Skip to main content

Regulation of Expression and Potential Carcinogenic Role of Cyclooxygenase-2

  • Chapter
  • 129 Accesses

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Cyclooxygenase (COX, EC 1.14.99.1), also referred to as prostaglandin (PG) endoperoxide H synthase, is the rate-limiting enzyme in the PG biosynthetic pathway. COX catalyzes the oxidation of arachidonic acid (AA) into PGG2, and further reduction to PGH2 (1) PGH2 is then converted by specific isomerases (2–5) to the biologically active end products, PGD2, PGE2, PGF, PGI2 (prostacyclin), and other related eicosanoids. These prostanoids contribute to many normal physiological processes including inflammation, pain and fever, and various cancers (6–12).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Smith WL, DeWitt DL. Prostaglandin endoperoxide H synthases-1 and -2.AdvImmunol1996;62:167215.

    Google Scholar 

  2. Hara S, Miyata A, Yokoyama C, Inoue H, Brugger R, Lottspeich F, et al. Isolation and molecular cloning of prostacyclin synthase from bovine endothelial cells. JBiol Chem 1994; 269:19, 897–19, 903.

    Google Scholar 

  3. Kuwamoto S, Inoue H, Tone Y, Izumi Y, Tanabe T. Inverse gene expression of prostacyclin and thromboxane synthases in resident and activated peritoneal macrophages. FEBS Lett 1997; 409: 242–246.

    Article  PubMed  CAS  Google Scholar 

  4. Suzuki T, Watanabe K, Kanaoka Y, Sato T, Hayaishi O. Induction of hematopoietic prostaglandin D synthase in human megakaryocytic cells by phorbol ester. Biochem Biophys Res Commun 1997; 241: 288–293.

    Article  PubMed  CAS  Google Scholar 

  5. Jakobsson P, Thoren S, Morgenstern R, Samuelsson B. Identification of human prostaglandin E synthase: a microsomal, glutathione-dependent, inducible enzyme, constituting a potential novel drug target. Proc Natl Acad Sci USA 1999; 96: 7220–7225.

    CAS  Google Scholar 

  6. Riendeau D, Boyce SP, Brideau C, Charleson W, Cromlish W, et al. Biochemical and pharmacological profile of a tetrasubstituted furanone as a highly selective COX-2 inhibitor. Br Pharmacol 1997; 121: 105–117.

    Article  CAS  Google Scholar 

  7. Smith CJ, Zhang Y, Koboldt CM, Muhammad J, Zweifel BS, Shaffer A, et al. Pharmacological analysis of cyclooxygenase-1 in inflammation. Proc Natl Acad Sci USA 1998; 95:13, 313–13, 318.

    Google Scholar 

  8. Zhang Y, Shaffer A, Portanova J, Seibert K, Isakson PC. Inhibition of cyclooxygenase-2 rapidly reverses inflammatory hyperalgesia and prostaglandin E2 production. JPharmacol Exp Ther 1997; 283: 1069–1075.

    CAS  Google Scholar 

  9. Sheng H, Shao J, Kirkland SC, Isakson P, Coffey RJ, Morrow J, et al. Inhibition of human colon cancer cell growth by selective inhibition of cyclooxygenase-2. J Clin Invest 1997; 99: 2254–2259.

    Article  PubMed  CAS  Google Scholar 

  10. Levy GN. Prostaglandin H synthases, nonsteroidal anti-inflammatory drugs, and colon cancer. FASEB J 1997; 11: 234–247.

    PubMed  CAS  Google Scholar 

  11. Kutchera W, Jones DA, Matsunami N, Groden J, McIntyre TM, Zimmerman GA, et al. Prostaglandin H synthase 2 is expressed abnormally in human colon cancer: evidence for a transcriptional effect. Proc Natl Acad Sci USA 1996; 93: 4816–4820.

    Article  PubMed  CAS  Google Scholar 

  12. Hwang D, Scollard D, Byrne J, Levine E. Expression of cyclooxygenase-1 and cyclooxygenase-2 in human breast cancer. J Natl Cancer Inst 1998; 90: 455–460.

    Article  PubMed  CAS  Google Scholar 

  13. Hla T, Ristimaki A, Appleby S, Barriocanal JG. Cyclooxygenase gene expression in inflammation and angiogenesis. Ann NY Acad Sci 1993; 696: 197–204.

    Article  PubMed  CAS  Google Scholar 

  14. Herschman HR, Kujubu DA, Fletcher BS, Ma Q, Varnum BC, Gilbert RS, et al. The tis genes, primary response genes induced by growth factors and tumor promoters in 3T3 cells. Prog Nucleic Acid Res Mol Biol 1994; 47: 113–148.

    Article  PubMed  CAS  Google Scholar 

  15. Meade EA, McIntyre TM, Zimmerman GA, Prescott SM. Peroxisome proliferators enhance cyclooxygenase-2 expression in epithelial cells. J Biol Chem 1999; 274: 8328–8334.

    Article  PubMed  CAS  Google Scholar 

  16. Schror K. Aspirin and platelets: the antiplatelet action of aspirin and its role in thrombosis treatment and prophylaxis. Semin Thromb Hemost 1997; 23: 349–356.

    Article  PubMed  CAS  Google Scholar 

  17. Griswold DE, Adams JL. Constitutive cyclooxygenase (COX-1) and inducible cyclooxygenase (COX-2): rationale for selective inhibition and progress to date. Med Res Rev 1996; 16: 181–206.

    Article  PubMed  CAS  Google Scholar 

  18. Marnett LJ, Kalgutkar AS. Cyclooxygenase 2 inhibitors: discovery, selectivity and the future. Trends Pharmacol Sci 1999; 20: 465–469.

    Article  PubMed  CAS  Google Scholar 

  19. Rehman Q, Lane NE. Getting control of osteoarthritis pain. An update on treatment options. Postgrad Med 1999; 106: 127–134.

    PubMed  CAS  Google Scholar 

  20. McGeer PL, McGeer EG. Inflammation of the brain in Alzheimer’s disease: implications for therapy. J Leukoc Biol 1999; 65: 409–415.

    PubMed  CAS  Google Scholar 

  21. Prescott SM, Fitzpatrick FA. Cyclooxygenase-2 and carcinogenesis. Biochim BiophysActa 2000; 1470: M69 - M78.

    CAS  Google Scholar 

  22. Taketo MM. Cyclooxygenase-2 inhibitors in tumorigenesis (part I). JNatl Cancerinst 1998; 90: 1529–1536.

    Article  CAS  Google Scholar 

  23. Taketo MM. Cyclooxygenase-2 inhibitors in tumorigenesis (Part II). JNatl Cancerinst 1998; 90: 1609–1620.

    Article  CAS  Google Scholar 

  24. Thun MJ. NSAID use and decreased risk of gastrointestinal cancers. Gastroenterol Clin North Am 1996; 25: 333–348.

    Article  PubMed  CAS  Google Scholar 

  25. Williams CS, Mann M, DuBois RN. The role of cyclooxygenases in inflammation, cancer, and development. Oncogene 1999; 18: 7908–7916.

    Article  PubMed  CAS  Google Scholar 

  26. Tan WC, Privett OS, Goldyne ME. Studies of prostaglandins in rat mammary tumors induced by 7,12dimethylbenz(a)anthracene. Cancer Res 1974; 34: 3229–3231.

    PubMed  CAS  Google Scholar 

  27. Liu XH, Rose DP. Differential expression and regulation of cyclooxygenase-1 and -2 in two human breast cancer cell lines. Cancer Res 1996; 56: 5125–5127.

    PubMed  CAS  Google Scholar 

  28. Fletcher BS, Kujubu DA, Perrin DM, Herschman HR. Structure of the mitogen-inducible TIS 10 gene and demonstration that the TIS 10-encoded protein is a functional prostaglandin G/H synthase. J Biol Chem 1992; 267: 4338–4344.

    PubMed  CAS  Google Scholar 

  29. Appleby SB, Ristimaki A, Neilson K, Narko K, Hla T. Structure of the human cyclo-oxygenase-2 gene. Biochem J 1994; 302: 723–727.

    PubMed  CAS  Google Scholar 

  30. Kosaka T, Miyata A, Ihara H, Hara S, Sugimoto T, Takeda O, et al. Characterization of the human gene (PTGS2) encoding prostaglandin-endoperoxide synthase 2. Eur J Biochem 1994; 221: 889–897.

    Article  PubMed  CAS  Google Scholar 

  31. Sirois J, Richards JS. Transcriptional regulation of the rat prostaglandin endoperoxide synthase 2 gene in granulosa cells. Evidence for the role of a cis-acting C/EBP beta promoter element. JBiol Chem 1993; 268:21, 931–21, 938.

    Google Scholar 

  32. Inoue H, Nanayama T, Hara S, Yokoyama C, Tanabe T. The cyclic AMP response element plays an essential role in the expression of the human prostaglandin-endoperoxide synthase 2 gene in differentiated U937 monocytic cells. FEBS Lett 1994; 350: 51–54.

    Article  PubMed  CAS  Google Scholar 

  33. Morris JK. An E-box region within the prostaglandin endoperoxide synthase-2 (PGS-2) promoter is required for transcription in rat ovarian granulosa cells. J Biol Chem 1996; 271:16,633–16,643.

    Google Scholar 

  34. Xie W, Fletcher BS, Andersen RD, Herschman HR. v-src induction of the TIS 10/PGS2 prostaglandin synthase gene is mediated by an ATF/CRE transcription response element. Mol Cell Biol 1994; 14: 6531–6539.

    PubMed  CAS  Google Scholar 

  35. Thomas B, Berenbaum F, Humbert L, Bian H, Bereziat G, Crofford L, et al. Critical role of C/EBPdelta and C/EBPbeta factors in the stimulation of the cyclooxygenase-2 gene transcription by interleukinlbeta in articular chondrocytes. Eur J Biochem 2000; 267: 6798–6809.

    Article  PubMed  CAS  Google Scholar 

  36. Yamamoto K, Arakawa T, Ueda N, Yamamoto S. Transcriptional roles of nuclear factor kappa B and nuclear factor-interleukin-6 in the tumor necrosis factor alpha-dependent induction of cyclooxygenase2 in MC3T3–E1 cells. J Biol Chem 1995; 270:31, 315–31, 320.

    Google Scholar 

  37. Inoue H, Tanabe T. Transcriptional role of the nuclear factor kappa B site in the induction by lipopolysaccharide and suppression by dexamethasone of cyclooxygenase-2 in U937 cells. Biochem Biophys Res Commun. 1998; 244: 143–148.

    Article  PubMed  CAS  Google Scholar 

  38. Inoue H, Yokoyama C, Hara S, Tone Y, Tanabe T. Transcriptional regulation of human prostaglandinendoperoxide synthase-2 gene by lipopolysaccharide and phorbol ester in vascular endothelial cells. Involvement of both nuclear factor for interleukin-6 expression site and cAMP response element. J Biol Chem 1995; 270:24, 965–24, 971.

    Google Scholar 

  39. Xie W, Herschman, HR. v-src induces prostaglandin synthase 2 gene expression by activation of the c-Jun N-terminal kinase and the c-Jun transcription factor. J Biol Chem 1995; 270:27, 622–27, 628.

    Google Scholar 

  40. Xie W, Herschman, HR. Transcriptional regulation of prostaglandin synthase 2 gene expression by platelet-derived growth factor and serum. J Biol Chem 1996; 271:31, 742–31, 748.

    Google Scholar 

  41. Subbaramaiah K, Chung WJ, Michaluart P, Telang N, Tanabe T, Inoue H, et al. Resveratrol inhibits cyclooxygenase-2 transcription and activity in phorbol ester-treated human mammary epithelial cells. J Biol Chem 1998; 273:21, 875–21, 882.

    Google Scholar 

  42. Schmedtje JF Jr, Ji YS, Liu WL, DuBois RN, Runge MS. Hypoxia induces cyclooxygenase-2 via the NF-kappaB p65 transcription factor in human vascular endothelial cells. JBiol Chem 1997; 272: 60 1608.

    Google Scholar 

  43. Xu X-M, Tang JL, Chen XM, Wang LH, Wu KK. Involvement of two Sp 1 elements in basal endothelial prostaglandin H synthase-1 promoter activity. J Biol Chem 1997; 272: 6943–6950.

    Article  PubMed  CAS  Google Scholar 

  44. Xu Q, Ji YS, Schmedtje JF Jr. Sp 1 increases expression of cyclooxygenase-2 in hypoxic vascular endothelium. Implications for the mechanisms of aortic aneurysm and heart failure. JBiol Chem 2000; 275: 24, 583–24, 589.

    Google Scholar 

  45. Emili A, Greenblatt J, Ingles CJ. Species-specific interaction of the glutamine-rich activation domains of Spl with the TATA box-binding protein. Mol Cell Biol 1994; 14: 1582–1593.

    PubMed  CAS  Google Scholar 

  46. Hoey T, Weinzierl ROJ, Gill G, Chen J-L, Dynlacht BD, Tjian R. Molecular cloning and functional analysis of Drosophila TAF110 reveal properties expected of coactivators. Cell 1993; 72: 247–260.

    Article  PubMed  CAS  Google Scholar 

  47. Kirtikara K, Raghow R, Laulederkind SJ, Goorha S, Kanekura T, Balton LR. Transcriptional regulation of cyclooxygenase-2 in the human microvascular endothelial cell line, HMEC-1: control by the combinatorial actions of AP2, NF-IL-6 and CRE elements. Mol Cell Biochem 2000; 203: 41–51.

    Article  PubMed  CAS  Google Scholar 

  48. Howe LR, Crawford HC, Subbaramaiah K, Hassell JA, Dannenberg AJ, Brown AM. PEA3 is up-regulated in response to Wntl and activates the expression of cyclooxygenase-2. JBiol Chem 2001; 276: 20, 108–20, 115.

    Google Scholar 

  49. Shao J, Sheng H, Inoue H, Morrow JD, DuBois RN. Regulation of constitutive cyclooxygenase-2 expression in colon carcinoma cells. J Biol Chem 2000; 275:33, 951–33, 956.

    Google Scholar 

  50. Gorgoni B, Caivano M, Arizmendi C, Poli V. The transcription factor C/EBP beta is essential for inducible expression of the COX-2 gene in macrophages but not in fibroblasts. JBiol Chem 2001 [epub ahead of print].

    Google Scholar 

  51. Guo YS, Hellmich MR, Wen XD, Townsend CM Jr. Activator protein-1 transcription factor mediates bombesin-stimulated cyclooxygenase-2 expression in intestinal epithelial cells. JBiol Chem 2001; 276: 22, 941–22, 947.

    Google Scholar 

  52. Slice LW, Bui L, Mak C, Walsh JH. Differential regulation of COX-2 transcription by Ras-and Rho-family of GTPases. Biochem Biophys Res Commun 2000; 276: 406–410.

    Article  PubMed  CAS  Google Scholar 

  53. Subbaramaiah K, Hart JC, Norton L, Dannenberg AJ. Microtubule-interfering agents stimulate the transcription of cyclooxygenase-2. Evidence for involvement of ERK1/2 AND p38 mitogen-activated protein kinase pathways. J Biol Chem 2000; 275:14, 838–14, 845.

    Google Scholar 

  54. Srivastava SK, Tetsuka T, Daphna-Iken D, Morrison AR. IL-1 beta stabilizes COX II mRNA in renal mesangial cells: role of 3’-untranslated region. Am J Physiol 1994; 267: F504 - F508.

    PubMed  CAS  Google Scholar 

  55. Ristimaki A, Garfinkel S, Wessendorf J, Maciag T, Hla T. Induction of cyclooxygenase-2 by interleukin-1 alpha. Evidence for post-transcriptional regulation. J Biol Chem 1994; 269:11, 769–11, 775.

    Google Scholar 

  56. Gou Q, Liu CH, Ben-Av P, Hla T. Dissociation of basal turnover and cytokineinduced transcript stabilization of the human cyclooxygenase-2 mRNA by mutagenesis of the 3’-untranslated region. Biochem Biophys Res Commun 1998; 242: 508–512.

    Article  PubMed  CAS  Google Scholar 

  57. Ridley SH, Dean JL, Sarsfield SJ, Brook M, Clark AR, Saklatvala JA. p38 MAP kinase inhibitor regulates stability of interleukin-1-induced cyclooxygenase-2 mRNA. FEBS Lett 1998; 439: 75–80.

    Article  PubMed  CAS  Google Scholar 

  58. Dean JL, Brook M, Clark AR, Saklatvala J. p38 mitogen-activated protein kinase regulates cyclooxygenase-2 mRNA stability and transcription in lipopolysaccharide-treated human monocytes. JBiol Chem 1999; 274: 264–269.

    CAS  Google Scholar 

  59. Evett GE, Xie W, Chipman JG, Robertson DL, Simmons DL. Prostaglandin G/H synthase isoenzyme 2 expression in fibroblasts: regulation by dexamethasone, mitogens, and oncogenes. Arch Biochem Biophys 1993; 306: 169–177.

    Article  PubMed  CAS  Google Scholar 

  60. Ristimaki A, Narko K, Hla T. Down-regulation of cytokine-induced cyclo-oxygenase-2 transcript isoforms by dexamethasone: evidence for post-transcriptional regulation. Biochem J 1996; 31: 325–331.

    Google Scholar 

  61. Appleby SB, Ristimaki A, Neilson K, Narko K, Hla T. Structure of the human cyclo-oxygenase-2 gene. Biochem J 1994; 302: 723–727.

    PubMed  CAS  Google Scholar 

  62. Shaw G, Kamen RA. Conserved AU sequence from the 3’ untranslated region of GM-CSF mRNA mediates selective mRNA degradation. Cell 1986; 46: 659–667.

    Article  PubMed  CAS  Google Scholar 

  63. Caput D, Beutler B, Hartog K, Thayer R, Brown-Shimer S, Cerami A. Identification of a common nucleotide sequence in the 3’-untranslated region of mRNA molecules specifying inflammatory mediators. Proc Natl Acad Sci USA 1986; 83: 1670–1674.

    Article  PubMed  CAS  Google Scholar 

  64. Xu N, Chen CY, Shyu AB. Modulation of the fate of cytoplasmic mRNA by AU-rich elements: key sequence features controlling mRNA deadenylation and decay. Mol Cell Biol 1997; 17: 4611–4621.

    PubMed  CAS  Google Scholar 

  65. Jang BC, Sanchez T, Schaefers HJ, Trifan OC, Liu CH, Creminon C, et al. Serum withdrawal-induced post-transcriptional stabilization of cyclooxygenase-2 mRNA in MDA-MB-231 mammary carcinoma cells requires the activity of the p38 stress-activated protein kinase. J Biol Chem 2000; 275:39, 507–39, 515.

    Google Scholar 

  66. Kruys V, Marinx O, Shaw G, Deschamps J, Huez G. Translational blockade imposed by cytokine-derived UA-rich sequences. Science 1989; 245: 852–855.

    Article  PubMed  CAS  Google Scholar 

  67. Han J, Brown T, Beutler B. Dexamethasone and pentoxifylline inhibit endotoxin-induced cachectin/ tumor necrosis factor synthesis at separate points in the signaling pathway. JExp Med 1990; 172: 391–394.

    Article  CAS  Google Scholar 

  68. Kruys V, Beutler B, Heuz G. Translational control mediated by UA-rich sequences. Enzyme 1990; 44: 193–202.

    PubMed  CAS  Google Scholar 

  69. Rajagopalan LE, Malter JS. Turnover and translation of in vitro synthesized messenger RNAs in transfected, normal cells. JBiol Chem 1996; 271:19, 871–19, 876.

    Google Scholar 

  70. Dixon DA, Kaplan CD, McIntyre TM, Zimmerma GA, Prescott SM. Post-transcriptional control of cyclooxygenase-2 gene expression. The role of the 3’-untranslated region. J Biol Chem 2000; 275: 11, 750–11, 757.

    Google Scholar 

  71. Nabors LB, Gillespie GY, Harkins L, King PH. HuR, a RNA stability factor, is expressed in malignant brain tumors and binds to adenine-and uridine-rich elements within the 3’ untranslated regions of cytokine and angiogenic factor mRNAs. Cancer Res 2001; 61: 2154–2161.

    PubMed  CAS  Google Scholar 

  72. Lasa M, Mahtani KR, Finch A, Brewer G, Saklatvala J, Clark AR. Regulation of cyclooxygenase 2 mRNA stability by the mitogen-activated protein kinase p38 signaling cascade. Mol Cell Biol 2000; 20: 4265–4274.

    Article  PubMed  CAS  Google Scholar 

  73. Giunchi L, Nocentini G, Ronchetti S, Bartoli A, Riccardi C, Migliorati G. TCR kappa, a new splicing of the murine TCR zeta gene locus, is modulated by glucocorticoid treatment. Mol Cell Biochem 1999; 195: 47–53.

    Article  PubMed  CAS  Google Scholar 

  74. Peppel K, Vinci JM, Baglioni C. The AU-rich sequences in the 3’ untranslated region mediate the increased turnover of interferon mRNA induced by glucocorticoids. J Exp Med 1991; 173: 349–355.

    Article  PubMed  CAS  Google Scholar 

  75. Lasa M, Brook M, Saklatvala J, Clark AR. Dexamethasone destabilizes cyclooxygenase 2 mRNA by inhibiting mitogen-activated protein kinase p38. Mol Cell Biol 2001; 21: 771–780.

    Article  PubMed  CAS  Google Scholar 

  76. Miyazawa K, Mori A, Okudaira H. Regulation of interleukin-lbeta-induced interleukin-6 gene expression in human fibroblast-like synoviocytes by glucocorticoids. J Biochem (Tokyo) 1998; 124: 1130–1137.

    Article  CAS  Google Scholar 

  77. Winzen R, Kracht M, Ritter B, Wilhelm A, Chen CY, Shyu AB, et al. The p38 MAP kinase pathway signals for cytokine-induced mRNA stabilization via MAP kinase-activated protein kinase 2 and an AU-rich region-targeted mechanism. EMBO J 1999; 18: 4969–4980.

    Article  PubMed  CAS  Google Scholar 

  78. Xu K, Robida AM, Murphy TJ. Immediate-early MEK-1-dependent stabilization of rat smooth muscle cell cyclooxygenase-2 mRNA by Galpha(q)-coupled receptor signaling. J Biol Chem 2000; 275: 23, 012–23, 019.

    Google Scholar 

  79. Sheng H, Shao J, Dixon DA, Williams CS, Prescott SM, DuBois RN, et al. Transforming growth factor-betal enhances Ha-ras-induced expression of cyclooxygenase-2 in intestinal epithelial cells via stabilization of mRNA. J Biol Chem 2000; 275: 6628–6635.

    Article  PubMed  CAS  Google Scholar 

  80. Sheng H, Shao J, DuBois RN. K-Ras-mediated increase in cyclooxygenase 2 mRNA stability involves activation of the protein kinase B 1. Cancer Res 2001; 61: 2670–2675.

    PubMed  CAS  Google Scholar 

  81. DuBois RN, Abramson SB, Crofford L, Gupta RA, Simon LS, Van De Putte LB, Lipsky PE. Cyclooxygenase in biology and disease. FASEB J 1998; 12: 1063–1073.

    PubMed  CAS  Google Scholar 

  82. Kadoyama K, Takahashi Y, Higashida H, Tanabe T, Yoshimoto T. Cyclooxygenase-2 stimulates production of amyloid beta-peptide in neuroblastoma x glioma hybrid NG108–15 cells. Biochem Biophys Res Commun 2001; 281: 483–490.

    Article  PubMed  CAS  Google Scholar 

  83. Thun MJ, Namboodiri MM, Calle EE, Flanders WD, Heath CW Jr. Aspirin use and risk of fatal cancer. Cancer Res 1993; 53: 1322–1327.

    PubMed  CAS  Google Scholar 

  84. Peleg II, Maibach HT, Brown SH, Wilcox CM. Aspirin and nonsteroidal anti-inflammatory drug use and the risk of subsequent colorectal cancer. Arch Intern Med 1994; 154: 394–399.

    Article  PubMed  CAS  Google Scholar 

  85. Giovannucci E, Egan KM, Hunter DJ, Stampfer MJ, Colditz GA, Willett WC, Speizer FE. Aspirin and the risk of colorectal cancer in women. N Engl J Med 1995; 333: 609–614.

    Article  PubMed  CAS  Google Scholar 

  86. Oshima M, DinchukJE, Kargman SL, Oshima H, Hancock B, Kwong E, et al. Suppression of intestinal polyposis in Apc delta716 knockout mice by inhibition of cyclooxygenase 2 (COX-2). Cell 1996; 87: 803–809.

    Article  PubMed  CAS  Google Scholar 

  87. Tsujii M, DuBois RN. Alterations in cellular adhesion and apoptosis in epithelial cells overexpressing prostaglandin endoperoxide synthase 2. Cell 1995; 83: 493–501.

    Article  PubMed  CAS  Google Scholar 

  88. Tsujii M, Kawano S, DuBois RN. Cyclooxygenase-2 expression in human colon cancer cells increases metastatic potential. Proc Natl Acad Sci USA 1997; 94: 3336–3340.

    Article  PubMed  CAS  Google Scholar 

  89. Steinbach G, Lynch PM, Phillips RK, Wallace MH, Hawk E, Gordon GB, et al. The effect of celecoxib, a cyclooxygenase-2 inhibitor, in familial adenomatous polyposis. N Engl J Med 2000; 342: 1946–1952.

    Article  PubMed  CAS  Google Scholar 

  90. Reddy BS, Hirose Y, Lubet R, Steele V, Kelloff G, Paulson S, et al. Chemoprevention of colon cancer by specific cyclooxygenase-2 inhibitor, celecoxib, administered during different stages of carcinogenesis. Cancer Res 2000; 60: 293–297.

    PubMed  CAS  Google Scholar 

  91. Sheng H, Shao J, Kirkland SC, Isakson P, Coffey RJ, Morrow J, et al. Inhibition of human colon cancer cell growth by selective inhibition of cyclooxygenase-2. J Clin Invest 1997; 99: 2254–2259.

    Article  PubMed  CAS  Google Scholar 

  92. Tsujii M, Kawano S, Tsuji S, Sawaoka H, Hori M, DuBois RN. Cyclooxygenase regulates angiogenesis induced by colon cancer cells. Cell 1998; 93: 705–716.

    Article  PubMed  CAS  Google Scholar 

  93. Eberhart CE, Coffey RJ, Radhika A, Giardiello FM, Ferrenbach S, DuBois RN. Up-regulation of cyclooxygenase 2 gene expression in human colorectal adenomas and adenocarcinomas. Gastroenterology 1994; 107: 1183–1188.

    PubMed  CAS  Google Scholar 

  94. Sano H, Kawahito Y, Wilder RL, Hashiramoto A, Mukai S, Asai K, et al. Expression of cyclooxygenase1 and -2 in human colorectal cancer. Cancer Res 1995; 55: 3785–3789.

    PubMed  CAS  Google Scholar 

  95. Smalley WE, DuBois RN. Colorectal cancer and nonsteroidal anti-inflammatory drugs. Adv Pharmacol 1997; 39: 1–20.

    Article  PubMed  CAS  Google Scholar 

  96. Chulada PC, Thompson MB, Mahler JF, Doyle CM, Gaul BW, Lee C, et al. Genetic disruption of Ptgs-1, as well as Ptgs-2, reduces intestinal tumorigenesis in Min mice. Cancer Res 2000; 60: 4705–4708.

    PubMed  CAS  Google Scholar 

  97. Langenbach R, Loftin CD, Lee C, Tiano H. Cyclooxygenase-deficient mice. A summary of their characteristics and susceptibilities to inflammation and carcinogenesis. Ann NY Acad Sci 1999; 889: 52–61.

    Article  PubMed  CAS  Google Scholar 

  98. Piazza GA, Rahm AK, Finn TS, Fryer BH, Li H, Stoumen AL, et al. Apoptosis primarily accounts for the growth-inhibitory properties of sulindac metabolites and involves a mechanism that is independent of cyclooxygenase inhibition, cell cycle arrest, and p53 induction. Cancer Res 1997; 57: 2452–2459.

    PubMed  CAS  Google Scholar 

  99. Boolbol SK, Dannenberg AJ, Chadburn A, Martucci C, Guo XJ, Ramonetti JT, et al. Cyclooxygenase-2 overexpression and tumor formation are blocked by sulindac in a murine model of familial adenomatous polyposis. Cancer Res 1996; 56: 2556–2560.

    PubMed  CAS  Google Scholar 

  100. Zhang X, Morham SG, Langenbach R, Young DA. Malignant transformation and antineoplastic actions of nonsteroidal antiinflammatory drugs (NSAIDs) on cyclooxygenase-null embryo fibroblasts. J Exp Med 1999; 190: 451–459.

    Article  PubMed  CAS  Google Scholar 

  101. He TC, Chan TA, Vogelstein B, Kinzler KW. PPARdelta is an APC-regulated target of nonsteroidal anti-inflammatory drugs. Cell 1999; 99: 335–345.

    Article  PubMed  CAS  Google Scholar 

  102. Yin MJ, Yamamoto Y, Gaynor RB. The anti-inflammatory agents aspirin and salicylate inhibit the activity of I(kappa)B kinase-beta. Nature 1998; 396: 77–80.

    Article  PubMed  CAS  Google Scholar 

  103. Paganini-Hill A, Chao A, Ross RK, Henderson BE. Aspirin use and chronic diseases: a cohort study of the elderly. BMJ 1989; 299: 1247–1250.

    Article  PubMed  CAS  Google Scholar 

  104. Thun MJ, Namboodiri MM, Heath CW Jr. Aspirin use and reduced risk of fatal colon cancer. NEngl J Med 1991; 325: 1593–1596.

    Article  CAS  Google Scholar 

  105. Egan KM, Stampfer MJ, Giovannucci E, Rosner BA, Colditz GA. Prospective study of regular aspirin use and the risk of breast cancer. J Natl Cancer Inst 1996; 88: 988–993.

    Article  PubMed  CAS  Google Scholar 

  106. Friedman GD, Ury HK. Initial screening for carcinogenicity of commonly used drugs. J Natl Cancer Inst 1980; 65: 723–733.

    PubMed  CAS  Google Scholar 

  107. Harris RE, Namboodiri KK, Farrar WB. Nonsteroidal antiinflammatory drugs and breast cancer. Epidemiology 1996; 7: 203–205.

    Article  PubMed  CAS  Google Scholar 

  108. Schreinemachers DM, Everson RB. Aspirin use and lung, colon, and breast cancer incidence in a prospective study. Epidemiology 1994; 5: 138–146.

    Article  PubMed  CAS  Google Scholar 

  109. Sharpe CR, Collet JP, McNutt M, Belzile E, Boivin JF, Hanley JA. Nested case-control study of the effects of non-steroidal anti-inflammatory drugs on breast cancer risk and stage. Br J Cancer 2000; 83: 112–120.

    Article  PubMed  CAS  Google Scholar 

  110. Subbaramaiah K, Michaluart P, Chung WJ, Tanabe T, Telang N, Dannenberg AJ. Resveratrol inhibits cyclooxygenase-2 transcription in human mammary epithelial cells. Ann NY Acad Sci 1999; 889: 214–223.

    Article  PubMed  CAS  Google Scholar 

  111. Rolland PH, Martin PM, Jacquemier J, Rolland AM, Toga M. Prostaglandin in human breast cancer: evidence suggesting that an elevated prostaglandin production is a marker of high metastatic potential for neoplastic cells. J Natl Cancer Inst 1980; 64: 1061–1070.

    PubMed  CAS  Google Scholar 

  112. Schrey MP, Patel KV. Prostaglandin E2 production and metabolism in human breast cancer cells and breast fibroblasts. Regulation by inflammatory mediators. Br J Cancer 1995; 72: 1412–1419.

    Article  PubMed  CAS  Google Scholar 

  113. Liu CH, Chang SH, Narko K, Trifan OC, Wu MT, Smith E, et al. Overexpression of cyclooxygenase-2 is sufficient to induce tumorigenesis in transgenic mice. JBiol Chem 2001; 276:18, 563–18, 569.

    Google Scholar 

  114. Xie WL, Chipman JG, Robertson DL, Erikson RL, Simmons DL. Expression of a mitogen-responsive gene encoding prostaglandin synthase is regulated by mRNA splicing. Proc Natl Acad Sci USA 1991; 88: 2692–2696.

    Article  PubMed  CAS  Google Scholar 

  115. Kujubu DA, Fletcher BS, Varnum BC, Lim RW, Herschman HR. TIS 10, a phorbol ester tumor promoter-inducible mRNA from Swiss 3T3 cells, encodes a novel prostaglandin synthase/cyclooxygenase homologue. J Biol Chem 1991; 266:12, 866–12, 872.

    Google Scholar 

  116. Hla T, Neilson K. Human cyclooxygenase-2 cDNA. Proc Natl Acad Sci USA 1992; 89: 7384–7388.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jang, BC., Hla, T. (2003). Regulation of Expression and Potential Carcinogenic Role of Cyclooxygenase-2. In: Harris, R.E. (eds) COX-2 Blockade in Cancer Prevention and Therapy. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-302-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-302-6_11

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-304-6

  • Online ISBN: 978-1-59259-302-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics