. Transforming growth factor beta 1 augments mitogen-induced prostaglandin synthesis and expression of the TIS 10/prostaglandin synthase 2 gene both in Swiss 3T3 cells and in murine embryo fibroblasts. J Cell Physiol 1994; 159: 67–75.

    Article  PubMed  CAS  Google Scholar 

  11. Hamasaki Y, Kitzler J, Hardman R, et al. Phorbol ester and epidermal growth factor enhance the expression of two inducible prostaglandin H synthase genes in rat tracheal epithelial cells. Arch Biochem Biophys 1993; 304: 226–234.

    Article  PubMed  CAS  Google Scholar 

  12. Burch RM, Luini A, Mais DE, et al. Alpha 1-adrenergic stimulation of arachidonic acid release and metabolism in a rat thyroid cell line. Mediation of cell replication by prostaglandin E2. J Biol Chem 1986; 261:11, 236–11, 241.

    PubMed  CAS  Google Scholar 

  13. Rimarachin JA, Jacobson JA, Szabo P, et al. Regulation of cyclooxygenase-2 expression in aortic smooth muscle cells. Arterioscler Thromb 1994; 14: 1021–1031.

    Article  PubMed  CAS  Google Scholar 

  14. Kawaguchi H, Raisz LG, Voznesensky OS, et al. Regulation of the two prostaglandin G/H synthases by parathyroid hormone, interleukin-1, cortisol, and prostaglandin E2 in cultured neonatal mouse calvariae. Endocrinology 1994; 135: 1157–1164.

    Article  PubMed  CAS  Google Scholar 

  15. O’Banion MK, Winn VD, Young DA. cDNA cloning and functional activity of a glucocorticoid-regulated inflammatory cyclooxygenase. Proc Natl Acad Sci USA 1992; 89: 4888–4892.

    Article  PubMed  Google Scholar 

  16. Gilbert RS, Reddy ST, Targan S, et al. TGF-beta 1 augments expression of the TIS 10/prostaglandin synthase-2 gene in intestinal epithelial cells. Cell Mol Biol Res 1994; 40: 653–660.

    PubMed  CAS  Google Scholar 

  17. Xie WL, Chipman JG, Robertson DL, et al. Expression of a mitogen-responsive gene encoding prostaglandin synthase is regulated by mRNA splicing. Proc Natl Acad Sci USA 1991; 88: 2692–2696.

    Article  PubMed  CAS  Google Scholar 

  18. Yamamoto K, Arakawa T, Ueda N, et al. Transcriptional roles of nuclear factor kappa B and nuclear factor-interleukin-6 in the tumor necrosis factor alpha-dependent induction of cyclooxygenase-2 in MC3T3–E1 cells. JBiol Chem 1995; 270:31, 315–31, 320.

    Google Scholar 

  19. Xie W, Herschman HR. Transcriptional regulation of prostaglandin synthase 2 gene expression by platelet-derived growth factor and serum. J Biol Chem 1996; 271:31, 742–31, 748.

    Google Scholar 

  20. Smith WL, DeWitt DL, Garavito RM. Cyclooxygenases: structural, cellular, and molecular biology. Annu Rev Biochem 2000; 69: 145–182.

    Article  PubMed  CAS  Google Scholar 

  21. Kinoshita T, Takahashi Y, Sakashita T, et al. Growth stimulation and induction of epidermal growth factor receptor by overexpression of cyclooxygenases 1 and 2 in human colon carcinoma cells. Biochim Biophys Acta 1999; 1438: 120–130.

    Article  PubMed  CAS  Google Scholar 

  22. Coffey RI, Hawkey CJ, Damstrup L, et al. Epidermal growth factor receptor activation induces nuclear targeting of cyclooxygenase-2, basolateral release of prostaglandins, and mitogenesis in polarizing colon cancer cells. PNAS 1997; 94: 657–662.

    Article  PubMed  CAS  Google Scholar 

  23. Vadlamudi R, Mandai M, Adam L, et al. Regulation of cyclooxygenase-2 pathway by HER2 receptor. Oncogene 1999; 18: 305–314.

    Article  PubMed  CAS  Google Scholar 

  24. Bostrom PJ, Uotila P, Rajala P, et al. Interferon-alpha inhibits cyclooxygenase-1 and stimulates cyclooxygenase-2 expression in bladder cancer cells in vitro. Urol Res 2001; 29: 20–24.

    Article  PubMed  CAS  Google Scholar 

  25. Komhoff M, Guan Y, Shappell HW, et al. Enhanced expression of cyclooxygenase-2 in high grade human transitional cell bladder carcinomas. Am J Pathol 2000; 157: 29–35.

    Article  PubMed  CAS  Google Scholar 

  26. Mohammed SI, Knapp DW, Bostwick DG, et al. Expression of cyclooxygenase-2 (COX-2) in human invasive transitional cell carcinoma (TCC) of the urinary bladder. Cancer Res 1999; 59: 5647–5650.

    PubMed  CAS  Google Scholar 

  27. Shirahama T, Arima J, Akiba S, et al. Relation between cyclooxygenase-2 expression and tumor invasiveness and patient survival in transitional cell carcinoma of the urinary bladder. Cancer 2001; 92: 188–193.

    Article  PubMed  CAS  Google Scholar 

  28. Hwang D, Scollard D, Byrne J, et al. Expression of cyclooxygenase-1 and cyclooxygenase-2 in human breast cancer. J Natl Cancer Inst 1998; 90: 455–460.

    Article  PubMed  CAS  Google Scholar 

  29. Soslow RA, Dannenberg AJ, Rush D, et al. COX-2 is expressed in human pulmonary, colonic, and mammary tumors. Cancer 2000; 89: 2637–2645.

    Article  PubMed  CAS  Google Scholar 

  30. Parrett ML, Harris RE, Joarder FS, et al. Cyclooxygenase-2 gene expression in human breast cancer. Int J Oncolong 1997; 10: 503–507.

    CAS  Google Scholar 

  31. Gaffney DK, Holden J, Davis M, et al. Elevated cyclooxygenase-2 expression correlates with diminished survival in carcinoma of the cervix treated with radiotherapy. Int J Radiat Oncol Biol Phys 2001; 49: 1213–1217.

    Article  PubMed  CAS  Google Scholar 

  32. Kulkarni S, Rader JS, Zhang F, et al. Cyclooxygenase-2 is overexpressed in human cervical cancer. Clin Cancer Res 2001; 7: 429–434.

    PubMed  CAS  Google Scholar 

  33. Deininger MH, Weller M, Streffer J, et al. Patterns of cyclooxygenase-1 and -2 expression in human gliomas in vivo. Acta Neuropathol (Berl) 1999; 98: 240–244.

    Article  CAS  Google Scholar 

  34. Joki T, Heese O, Nikas DC, et al. Expression of cyclooxygenase 2 (COX-2) in human glioma and in vitro inhibition by a specific COX-2 inhibitor, NS-398. Cancer Res 2000; 60: 4926–4931.

    PubMed  CAS  Google Scholar 

  35. Karim MM, Hayashi Y, Inoue M, et al. Cox-2 expression in retinoblastoma. Am J Ophthalmol 2000; 129: 398–401.

    Article  PubMed  CAS  Google Scholar 

  36. Shono T, Tofilon PJ, Bruner JM, et al. Cyclooxygenase-2 expression in human gliomas: prognostic significance and molecular correlations. Cancer Res 2001; 61: 4375–4381.

    PubMed  CAS  Google Scholar 

  37. Chapple KS, Cartwright EJ, Hawcroft G, et al. Localization of cyclooxygenase-2 in human sporadic colorectal adenomas. Am J Pathol 2000; 156: 545–553.

    Article  PubMed  CAS  Google Scholar 

  38. Fujita T, Matsui M, Takaku K, et al. Size-and invasion-dependent increase in cyclooxygenase 2 levels in human colorectal carcinomas. Cancer Res 1998; 58: 4823–4826.

    PubMed  CAS  Google Scholar 

  39. Fujita M, Fukui H, Kusaka T, et al. Relationship between cyclooxygenase-2 expression and K-ras gene mutation in colorectal adenomas. J Gastroenterol Hepatol 2000; 15: 1277–1281.

    PubMed  CAS  Google Scholar 

  40. Bamba H, Ota S, Kato A, et al. High expression of cyclooxygenase-2 in macrophages of human colonic adenoma. Int J Cancer 1999; 83: 470–475.

    Article  PubMed  CAS  Google Scholar 

  41. Eberhart CE, Coffey RI, Radhika A, et al. Up-regulation of cyclooxygenase 2 gene expression in human colorectal adenomas and adenocarcinomas. Gastroenterology 1994; 107: 1183–1188.

    PubMed  CAS  Google Scholar 

  42. Hao X, Bishop AE, Wallace M, et al. Early expression of cyclo-oxygenase-2 during sporadic colorectal carcinogenesis. J Pathol 1999; 187: 295–301.

    Article  PubMed  CAS  Google Scholar 

  43. Arbabi S, Rosengart MR, Garcia I, et al. Epithelial cyclooxygenase-2 expression: a model for pathogenesis of colon cancer. J Surg Res 2001; 97: 60–64.

    Article  PubMed  CAS  Google Scholar 

  44. Chen WS, Wei SJ, Liu JM, et al. Tumor invasiveness and liver metastasis of colon cancer cells correlated with cyclooxygenase-2 (COX-2) expression and inhibited by a COX-2-selective inhibitor, etodolac. Int J Cancer 2001; 91: 894–899.

    Article  PubMed  CAS  Google Scholar 

  45. Dimberg J, Samuelsson A, Hugander A, et al. Differential expression of cyclooxygenase 2 in human colorectal cancer. Gut 1999; 45: 730–732.

    Article  PubMed  CAS  Google Scholar 

  46. Gustafson-Svard C, Lilja I, Hallbook O, et al. Cyclooxygenase-1 and cyclooxygenase-2 gene expression in human colorectal adenocarcinomas and in azoxymethane induced colonic tumours in rats. Gut 1996; 38: 79–84.

    Article  PubMed  CAS  Google Scholar 

  47. Hull MA, Fenwick SW, Chapple KS, et al. Cyclooxygenase-2 expression in colorectal cancer liver metastases. Clin Exp Metastasis 2000; 18: 21–27.

    Article  PubMed  CAS  Google Scholar 

  48. Kargman SL, O’Neill GP, Vickers Pi, et al. Expression of prostaglandin G/H synthase-1 and -2 protein in human colon cancer. Cancer Res 1995; 55: 2556–2559.

    PubMed  CAS  Google Scholar 

  49. Kutchera W, Jones DA, Matsunami N, et al. Prostaglandin H synthase 2 is expressed abnormally in human colon cancer: evidence for a transcriptional effect. Proc Natl Acad Sci USA 1996; 93: 4816–4820.

    Article  PubMed  CAS  Google Scholar 

  50. Maekawa M, Sugano K, Sano H, et al. Increased expression of cyclooxygenase-2 to -1 in human colorectal cancers and adenomas, but not in hyperplastic polyps. Jpn J Clin Oncol 1998; 28: 421–426.

    Article  PubMed  CAS  Google Scholar 

  51. Masunaga R, Kohno H, Dhar DK, et al. Cyclooxygenase-2 expression correlates with tumor neovascularization and prognosis in human colorectal carcinoma patients. Clin Cancer Res 2000; 6: 4064–4068.

    PubMed  CAS  Google Scholar 

  52. Sakuma K, Fujimori T, Hirabayashi K, et al. Cyclooxygenase (COX)-2 immunoreactivity and relationship to p53 and Ki-67 expression in colorectal cancer. J Gastroenterol 1999; 34: 189–194.

    Article  PubMed  CAS  Google Scholar 

  53. Sano H, Kawahito Y, Wilder RL, et al. Expression of cyclooxygenase-1 and -2 in human colorectal cancer. Cancer Res 1995; 55: 3785–3789.

    PubMed  CAS  Google Scholar 

  54. Shattuck-Brandt RL, Lamps LW, Heppner Goss KJ, et al. Differential expression of matrilysin and cyclooxygenase-2 in intestinal and colorectal neoplasms. Mol Carcinog 1999; 24: 177–187.

    Article  PubMed  CAS  Google Scholar 

  55. Sheehan KM, Sheahan K, O’Donoghue DP, et al. The relationship between cyclooxygenase-2 expression and colorectal cancer. Jama 1999; 282: 1254–1257.

    Article  PubMed  CAS  Google Scholar 

  56. Sinicrope FA, Lemoine M, Xi L, et al. Reduced expression of cyclooxygenase 2 proteins in hereditary nonpolyposis colorectal cancers relative to sporadic cancers. Gastroenterology 1999; 117: 350–3558.

    Article  PubMed  CAS  Google Scholar 

  57. Tomozawa S, Tsuno NH, Sunami E, et al. Cyclooxygenase-2 overexpression correlates with tumour recurrence, especially haematogenous metastasis, of colorectal cancer. BrJCancer 2000; 83: 324–328.

    CAS  Google Scholar 

  58. Kandil HM, Tanner G, Smalley W, et al. Cyclooxygenase-2 expression in Barrett’s esophagus. Dig Dis Sci 2001; 46: 785–789.

    Article  PubMed  CAS  Google Scholar 

  59. Morris CD, Armstrong GR, Bigley G, et al. Cyclooxygenase-2 expression in the Barrett’s metaplasiadysplasia-adenocarcinoma sequence. Am J Gastroenterol 2001; 96: 990–996.

    PubMed  CAS  Google Scholar 

  60. Ratnasinghe D, Tangrea J, Roth MJ, et al. Expression of cyclooxygenase-2 in human squamous cell carcinoma of the esophagus; an immunohistochemical survey. Anticancer Res 1999; 19: 171–174.

    PubMed  CAS  Google Scholar 

  61. Shirvani VN, Ouatu-Lascar R, Kaur BS, et al. Cyclooxygenase 2 expression in Barrett’ s esophagus and adenocarcinoma: ex vivo induction by bile salts and acid exposure. Gastroenterology 2000; 118: 487–496.

    Article  PubMed  CAS  Google Scholar 

  62. Wilson KT, Fu S, Ramanujam KS, et al. Increased expression of inducible nitric oxide synthase and cyclooxygenase-2 in Barrett’ s esophagus and associated adenocarcinomas. Cancer Res 1998; 58: 2929 2934.

    Google Scholar 

  63. Zimmermann KC, Sarbia M, Weber AA, et al. Cyclooxygenase-2 expression in human esophageal carcinoma. Cancer Res 1999; 59: 198–204.

    PubMed  CAS  Google Scholar 

  64. Chan G, Boyle JO, Yang EK, et al. Cyclooxygenase-2 expression is up-regulated in squamous cell carciNoma of the head and neck. Cancer Res 1999; 59: 991–994.

    PubMed  CAS  Google Scholar 

  65. Gallo O, Franchi A, Magnelli L, et al. Cyclooxygenase-2 pathway correlates with vegf expression in head and neck cancer. implications for tumor angiogenesis and metastasis. Neoplasia 2001; 3: 53–61.

    Article  PubMed  CAS  Google Scholar 

  66. Bae SH, Jung ES, Park YM, et al. Expression of cyclooxygenase-2 (COX-2) in hepatocellular carcinoma and growth inhibition of hepatoma cell lines by a COX-2 inhibitor, NS-398. Clin Cancer Res 2001; 7: 1410–1418.

    PubMed  CAS  Google Scholar 

  67. Koga H, Sakisaka S, Ohishi M, et al. Expression of cyclooxygenase-2 in human hepatocellular carcinoma: relevance to tumor dedifferentiation. Hepatology 1999; 29: 688–696.

    Article  PubMed  CAS  Google Scholar 

  68. Kondo M, Yamamoto H, Nagano H, et al. Increased expression of COX-2 in nontumor liver tissue is associated with shorter disease-free survival in patients with hepatocellular carcinoma. Clin Cancer Res 1999; 5: 4005–4012.

    PubMed  CAS  Google Scholar 

  69. Rahman MA, Dhar DK, Yamaguchi E, et al. Coexpression of inducible nitric oxide synthase and cox-2 in hepatocellular carcinoma and surrounding liver: possible involvement of cox-2 in the angiogenesis of hepatitis c virus-positive cases. Clin Cancer Res 2001; 7: 1325–1332.

    PubMed  CAS  Google Scholar 

  70. Shiota G, Okubo M, Noumi T, et al. Cyclooxygenase-2 expression in hepatocellular carcinoma. Hepatogastroenterology 1999; 46: 407–412.

    PubMed  CAS  Google Scholar 

  71. Achiwa H, Yatabe Y, Hida T, et al. Prognostic significance of elevated cyclooxygenase 2 expression in primary, resected lung adenocarcinomas. Clin Cancer Res 1999; 5: 1001–1005.

    PubMed  CAS  Google Scholar 

  72. Dohadwala M, Luo J, Zhu L, et al. Non-small cell lung cancer cyclooxygenase-2-dependent invasion is mediated by CD44. J Biol Chem 2001; 24: 24.

    Google Scholar 

  73. Hida T, Yatabe Y, Achiwa H, et al. Increased expression of cyclooxygenase 2 occurs frequently in human lung cancers, specifically in adenocarcinomas. Cancer Res 1998; 58: 3761–3764.

    PubMed  CAS  Google Scholar 

  74. Hosomi Y, Yokose T, Hirose Y, et al. Increased cyclooxygenase 2 (COX-2) expression occurs frequently in precursor lesions of human adenocarcinoma of the lung. Lung Cancer 2000; 30: 73–81.

    Article  PubMed  CAS  Google Scholar 

  75. Huang M, Stolina M, Sharma S, et al. Non-small cell lung cancer cyclooxygenase-2-dependent regulation of cytokine balance in lymphocytes and macrophages: up-regulation of interleukin 10 and down-regulation of interleukin 12 production. Cancer Res 1998; 58: 1208–1216.

    PubMed  CAS  Google Scholar 

  76. Kokawa A, Kondo H, Gotoda T, et al. Increased expression of cyclooxygenase-2 in human pancreatic neoplasms and potential for chemoprevention by cyclooxygenase inhibitors. Cancer 2001; 91: 333–338.

    Article  PubMed  CAS  Google Scholar 

  77. Molina MA, Sitja-Arnau M, Lemoine MG, et al. Increased cyclooxygenase-2 expression in human pancreatic carcinomas and cell lines: growth inhibition by nonsteroidal anti-inflammatory drugs. Cancer Res 1999; 59: 4356–4362.

    PubMed  CAS  Google Scholar 

  78. Okami J, Yamamoto H, Fujiwara Y, et al. Overexpression of cyclooxygenase-2 in carcinoma of the pancreas. Clin Cancer Res 1999; 5: 2018–2024.

    PubMed  CAS  Google Scholar 

  79. Tucker ON, Dannenberg M, Yang EK, et al. Cyclooxygenase-2 expression is up-regulated in human pancreatic cancer. Cancer Res 1999; 59: 987–990.

    PubMed  CAS  Google Scholar 

  80. Yip-Schneider MT, Barnard DS, Billings SD, et al. Cyclooxygenase-2 expression in human pancreatic adenocarcinomas. Carcinogenesis 2000; 21: 139–146.

    Article  PubMed  CAS  Google Scholar 

  81. Tanji N, Kikugawa T, Yokoyama M. Immunohistochemical study of cyclooxygenases in prostatic adenocarcinoma; relationship to apoptosis and Bc1–2 protein expression. Anticancer Res 2000; 20: 2313 2319.

    Google Scholar 

  82. Tjandrawinata RR, Dahiya R, Hughes-Fulford M. Induction of cyclo-oxygenase-2 mRNA by prostaglandin E2 in human prostatic carcinoma cells. Br J Cancer 1997; 75: 1111–1118.

    Article  PubMed  CAS  Google Scholar 

  83. Uotila P, Valve E, Martikainen P, et al. Increased expression of cyclooxygenase-2 and nitric oxide synthase-2 in human prostate cancer. Urol Res 2001; 29: 23–28.

    Article  PubMed  CAS  Google Scholar 

  84. Yoshimura R, Sano H, Masuda C, et al. Expression of cyclooxygenase-2 in prostate carcinoma. Cancer 2000; 89: 589–596.

    Article  PubMed  CAS  Google Scholar 

  85. Buckman SY, Gresham A, Hale P, et al. COX-2 expression is induced by UVB exposure in human skin: implications for the development of skin cancer. Carcinogenesis 1998; 19: 723–729.

    Article  PubMed  CAS  Google Scholar 

  86. Higashi Y, Kanekura T, Kanzaki T. Enhanced expression of cyclooxygenase (COX)-2 in human skin epidermal cancer cells: evidence for growth suppression by inhibiting COX-2 expression. Int J Cancer 2000; 86: 667–671.

    Article  PubMed  CAS  Google Scholar 

  87. Muller-Decker K, Reinerth G, Krieg P, et al. Prostaglandin-H-synthase isozyme expression in normal and neoplastic human skin. Int J Cancer 1999; 82: 648–656.

    Article  PubMed  CAS  Google Scholar 

  88. Lim HY, Joo HJ, Choi JH, et al. Increased expression of cyclooxygenase-2 protein in human gastric carcinoma. Clin Cancer Res 2000; 6: 519–525.

    PubMed  CAS  Google Scholar 

  89. Murata H, Kawano S, Tsuji S, et al. Cyclooxygenase-2 overexpression enhances lymphatic invasion and metastasis in human gastric carcinoma. Am J Gastroenterol 1999; 94: 451–455.

    Article  PubMed  CAS  Google Scholar 

  90. Ohno R, Yoshinaga K, Fujita T, et al. Depth of invasion parallels increased cyclooxygenase-2 levels in patients with gastric carcinoma. Cancer 2001; 91: 1876–1881.

    Article  PubMed  CAS  Google Scholar 

  91. Ratnasinghe D, Tangrea JA, Roth MJ, et al. Expression of cyclooxygenase-2 in human adenocarcinomas of the gastric cardia and corpus. Oncol Rep 1999; 6: 965–968.

    PubMed  CAS  Google Scholar 

  92. Ristimaki A, Honkanen N, Jankala H, et al. Expression of cyclooxygenase-2 in human gastric carcinoma. Cancer Res 1997; 57: 1276–1280.

    PubMed  CAS  Google Scholar 

  93. Soydan AS, Gaffen JD, Weech PK, et al. Cytosolic phospholipase A2, cyclo-oxygenases and arachidonate in human stomach tumours. Eur J Cancer 1997; 33: 1508–1512.

    Article  PubMed  CAS  Google Scholar 

  94. Uefuji K, Ichikura T, Mochizuki H, et al. Expression of cyclooxygenase-2 protein in gastric adenocarcinoma. J Surg Oncol 1998; 69: 168–172.

    Article  PubMed  CAS  Google Scholar 

  95. Uefuji K, Ichikura T, Mochizuki H. Cyclooxygenase-2 expression is related to prostaglandin biosynthesis and angiogenesis in human gastric cancer. Clin Cancer Res 2000; 6: 135–138.

    PubMed  CAS  Google Scholar 

  96. Uefuji K, Ichikura T, Mochizuki H. Expression of cyclooxygenase-2 in human gastric adenomas and adenocarcinomas. J Surg Oncol 2001; 76: 26–30.

    Article  PubMed  CAS  Google Scholar 

  97. Yamamoto H, Itoh F, Fukushima H, et al. Overexpression of cyclooxygenase-2 protein is less frequent in gastric cancers with microsatellite instability. Int J Cancer 1999; 84: 400–403.

    Article  PubMed  CAS  Google Scholar 

  98. Madaan S, Abel PD, Chaudhary KS, et al. Cytoplasmic induction and over-expression of cyclooxygenase-2 in human prostate cancer: implications for prevention and treatment. BJU Int 2000; 86: 736–741.

    Article  PubMed  CAS  Google Scholar 

  99. Ryu HS, Chang KH, Yang HW, et al. High cyclooxygenase-2 expression in stage IB cervical cancer with lymph node metastasis or parametrial invasion. Gynecol Oncol 2000; 76: 320–325.

    Article  PubMed  CAS  Google Scholar 

  100. Wolff H, Saukkonen K, Anttila S, et al. Expression of cyclooxygenase-2 in human lung carcinoma. Cancer Res 1998; 58: 4997–5001.

    PubMed  CAS  Google Scholar 

  101. Khuri FR, Wu H, Lee JJ, et al. Cyclooxygenase-2 overexpression is a marker of poor prognosis in stage I non-small cell lung cancer. Clin Cancer Res 2001; 7: 861–867.

    PubMed  CAS  Google Scholar 

  102. Howe LR, Subbaramaiah K, Brown AM, et al. Cyclooxygenase-2: a target for the prevention and treatment of breast cancer. Endocr Relat Cancer 2001; 8: 97–114.

    Article  PubMed  CAS  Google Scholar 

  103. Subbaramaiah K, Norton L, Gerald W, et al. Increased expression of cyclooxygenase-2 in HER-2overexpressing human breast cancer cells. NCI 7th SPORE Investigators’ Workshop 1999.

    Google Scholar 

  104. Dickson RB, Lippman ME. Pathogenesis of Breast Cancer. In: Harris JR, Lippman ME, Morrow M, Osborne CK, eds. Diseases of the Breast. Lippincott Williams & Wilkins, Philadelphia, PA, 2000, pp. 281–302.

    Google Scholar 

  105. Pauletti G, Godolphin W, Press MF, et al. Detection and quantitation of HER-2/neu gene amplification in human breast cancer archival material using fluorescence in situ hybridization. Oncogene 1996; 13: 63–72.

    PubMed  CAS  Google Scholar 

  106. Clark GM, Osborne CK, McGuire WL. Correlations between estrogen receptor, progesterone receptor, and patient characteristics in human breast cancer. J Clin Oncology 1984; 2: 1102–1109.

    CAS  Google Scholar 

  107. Osborne CK. Steroid hormone receptors in breast cancer management. Breast Cancer Res Treat 1998; 51: 227–238.

    Article  PubMed  CAS  Google Scholar 

  108. Brueggemeier RW, Quinn AL, Parrett ML, et al. Correlation of aromatase and cyclooxygenase gene expression in human breast cancer specimens. Cancer Lett 1999; 140: 27–35.

    Article  PubMed  CAS  Google Scholar 

  109. Jackson AL, Loeb LA. The contribution of endogenous sources of DNA damage to the multiple mutations in cancer. Mutat Res 2001; 477: 7–21.

    Article  PubMed  CAS  Google Scholar 

  110. Eling TE, Curtis JF. Xenobiotic metabolism by prostaglandin H synthase. Pharmacol Ther 1992; 53: 261–273.

    Article  PubMed  CAS  Google Scholar 

  111. Eling TE, Thompson DC, Foureman GL, et al. Prostaglandin H synthase and xenobiotic oxidation. Annu Rev Pharmacol Toxicol 1990; 30: 1–45.

    Article  PubMed  CAS  Google Scholar 

  112. Josephy PD. Activation of aromatic amines by prostaglandin H synthase. Free Radic Biol Med 1989; 6: 533–540.

    Article  PubMed  CAS  Google Scholar 

  113. Watson AJ. Chemopreventive effects of NSAIDs against colorectal cancer: regulation of apoptosis and mitosis by COX-1 and COX-2. Histol Histopathol 1998; 13: 591–597.

    PubMed  CAS  Google Scholar 

  114. Liu CH, Chang SH, Narko K, et al. Overexpression of cyclooxygenase-2 is sufficient to induce tumori-genesis in transgenic mice. JBiol Chem 2001; 276:18, 563–18, 569.

    Article  CAS  Google Scholar 

  115. Tsujii M, DuBois RN. Alterations in cellular adhesion and apoptosis in epithelial cells overexpressing prostaglandin endoperoxide synthase 2. Cell 1995; 83: 493–501.

    Article  PubMed  CAS  Google Scholar 

  116. Zhang L, Yu J, Park BH, et al. Role of BAX in the apoptotic response to anticancer agents. Science 2000; 290: 989–992.

    Article  PubMed  CAS  Google Scholar 

  117. Palayoor ST, Youmell MY, Calderwood SK, et al. Constitutive activation of kkappaB kinase alpha and NF-kappaB in prostate cancer cells is inhibited by ibuprofen. Oncogene 1999; 18: 7389–7394.

    Article  PubMed  CAS  Google Scholar 

  118. Li M, Lotan R, Levin B, et al. Aspirin induction of apoptosis in esophageal cancer: a potential for chemoprevention. Cancer Epidemiol Biomarkers Prey 2000; 9: 545–549.

    CAS  Google Scholar 

  119. Hsueh CT, Chiu CF, Kelsen DP, et al. Selective inhibition of cyclooxygenase-2 enhances mitomycinC-induced apoptosis. Cancer Chemother Pharmacol 2000; 45: 389–396.

    Article  PubMed  CAS  Google Scholar 

  120. Grossman EM, Longo WE, Panesar N, et al. The role of cyclooxygenase enzymes in the growth of human gall bladder cancer cells. Carcino genesis 2000; 21: 1403–1409.

    Article  CAS  Google Scholar 

  121. Petersen C, Petersen S, Milas L, et al. Enhancement of intrinsic tumor cell radiosensitivity induced by a selective cyclooxygenase-2 inhibitor. Clin Cancer Res 2000; 6: 2513–2520.

    PubMed  CAS  Google Scholar 

  122. Nishimura G, Yanoma S, Mizuno H, et al. A selective cyclooxygenase-2 inhibitor suppresses tumor growth in nude mouse xenografted with human head and neck squamous carcinoma cells. Jpn J Cancer Res 1999; 90: 1152–1162.

    Article  PubMed  CAS  Google Scholar 

  123. Zhang G, Tu C, Zhou G, et al. Indomethacin induces apoptosis and inhibits proliferation in chronic myeloid leukemia cells. Leuk Res 2000; 24: 385–392.

    Article  PubMed  CAS  Google Scholar 

  124. Castonguay A, Rioux N, Duperron C, et al. Inhibition of lung tumorigenesis by NSAIDS: a working hypothesis. Exp Lung Res 1998; 24: 605–615.

    Article  PubMed  CAS  Google Scholar 

  125. Castonguay A, Rioux N. Inhibition of lung tumourigenesis by sulindac: comparison of two experimental protocols. Carcinogenesis 1997; 18: 491–496.

    Article  PubMed  CAS  Google Scholar 

  126. Hida T, Kozaki K, Muramatsu H, et al. Cyclooxygenase-2 inhibitor induces apoptosis and enhances cytotoxicity of various anticancer agents in non-small cell lung cancer cell lines. Clin Cancer Res 2000; 6: 2006–2011.

    PubMed  CAS  Google Scholar 

  127. Yao R, Rioux N, Castonguay A, et al. Inhibition of COX-2 and induction of apoptosis: two determinants of nonsteroidal anti-inflammatory drugs’ chemopreventive efficacies in mouse lung tumorigenesis. Exp Lung Res 2000; 26: 731–742.

    Article  PubMed  Google Scholar 

  128. Liu XH, Yao S, Kirschenbaum A, et al. NS398, a selective cyclooxygenase-2 inhibitor, induces apoptosis and down-regulates bc1–2 expression in Lncap cells. Cancer Res 1998; 58: 4245–4249.

    PubMed  CAS  Google Scholar 

  129. Gupta S, Srivastava M, Ahmad N, et al. Over-expression of cyclooxygenase-2 in human prostate adenocarcinoma. Prostate 2000; 42: 73–78.

    Article  PubMed  CAS  Google Scholar 

  130. Waddell WR. Stimulation of apoptosis by sulindac and piroxicam. Clin Sci (Colch)1998; 95:385–388.

    Google Scholar 

  131. Riedel F, Gotte K, Schwalb J, et al. [Coexpression of VEGF and bFGF is associated with increased vascular density in head and neck carcinomas]. Laryngorhinootologie 2000; 79: 730–775.

    Article  PubMed  CAS  Google Scholar 

  132. Tsujii M, Kawano S, Tsuji S, et al. Cyclooxygenase regulates angiogenesis induced by colon cancer cells. Cell 1998; 93: 705–716.

    Article  PubMed  CAS  Google Scholar 

  133. Majima M, Isono M, Ikeda Y, et al. Significant roles of inducible cyclooxygenase (COX)-2 in angiogenesis in rat sponge implants. Jpn JPharmacol 1997; 75: 105–114.

    Article  CAS  Google Scholar 

  134. Seed MP, Brown JR, Freemantle CN, et al. The inhibition of colon-26 adenocarcinoma development and angiogenesis by topical diclofenac in 2.5% hyaluronan. Cancer Res 1997; 57: 1625–1629.

    PubMed  CAS  Google Scholar 

  135. Williams CS, Tsujii M, Reese J, et al. Host cyclooxygenase-2 modulates carcinoma growth. J Clin Invest 2000; 105: 1589–1594.

    Article  PubMed  CAS  Google Scholar 

  136. Masferrer JL, Leahy KM, Koki AT, et al. Antiangiogenic and antitumor activities of cyclooxygenase-2 inhibitors. Cancer Res 2000; 60: 1306–1311.

    PubMed  CAS  Google Scholar 

  137. Rozic JG, Chakraborty C, Lala PK. Cyclooxygenase inhibitors retard murine mammary tumor progression by reducing tumor cell migration, invasiveness and angiogenesis. Int J Cancer 2001; 93: 497–506.

    Article  PubMed  CAS  Google Scholar 

  138. Balch CM, Dougherty PA, Cloud GA, et al. Prostaglandin E2-mediated suppression of cellular immunity in colon cancer patients. Surgery 1984; 95: 71–77.

    PubMed  CAS  Google Scholar 

  139. Weitzman SA, Gordon LI. Inflammation and cancer: role of phagocyte-generated oxidants in carcinogenesis. Blood 1990; 76: 655–663.

    PubMed  CAS  Google Scholar 

  140. Plescia OJ, Smith AH, Grinwich K. Subversion of immune system by tumor cells and role of prostaglandins. Proc Natl Acad Sci USA 1975; 72: 1848–1851.

    Article  PubMed  CAS  Google Scholar 

  141. Kambayashi T, Alexander HR, Fong M, et al. Potential involvement of IL-10 in suppressing tumor-associated macrophages. Colon-26-derived prostaglandin E2 inhibits TNF-alpha release via a mechanism involving IL-10. J Immunol 1995; 154: 3383–3390.

    PubMed  CAS  Google Scholar 

  142. Stolina M, Sharma S, Lin Y, et al. Specific inhibition of cyclooxygenase 2 restores antitumor reactivity by altering the balance of IL-10 and IL-12 synthesis. J Immunol 2000; 164: 361–370.

    PubMed  CAS  Google Scholar 

  143. Tsujii M, Kawano S, DuBois RN. Cyclooxygenase-2 expression in human colon cancer cells increases metastatic potential. Proc Nall Acad Sci USA 1997; 94: 3336–3340.

    Article  CAS  Google Scholar 

  144. Lee TL, Leung WK, Lau JY, et al. Inverse association between cyclooxygenase-2 overexpression and microsatellite instability in gastric cancer. Cancer Lett 2001; 168: 133–140.

    Article  PubMed  CAS  Google Scholar 

  145. Jiang MC, Liao CF, Lee PH. Aspirin inhibits matrix metalloproteinase-2 activity, increases E-cadherin production, and inhibits in vitro invasion of tumor cells. Biochem Biophys Res Commun 2001; 282: 67 1677.

    Google Scholar 

  146. Tomozawa S, Nagawa H, Tsuno N, et al. Inhibition of haematogenous metastasis of colon cancer in mice by a selective COX-2 inhibitor, JTE-522. Br J Cancer 1999; 81: 1274–1279.

    Article  PubMed  CAS  Google Scholar 

  147. Gupta RA, DubBois RN. Colorectal cancer preventioand treatment by inhibition of cyclooxygenase-2. Nat Rev 2001; 1: 11–21.

    CAS  Google Scholar 

  148. DuBois RN, Giardiello FM, Smalley WE. Nonsteroidal anti-inflammatory drugs, eicosanoids, and colorectal cancer prevention. Gastroenterol Clin North Am 1996; 25: 773–791.

    CAS  Google Scholar 

  149. Ding XZ, Tong WG, Adrian TE. Blockade of cyclooxygenase-2 inhibits proliferation and induces apoptosis in human pancreatic cancer cells. Anticancer Res 2000; 20: 2625–2631.

    PubMed  CAS  Google Scholar 

  150. Attiga FA, Fernandez PM, Weeraratna AT, et al. Inhibitors of prostaglandin synthesis inhibit human prostate tumor cell invasiveness and reduce the release of matrix metalloproteinases. Cancer Res 2000; 60: 4629–4637.

    PubMed  CAS  Google Scholar 

  151. Soriano AF, Helfrich B, Chan DC, et al. Synergistic effects of new chemopreventive agents and conventional cytotoxic agents against human lung cancer cell lines. Cancer Res 1999; 59: 6178–6184.

    PubMed  CAS  Google Scholar 

  152. Mann M, Sheng H, Shao J, et al. Targeting cyclooxygenase 2 and Her-2/neu pathways inhibits colorectal carcinoma growth. Gastroenterology 2001; 120: 1713–1719.

    Article  PubMed  CAS  Google Scholar 

  153. Yip-Schneider MT, Sweeney CJ, Jung SH, et al. Cell cycle effects of nonsteroidal anti-inflammatory drugs and enhanced growth inhibition in combination with gemcitabine in pancreatic carcinoma cells. J Pharmacol Exp Ther 2001; 298: 976–985.

    PubMed  CAS  Google Scholar 

  154. Roller A, Bahr OR, Streffer J, et al. Selective potentiation of drug cytotoxicity by NSAID in human glioma cells: the role of COX-1 and MRP. Biochem Biophys Res Commun 1999; 259: 600–605.

    Article  PubMed  CAS  Google Scholar 

  155. Milas L, Kishi K, Hunter N, et al. Enhancement of tumor response to gamma-radiation by an inhibitor of cyclooxygenase-2 enzyme. J Natl Cancer Inst 1999; 91: 1501–1504.

    Article  PubMed  CAS  Google Scholar 

  156. Palayoor ST, Bump EA, Calderwood SK, et al. Combined antitumor effect of radiation and ibuprofen in human prostate carcinoma cells. Clin Cancer Res 1998; 4: 763–771.

    PubMed  CAS  Google Scholar 

  157. Duffy CP, Elliott CJ, O’Connor RA, et al. Enhancement of chemotherapeutic drug toxicity to human tumour cells in vitro by a subset of non-steroidal anti-inflammatory drugs (Nsaids). Eur J Cancer 1998; 34: 1250–1259.

    Article  PubMed  CAS  Google Scholar 

  158. Williams CS, Watson AJ, Sheng H, et al. Celecoxib prevents tumor growth in vivo without toxicity to normal gut: lack of correlation between in vitro and in vivo models. Cancer Res 2000; 60: 60456051.

    Google Scholar 

  159. Goldman AP, Williams CS, Sheng H, et al. Meloxicam inhibits the growth of colorectal cancer cells. Carcinogenesis 1998; 19: 2195–2199.

    Article  PubMed  CAS  Google Scholar 

  160. Sheng H, Shao J, Kirkland SC, et al. Inhibition of human colon cancer cell growth by selective inhibition of cyclooxygenase-2. J Clin Invest 1997; 99: 2254–2259.

    Article  PubMed  CAS  Google Scholar 

  161. Pollard M, Luckert PH. The beneficial effects of diphosphonate and piroxicam on the osteolytic and metastatic spread of rat prostate carcinoma cells. Prostate 1986; 8: 81–86.

    Article  PubMed  CAS  Google Scholar 

  162. Sato M, Narisawa T, Sano M, et al. Growth inhibition of transplantable murine colon adenocarcinoma 38 by indomethacin. J Cancer Res Clin Oncol 1983; 106: 21–26.

    Article  PubMed  CAS  Google Scholar 

  163. Wechter WJ, Leipold DD, Murray ED Jr, et al. E-7869 (R-flurbiprofen) inhibits progression of prostate cancer in the TRAMP mouse. Cancer Res 2000; 60: 2203–2208.

    PubMed  CAS  Google Scholar 

  164. Alshafie GA, Abou-Issa HM, Seibert K, et al. Chemotherapeutic evaluation of Celecoxib, a cyclooxygenase-2 inhibitor, in a rat mammary tumor model. Oncol Rep 2000; 7: 1377–1381.

    PubMed  CAS  Google Scholar 

  165. Fukutake M, Nakatsugi S, Isoi T, et al. Suppressive effects of nimesulide, a selective inhibitor of cyclooxygenase-2, on azoxymethane-induced colon carcinogenesis in mice. Carcinogenesis 1998; 19: 1939 1942.

    Google Scholar 

  166. Grubbs CJ, Lubet RA, Koki AT, et al. Celecoxib inhibits N-butyl-N-(4-hydroxybutyl)-nitrosamineinduced urinary bladder cancers in male B6D2F1 mice and female Fischer-344 rats. Cancer Res 2000; 60: 5599–5602.

    PubMed  CAS  Google Scholar 

  167. Pollard M, Luckert PH, Schmidt MA. The suppressive effect of piroxicam on autochthonous intestinal tumors in the rat. Cancer Lett 1983; 21: 57–61.

    Article  PubMed  CAS  Google Scholar 

  168. Pollard M, Luckert PH. Prolonged antitumor effect of indomethacin on autochthonous intestinal tumors in rats. J Natl Cancer Inst 1983; 70: 1103–1105.

    PubMed  CAS  Google Scholar 

  169. Pollard M, Luckert PH. Effect of piroxicam on primary intestinal tumors induced in rats by N- methylnitrosourea. Cancer Lett 1984; 25: 117–121.

    Article  PubMed  CAS  Google Scholar 

  170. Narisawa T, Hermanek P, Habs M, et al. Reduction of acetoxymethyl-methylnitrosamine-induced large bowel cancer in rats by indomethacin. Tohoku J Exp Med 1984; 144: 237–243.

    Article  PubMed  CAS  Google Scholar 

  171. Knapp DW, Glickman NW, Widmer WR, et al. Cisplatin versus cisplatin combined with piroxicam in a canine model of human invasive urinary bladder cancer. Cancer Chemother Pharmacol 2000; 46: 221–226.

    Article  PubMed  CAS  Google Scholar 

  172. Kawamori T, Rao CV, Seibert K, et al. Chemopreventive activity of celecoxib, a specific cyclooxygenase-2 inhibitor, against colon carcinogenesis. Cancer Res 1998; 58: 409–412.

    PubMed  CAS  Google Scholar 

  173. Pentland AP, Schoggins JW, Scott GA, et al. Reduction of UV-induced skin tumors in hairless mice by selective COX-2 inhibition. Carcinogenesis 1999; 20: 1939–1944.

    Article  PubMed  CAS  Google Scholar 

  174. Rioux N, Castonguay A. Prevention of NNK-induced lung tumorigenesis in A/J mice by acetylsalicylic acid and NS-398. Cancer Res 1998; 58: 5354–5360.

    PubMed  CAS  Google Scholar 

  175. Torrance CJ, Jackson PE, Montgomery E, et al. Combinatorial chemoprevention of intestinal neoplasia. Nat Med 2000; 6: 1024–1028.

    Article  PubMed  CAS  Google Scholar 

  176. Mason KA, Komaki R, Cox JD, et al. Biology-based combined-modality radiotherapy: workshop report. Int J Radiat Oncol Biol Phys 2001; 50: 1079–1089.

    Article  PubMed  CAS  Google Scholar 

  177. Pyo H, Choy H, Amorino GP, et al. A selective cyclooxygenase-2 inhibitor, ns-398, enhances the effect of radiation in vitro and in vivo preferentially on the cells that express cyclooxygenase-2. Clin Cancer Res 2001; 7: 2998–3005.

    PubMed  CAS  Google Scholar 

  178. Shimizu C, Kubo M, Takano K, et al. Interleukin-6 (IL-6) producing phaeochromocytoma: direct IL-6 suppression by non-steroidal anti-inflammatory drugs. Clin Endocrinol (Oxf) 2001; 54: 405–410.

    Article  CAS  Google Scholar 

  179. Yoshinaga K, Teramura M, Iwabe K, et al. Anti-lymphoma effect of naproxen and indomethacin in a patient with relapsed diffuse large B-cell lymphoma. Am J Hematol 2001; 66: 220–223.

    Article  PubMed  CAS  Google Scholar 

  180. Kobayashi S, Okada S, Hasumi T, et al. The marked anticancer effect of combined VCR, MTX, and indomethacin against drug-resistant recurrent small cell lung carcinoma after conventional chemotherapy: report of a case. Surg Today 1999; 29: 666–669.

    Article  PubMed  CAS  Google Scholar 

  181. Smith KJ, Germain M, Skelton H. Bowen’s disease (squamous cell carcinoma in situ) in immunosuppressed patients treated with imiquimod 5% cream and a cox inhibitor, sulindac: potential applications for this combination of immunotherapy. Dermatol Surg 2001; 27: 143–146.

    Article  PubMed  CAS  Google Scholar 

  182. Sinicrope FA, Pazdur R, Levin B. Phase I trial of sulindac plus 5-fluorouracil and levamisole: potential adjuvant therapy for colon carcinoma. Clin Cancer Res 1996; 2: 37–41.

    PubMed  CAS  Google Scholar 

  183. Hawk ET, Viner JL, Anderson WF. Development of cyclooxygenase inhibitors as cancer chemopreventives. American Society of Clinical Oncology 2001 Educational Book. Alexandria, VA: American Society of Clinical Oncology, 2001: 28–37.

    Google Scholar 

  184. Tartaglia AP, Goldberg JD, Berk PD, et al. Adverse effects of antiaggregating platelet therapy in the treatment of polycythemia vera. Semin Hematol 1986; 23: 172–176.

    PubMed  CAS  Google Scholar 

  185. Gilbert HS, Hanna MM. Low dose aspirin protects against thrombosis in myeloproliferative disorders without producing major complications. Clin Res 1986; 34 (abstract): 657A.

    Google Scholar 

  186. Creagan ET, Buckner JC, Hahn RG, et al. An evaluation of recombinant leukocyte A interferon with aspirin in patients with metastatic renal cell cancer. Cancer 1988; 61: 1787–1791.

    Article  PubMed  CAS  Google Scholar 

  187. Creagan ET, Twito DI, Johansson SL, et al. A randomized prospective assessment of recombinant leukocyte A human interferon with or without aspirin in advanced renal adenocarcinoma. J Clin Oncol 1991; 9: 2104–2109.

    PubMed  CAS  Google Scholar 

  188. Whitehead RP, Friedman KD, Clark DA. A phase I trial of sc interleukin 1 alpha. ProcAmAssoc Cancer Res 1993; 34 (abstract).

    Google Scholar 

  189. McKnight J, Clark J, Miller R, et al. Randomized trial of recombinant interferon alpha (RIF) with or without indomethacin (IND) in patients (PTS) with metastatic melanoma. Proc Am Soc Clin Oncol 1987; 6 (abstract): 250.

    Google Scholar 

  190. Rubinger D, Djabarah R, Hite Y, et al. Indomethacin (IND) attenuates renal toxicity and adverse metabolic effects of systemic interleukin2 (IL2) administration in patients with metastatic cancer. Proc Am Soc Nephrol 1994; 5 (abstract):403 (74P).

    Google Scholar 

  191. Sosman JA, Kohler PC, Hank JA, et al. Repetitive weekly cycles of interleukin-2. H. Clinical and immunologic effects of dose, schedule, and addition of indomethacin. JNatl Cancerinst 1988; 80: 1451–1461.

    Article  CAS  Google Scholar 

  192. Braun DP, Bonomi PD, Taylor SGt, et al. Modification of the effects of cytotoxic chemotherapy on the immune responses of cancer patients with a nonsteroidal, antiinflammatory drug, piroxicam. A pilot study of the Eastern Cooperative Oncology Group. J Biol Response Mod 1987; 6: 331–345.

    PubMed  CAS  Google Scholar 

  193. Jenkins CA, Bruera E. Nonsteroidal anti-inflammatory drugs as adjuvant analgesics in cancer patients. Palliat Med 1999; 13: 183–196.

    Article  PubMed  CAS  Google Scholar 

  194. Mercadante S, Casuccio A, Agnello A, et al. Analgesic effects of nonsteroidal anti-inflammatory drugs in cancer pain due to somatic or visceral mechanisms. J Pain Symptom Manage 1999; 17: 351–356.

    Article  PubMed  CAS  Google Scholar 

  195. Mercadante S. The use of anti-inflammatory drugs in cancer pain. Cancer Treat Rev 2001; 27: 51–61.

    Article  PubMed  CAS  Google Scholar 

  196. Bjorkman DJ. The effect of aspirin and nonsteroidal anti-inflammatory drugs on prostaglandins. Am J Med 1998; 105: 8S - 12S.

    Article  PubMed  CAS  Google Scholar 

  197. Reuben SS, Connelly NR. Postoperative analgesic effects of celecoxib or rofecoxib after spinal fusion surgery. Anesth Analg 2000; 91: 1221–1225.

    PubMed  CAS  Google Scholar 

  198. Yalcin S, Altundag K, Asil M, et al. Sublingual piroxicam for cancer pain. Med Oncol 1998; 15: 137–139.

    Article  PubMed  CAS  Google Scholar 

  199. Lundholm K, Gelin J, Hyltander A, et al. Anti-inflammatory treatment may prolong survival in undernourished patients with metastatic solid tumors. Cancer Res 1994; 54: 5602–5606.

    PubMed  CAS  Google Scholar 

  200. Singh G, Triadafilopoulos G. Epidemiology of NSAID induced gastrointestinal complications. J Rheumatol 1999; 26(Suppl)56:18–24.

    Google Scholar 

  201. Wolfe MM, Lichtenstein DR, Singh G. Gastrointestinal toxicity of nonsteroidal antiinflammatory drugs [published erratum appears in NEngl JMed 1999 Aug 12; 341(7):5481. NEngl JMed 1999; 340: 1888–1899.

    Article  CAS  Google Scholar 

  202. Whelton A. Nephrotoxicity of nonsteroidal anti-inflammatory drugs: physiologic foundations and clinical implications. Am JMed 1999; 106: 13S - 24S.

    CAS  Google Scholar 

  203. Pope JE, Anderson JJ, Felson DT. A meta-analysis of the effects of nonsteroidal anti-inflammatory drugs on blood pressure. Arch Intern Med 1993; 153: 477–484.

    Article  PubMed  CAS  Google Scholar 

  204. Johnson AG, Nguyen TV, Day RO. Do nonsteroidal anti-inflammatory drugs affect blood pressure? A meta-analysis. Ann Intern Med 1994; 121: 289–300.

    PubMed  CAS  Google Scholar 

  205. Schafer AI. Effects of nonsteroidal anti-inflammatory therapy on platelets. Am JMed 1999; 106: 255–36S.

    Google Scholar 

  206. Babu KS, Salvi SS. Aspirin and asthma. Chest 2000; 118: 1470–1476.

    Article  PubMed  CAS  Google Scholar 

  207. Israel E, Fischer AR, Rosenberg MA, et al. The pivotal role of 5-lipoxygenase products in the reaction of aspirin-sensitive asthmatics to aspirin. Am Rev Respir Dis 1993; 148: 1447–1451.

    Article  PubMed  CAS  Google Scholar 

  208. Lanas AI. Current approaches to reducing gastrointestinal toxicity of low-dose aspirin. Am J Med 2001; 110: 70S - 73S.

    Article  PubMed  CAS  Google Scholar 

  209. Hawkey CJ, Lanas AI. Doubt and certainty about nonsteroidal anti-inflammatory drugs in the year 2000: a multidisciplinary expert statement. Am J Med 2001; 110: S79–5100.

    Article  Google Scholar 

  210. Chan FK, Sung JJ, Chung SC, et al. Randomised trial of eradication of Helicobacter pylori before non-steroidal anti-inflammatory drug therapy to prevent peptic ulcers. Lancet 1997; 350: 975–979.

    Article  PubMed  CAS  Google Scholar 

  211. Agrawal NM, Roth S, Graham DY, et al. Misoprostol compared with sucralfate in the prevention of nonsteroidal anti-inflammatory drug-induced gastric ulcer. A randomized, controlled trial. Ann Intern Med 1991; 115: 195–200.

    PubMed  CAS  Google Scholar 

  212. Rostom A, Wells G, Tugwell P, et al. The prevention of chronic NSAID induced upper gastrointestinal toxicity: a Cochrane collaboration metaanalysis of randomized controlled trials. J Rheumatol 2000; 27: 2203–2214.

    PubMed  CAS  Google Scholar 

  213. Hudson N, Taha AS, Russell RI, et al. Famotidine for healing and maintenance in nonsteroidal anti-inflammatory drug-associated gastroduodenal ulceration. Gastroenterology 1997; 112: 1817–1822.

    Article  PubMed  CAS  Google Scholar 

  214. Taha AS, Hudson N, Hawkey CJ, et al. Famotidine for the prevention of gastric and duodenal ulcers caused by nonsteroidal antiinflammatory drugs. N Engl J Med 1996; 334: 1435–1439.

    Article  PubMed  CAS  Google Scholar 

  215. Silverstein FE, Graham DY, Senior JR, et al. Misoprostol reduces serious gastrointestinal complications in patients with rheumatoid arthritis receiving nonsteroidal anti-inflammatory drugs. A randomized, double-blind, placebo-controlled trial. Ann Intern Med 1995; 123: 241–249.

    PubMed  CAS  Google Scholar 

  216. Raskin JB, White RH, Jackson JE, et al. Misoprostol dosage in the prevention of nonsteroidal anti-inflammatory drug-induced gastric and duodenal ulcers: a comparison of three regimens. Ann Intern Med 1995; 123: 344–350.

    PubMed  CAS  Google Scholar 

  217. Panara MR, Renda G, Sciulli MG, et al. Dose-dependent inhibition of platelet cyclooxygenase-1 and monocyte cyclooxygenase-2 by meloxicam in healthy subjects. JPharmacol Exp Ther 1999; 290: 276280.

    Google Scholar 

  218. de Meijer A, Vollaard H, de Metz M, et al. Meloxicam, 15 mg/day, spares platelet function in healthy volunteers. Clin Pharmacol Ther 1999; 66: 425–430.

    Article  PubMed  Google Scholar 

  219. Leese PT, Hubbard RC, Karim A, et al. Effects of celecoxib, a novel cyclooxygenase-2 inhibitor, on platelet function in healthy adults: a randomized, controlled trial. J Clin Pharmacol 2000; 40: 124–132.

    Article  PubMed  CAS  Google Scholar 

  220. Weaver AL. Rofecoxib: clinical pharmacology and clinical experience. Clin Ther 2001; 23: 1323–1338.

    Article  PubMed  CAS  Google Scholar 

  221. Bombardier C, Laine L, Reicin A, et al. Comparison of upper gastrointestinal toxicity of rofecoxib and naproxen in patients with rheumatoid arthritis. Vigor Study Group. N Engl J Med 2000; 343:15201528, 2 p following 1528.

    Google Scholar 

  222. Silverstein FE, Faich G, Goldstein JL, et al. Gastrointestinal toxicity with celecoxib vs nonsteroidal anti-inflammatory drugs for osteoarthritis and rheumatoid arthritis: the CLASS study: a randomized controlled trial. Celecoxib Long-term Arthritis Safety Study Jama 2000; 284: 1247–1255.

    CAS  Google Scholar 

  223. Whelton A, Fort JG, Puma JA, et al. Cyclooxygenase-2-specific inhibitors and cardiorenal function: a randomized, controlled trial of celecoxib and rofecoxib in older hypertensive osteoarthritis patients. Am J Ther 2001; 8: 85–95.

    Article  PubMed  CAS  Google Scholar 

  224. FitzGerald GA, Austin S, Egan K, et al. Cyclo-oxygenase products and atherothrombosis. Ann Med 2000; 32(Suppl)1:21–26.

    Google Scholar 

  225. Belton O, Byrne D, Kearney D, et al. Cyclooxygenase-1 and -2-dependent prostacyclin formation in patients with atherosclerosis. Circulation 2000; 102: 840–845.

    Article  PubMed  CAS  Google Scholar 

  226. Sanmuganathan PS, Ghahramani P, Jackson PR, et al. Aspirin for primary prevention of coronary heart disease: safety and absolute benefit related to coronary risk derived from meta-analysis of randomised trials. Heart 2001; 85: 265–271.

    Article  PubMed  CAS  Google Scholar 

  227. Mukherjee D, Nissen SE, Topol EJ. Risk of cardiovascular events associated with selective COX-2 inhibitors. Jama 2001; 286: 954–959.

    Article  PubMed  CAS  Google Scholar 

  228. Wolfe MM. Future trends in the development of safer nonsteroidal anti-inflammatory drugs. Am JMed 1998; 105: 44S - 52S.

    CAS  Google Scholar 

  229. Wechter WJ, Murray ED Jr, Kantoci D, et al. Treatment and survival study in the C57BL/6J-APC(Min)/ +(Min) mouse with R-flurbiprofen. Life Sci 2000; 66: 745–753.

    Article  PubMed  CAS  Google Scholar 

  230. Wechter WJ, Kantoci D, Murray ED Jr, et al. R-flurbiprofen chemoprevention and treatment of intestinal adenomas in the APC(Min)/+ mouse model: implications for prophylaxis and treatment of colon cancer. Cancer Res 1997; 57: 4316–4324.

    PubMed  CAS  Google Scholar 

  231. Ochiai M, Oguri T, Isobe T, et al. Cyclooxygenase-2 (COX-2) mRNA expression levels in normal lung tissues and non-small cell lung cancers. Jpn J Cancer Res 1999; 90: 1338–1343.

    Article  PubMed  CAS  Google Scholar 

  232. Watkins DN, Lenzo JC, Segal A, et al. Expression and localization of cyclooxygenase isoforms in non-small cell lung cancer. Eur Respir J 1999; 14: 412–418.

    Article  PubMed  CAS  Google Scholar 

  233. Subbarayan V, Sabichi AL, Llansa N, et al. Differential expression of cyclooxygenase-2 and its regulation by tumor necrosis factor-alpha in normal and malignant prostate cells. Cancer Res 2001; 61: 2720–2726.

    PubMed  CAS  Google Scholar 

  234. Kirschenbaum A, Klausner AP, Lee R, et al. Expression of cyclooxygenase-1 and cyclooxygenase-2 in the human prostate. Urology 2000; 56: 671–676.

    Article  PubMed  CAS  Google Scholar 

  235. Denkert C, Kobel M, Berger S, et al. Expression of cyclooxygenase 2 in human malignant melanoma. Cancer Res 2001; 61: 303–308.

    PubMed  CAS  Google Scholar 

  236. Jacoby RF, Seibert K, Cole CE, et al. The cyclooxygenase-2 inhibitor celecoxib is a potent preventive and therapeutic agent in the min mouse model of adenomatous polyposis. Cancer Res 2000; 60: 50405044.

    Google Scholar 

  237. Boolbol SK, Dannenberg Ai, Chadburn A, et al. Cyclooxygenase-2 overexpression and tumor formation are blocked by sulindac in a murine model of familial adenomatous polyposis. Cancer Res 1996; 56: 2556–2560.

    PubMed  CAS  Google Scholar 

  238. Okajima E, Denda A, Ozono S, et al. Chemopreventive effects of nimesulide, a selective cyclooxygenase-2 inhibitor, on the development of rat urinary bladder carcinomas initiated by N-butyl-N-(4-hydroxybutyl)nitrosamine Cancer Res 1998; 58: 3028–3031.

    PubMed  CAS  Google Scholar 

  239. Harris RE, Alshafie GA, Abou-Issa H, et al. Chemoprevention of breast cancer in rats by celecoxib, a cyclooxygenase 2 inhibitor. Cancer Res 2000; 60: 2101–2103.

    PubMed  CAS  Google Scholar 

  240. Robertson FM, Parrett ML, Joarder FS, et al. Ibuprofen-induced inhibition of cyclooxygenase isoform gene expression and regression of rat mammary carcinomas. Cancer Len 1998; 122: 165–175.

    Article  CAS  Google Scholar 

  241. Yoshimi N, Shimizu M, Matsunaga K, et al. Chemopreventive effect of N-(2-cyclohexyloxy-4-nitrophenyl)methane sulfonamide (NS-398), a selective cyclooxygenase-2 inhibitor, in rat colon carcinogenesis induced by azoxymethane. Jpn J Cancer Res 1999; 90: 406–412.

    Article  PubMed  CAS  Google Scholar 

  242. Reddy BS, Rao CV, Rivenson A, et al. Inhibitory effect of aspirin on azoxymethane-induced colon carcinogenesis in F344 rats. Carcinogenesis 1993; 14: 1493–1497.

    Article  PubMed  CAS  Google Scholar 

  243. Craven PA, DeRubertis FR. Effects of aspirin on 1,2-dimethylhydrazine-induced colonic carcinogenesis. Carcinogenesis 1992; 13: 541–546.

    Article  PubMed  CAS  Google Scholar 

  244. Skinner SA, Penney AG, O’Brien PE. Sulindac inhibits the rate of growth and appearance of colon tumors in the rat. Arch Surg 1991; 126: 1094–1096.

    Article  PubMed  CAS  Google Scholar 

  245. Moorghen M, Ince P, Finney KJ, et al. The effect of sulindac on colonic tumour formation in dimethylhydrazine-treated mice. Acta Histochem Suppl 1990; 39: 195–199.

    PubMed  CAS  Google Scholar 

  246. Moorghen M, Ince P, Finney KJ, et al. A protective effect of sulindac against chemically-induced primary colonic tumours in mice. J Pathol 1988; 156: 341–347.

    Article  PubMed  CAS  Google Scholar 

  247. Kudo T, Narisawa T, Abo S. Antitumor activity of indomethacin on methylazoxymethanol-induced large bowel tumors in rats. Gann 1980; 71: 260–264.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Anderson, W.F., Umar, A., Viner, J.L., Hawk, E.T. (2003). Potential Role of NSAIDs and COX-2 Blockade in Cancer Therapy. In: Harris, R.E. (eds) COX-2 Blockade in Cancer Prevention and Therapy. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-302-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-302-6_19

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-304-6

  • Online ISBN: 978-1-59259-302-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics