Skip to main content

Preclinical Basis for Use of NT2N Cells in Neural Transplantation Therapy

  • Chapter
  • 130 Accesses

Part of the book series: Contemporary Neuroscience ((CNEURO))

Abstract

This chapter will review laboratory experiments using human neuroteratocarcinoma cells (hNT cells, also called NT2N cells and LBS neurons) in animal models of neurological disorders. Because NT2N cells are originally derived from adult human cancerous tumors engineered to become neuron-like cells, their use for transplantation therapy eliminates logistical problems associated with the use of fetal and embryonic stem cells. This chapter will focus on functional recovery in stroke animals that received NT2N cell grafts. In light of recent studies demonstrating expression of trophic factors by NT2N cells, such trophic factor property of the cells is presented here as a plausible mechanism underlying the behavioral effects of transplanted NT2N cells. An overview on the clinical report of NT2N cell grafts in stroke patients will also be provided.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Trojanowski, J. Q., Kleppner, S. R., Hartley, R. S., Miyazono, M., Fraser, N. W., Kesari, S., (1997) Transfectable and transplantable postmitotic human neurons: a potential “platform” for gene therapy of nervous system diseases. Exp. Neurol. 144, 92–97.

    Article  PubMed  CAS  Google Scholar 

  2. Borlongan, C. V., Sanberg, P. R., and Freeman, T. B. (1999) Neural transplantation for neurodegenerative disorders. Lancet 353, 5í29—SI30.

    Google Scholar 

  3. Nishino, H. and Borlongan, C. V. (2000) Restoration of function by neural transplantation in the ischemic brain. Prog. Brain Res. 127, 461–476.

    Article  PubMed  CAS  Google Scholar 

  4. Alexi, T., Borlongan, C. V., Faull, R. L., Williams, C. E., Clark, R. G., Gluckman, P. D., (2000) Neuroprotective strategies for basal ganglia degeneration: Parkinson’s and Huntington’s diseases. Prog. Neurobiol. 60, 409–470.

    Article  PubMed  CAS  Google Scholar 

  5. Freund, T. F., Bolam, J. P., Bjorklund, A., Steveni, U., Dunnett, S. B., Powell, J. F., (1985) Efferent synaptic connections of grafted dopaminergic neurons reinnervating the host neostriatum: a tyrosine hydroxylase immunocytochemical study. J. Neurosci. 5, 603–616.

    PubMed  CAS  Google Scholar 

  6. Mahalik, T. J., Finger, T. E., Stromberg, I., and Olson, L. (1985) Substantia nigra transplants into denervated striatum of the rat: ultrastructure of graft and host interconnections. J. Comp. Neurol. 240, 60–70.

    Article  PubMed  CAS  Google Scholar 

  7. Faull, R. L. M., Waldvogel, H. J., Nicholson, L. F. B., Williams, M. N., and Dragunow, M. (1995) Huntington’s disease and neural transplantation: GABAA receptor changes in the basal ganglia in Huntington’s disease, in the human brain and in the quinolinic acid lesioned rat model of the disease following fetal neuron transplants, in Neurotransmitters in the Human Brain ( Tracey, D. J., ed.), Plenum, New York, pp. 173–197.

    Chapter  Google Scholar 

  8. Hoffer, B. and Olson, L. (1997) Treatment strategies for neurodegenerative diseases based on trophic factors and cell transplantation techniques. J. Neural Transm. 49, 1–10.

    CAS  Google Scholar 

  9. Isacson, O., Costantini, L., Schumacher, J. M., Cicchetti, F., Chung, S., and Kim, K. (2001) Cell implantation therapies for Parkinson’s disease using neural stem, transgenic or xenogeneic donor cells. Parkinsonism Relat. Disord. 7, 205–212.

    Article  PubMed  Google Scholar 

  10. Freeman, T. B., Cicchetti, F., Hauser, R. A., Deacon, T. W., Li, S. J., Hersch, S. M., (2000) Transplanted fetal striatum in Huntington’s disease: phenotypic development and lack of pathology. Proc. Natl. Acad. Sci. USA 5, 97(25), 13,877–13, 882.

    Google Scholar 

  11. Kordower, J. H. and Sortwell, C. E. (2000) Neuropathology of fetal nigra transplants for Parkinson’s disease. Prog. Brain Res. 127, 333–344.

    Article  PubMed  CAS  Google Scholar 

  12. Bjorklund, A. (1992) Dopaminergic transplants in experimental parkinsonism: cellular mechanisms of graft-induced functional recovery. Curr. Opin. Neurobiol. 2, 683–689.

    Article  PubMed  CAS  Google Scholar 

  13. Mahalik, T. J., Hahn, W. E., Clayton, G. H., and Owens, G. P. (1994) Programmed cell death in developing grafts of fetal substantia nigra. Exp. Neurol. 129, 27–36.

    Article  PubMed  CAS  Google Scholar 

  14. Nikkhah, G., Bentlage, C., Cunningham, M. G., and Bjorklund, A. (1994) Intranigral fetal dopamine grafts induce behavioral compensation in the rat Parkinson model. J. Neurosci. 14, 3449–3461.

    PubMed  CAS  Google Scholar 

  15. Nikkhah, G. M., Cunningham, G., Jodicke, A., Knappe, U., and Bjorklund, A. (1994) Improved graft survival and striatal reinnervation by microtransplantation of fetal nigral cell suspensions in the rat Parkinson model. Brain Res. 633, 133–143.

    Article  PubMed  CAS  Google Scholar 

  16. Horellou, P., Marlier, L., Privat, A., Darchen, F., Scherman, D., Henry, J. P., (1990) Exogenous expression of L-dopa and dopamine in various cell lines following transfer of rat and human tyrosine hydroxylase cDNA: grafting in an animal model of Parkinson’s disease. Prog. Brain Res. 82, 23–32.

    Article  PubMed  CAS  Google Scholar 

  17. Freed, W. J., Adinol, A. M., Laskin, J. D., and Geller, H. M. (1989) Transplantation of B16/C3 melanoma cells into the brains of rats and mice. Brain Res. 485, 349–362.

    Article  PubMed  CAS  Google Scholar 

  18. Kawaja, M. D., Fagan, A. M., Firestein, B. L., and Gage, F. H. (1991) Intracerebral grafting of cultured autologous skin fibroblasts into the rat striatum: an assessment of graft size and ultrastructure. J. Comp. Neurol. 307, 695–706.

    Google Scholar 

  19. Nishino, H., Hashitani, T., and Kumazaki, M. (1990) Phenotypic plasticity of grafted catecholaminergic cells in the dopamine-depleted caudate nucleus in the rat. Neurosci. Res. 13 (Suppl.), S54 — S60.

    CAS  Google Scholar 

  20. Schueler, S. B., Ortega, J. D., Sagen, J., and Kordower, J. H. (1993) Robust survival of isolated bovine adrenal chromaffin cells following intrastriatal transplantation: a novel hypothesis of adrenal graft viability. J. Neurosci. 13, 4496–4510.

    Google Scholar 

  21. Emerich, D. F., Winn, S. R., Christenson, L., Palmatier, M. A., Gentile, F. T., and Sanberg, P. R. (1992) A novel approach to neural transplantation in Parkinson’s disease: use of polymer-encapsulated cell therapy. Neurosci. Biobehay. Rev. 16, 437–447.

    Article  CAS  Google Scholar 

  22. Studer, L., Tabar, V., and McKay, R. D. (1998) Transplantation of expanded mesencephalic precursors leads to recovery in parkinsonian rats. Nat. Neurosci. 1, 290–295.

    Article  PubMed  CAS  Google Scholar 

  23. Svendsen, C. N., Caldwell, M. A., Shen, J., ter Borg, M. G., Rosser, A. E., Tyers, P., (1997) Long-term survival of human central nervous system progenitor cells transplanted into a rat model of Parkinson’s disease. Exp. Neurol. 148, 135–146.

    Article  PubMed  CAS  Google Scholar 

  24. Kleppner, S. R., Robinson, K. A., Trojanowski, J. Q., and Lee, V. M. (1995) Transplanted human neurons derived from a teratocarcinoma cell line (NTera-2) mature, integrate, and survive for over 1 year in the nude mouse brain. J. Comp. Neurol. 357, 618–632.

    Article  PubMed  CAS  Google Scholar 

  25. Miyazono, M., Nowell, P. C., Finan, J. L., Lee, V. M., and Trojanowski, J. Q. (1996) Long-term integration and neuronal differentiation of human embryonal carcinoma cells (NTera-2) transplanted into the caudoputamen of nude mice. J. Comp. Neurol. 376, 603–613.

    Article  PubMed  CAS  Google Scholar 

  26. Miyazono, M., Lee, V. M., and Trojanowski, J. Q. (1995) Proliferation, cell death, and neuronal differentiation in transplanted human embryonal carcinoma (NTera2) cells depend on the graft site in nude and severe combined immunodeficient mice. Lab. Invest. 73, 273–283.

    PubMed  CAS  Google Scholar 

  27. Pleasure, S. J. and Lee, V. M. (1993) NTera 2 cells: a human cell line which displays characteristics expected of a human committed neuronal progenitor cell. J. Neurosci. Res. 35, 585–602.

    Article  PubMed  CAS  Google Scholar 

  28. Pleasure, S. J., Page, C., and Lee, V. M. (1992) Pure, postmitotic, polarized human neurons derived from NTera 2 cells provide a system for expressing exogenous proteins in terminally differentiated neurons. J. Neurosci. 12, 1802–1815.

    PubMed  CAS  Google Scholar 

  29. Lee, V. M. and Andrews, R W. (1986) Differentiation of NTERA-2 clonal human embryonal carcinoma cells into neurons involves the induction of all three neurofilament proteins. J. Neurosci. 6, 514–521.

    PubMed  CAS  Google Scholar 

  30. Lee, V. M., Hartley, R. S., and Trojanowski, J. Q. (2000) Neurobiology of human neurons (NT2N) grafted into mouse spinal cord: implications for improving therapy of spinal cord injury. Prog. Brain Res. 128, 299–307.

    Article  PubMed  CAS  Google Scholar 

  31. Flax, J. D., Aurora, S., Yang, C., Simonin, C., Wills, A. M., Billinghurst, L. L., et al. (1998) Engraftable human neural stem cells respond to developmental cues, replace neurons, and express foreign genes. Nat. Biotechnol. 16, 1033–1039.

    Article  PubMed  CAS  Google Scholar 

  32. Borlongan, C. V., Tajima, Y., Trojanowski, J. Q., Lee, V. M., and Sanberg, P. R.. (1998) Transplantation of cryopreserved human embryonal carcinoma-derived neurons (NT2N cells) promotes functional recovery in ischemic rats. Exp. Neurol. 149, 310–321.

    Google Scholar 

  33. Borlongan, C. V., Tajima, Y., Trojanowski, J. Q., Lee, V. M., and Sanberg, P. R. (1998) Cerebral ischemia and CNS transplantation: differential effects of grafted fetal rat striatal cells and human neurons derived from a clonal cell line. NeuroReport 9, 3703–2709.

    CAS  Google Scholar 

  34. Saporta, S., Borlongan, C. V., and Sanberg, P. R. (1999) Neural transplantation of human neuroteratocarcinoma (hNT) neurons into ischemic rats. A quantitative dose-response analysis of cell survival and behavioral recovery. Neuroscience 91, 519–525.

    Article  PubMed  CAS  Google Scholar 

  35. Trojanowski, J. Q., Mantione, J. R., Lee, J. H., Seid, D. P., You, T., Inge, L. J., (1993) Neurons derived from a teratocarcinoma cell line establish molecular and structural polarity following transplantation into the rodent brain. Exp. Neurol. 122, 283–294.

    Article  PubMed  CAS  Google Scholar 

  36. Henderson, B. T. H., Clough, C. G., Hughes, R. C., Hitchcock, E. R., and Kenny, B. G. (1991) Implantation of human ventral mesencephalon to the right caudate nucleus in advanced Parkinson’s disease. Arch. Neurol. 48, 822–827.

    Article  PubMed  CAS  Google Scholar 

  37. Freed, C. R., Breeze, R. E., Rosenberg, N. L., Schneck, S. A., Kriek, E., Qi, J.-X., et al. (1992) Survival of implanted fetal dopamine cells and neurologic improvement 12 to 46 months after transplantation for Parkinson’s disease. N. Engl. J. Med. 327, 1549–1555.

    Article  PubMed  CAS  Google Scholar 

  38. Sarnacki, P. G., Engelman, R. W., Chang, Y., Day, N. K., Good, R. A., and Sanberg, P. R. (1998) Immunosuppression by hNT neurons and supernatant. Exp. Neurol. 153, 386.

    Google Scholar 

  39. Hurlbert, M. S., Gianani, R. I., Hutt, C., Freed, C. R., and Kaddis, F. G. (1999) Neural transplantation of hNT neurons for Huntington’s disease. Cell Transplant. 8, 143–151.

    PubMed  CAS  Google Scholar 

  40. Baker, K. A., Hong, M., Sadi, D., and Mendez, I. (2000) Intrastriatal and intranigral grafting of hNT neurons in the 6-OHDA rat model of Parkinson’s disease. Exp. Neurol. 162, 350–360.

    Article  PubMed  CAS  Google Scholar 

  41. Zigova, T., Willing, A. E., Tedesco, E. M., Borlongan, C. V., Saporta, S., Snable, G. L., et al. (1999) Lithium chloride induces the expression of tyrosine hydroxylase in hNT neurons. Exp. Neurol. 157, 251–258.

    Article  PubMed  CAS  Google Scholar 

  42. Hartley, R. S., Trojanowski, J. Q., and Lee, V. M. (1999) Differential effects of spinal cord gray and white matter on process outgrowth from grafted human NTERA2 neurons (NT2N, hNT). J. Comp. Neurol. 415, 404–418.

    Article  PubMed  CAS  Google Scholar 

  43. Philips, M. F., Muir, J. K., Saatman, K. E., Raghupathi, R., Lee, V. M., Trojanowski, J. Q., et al. (1999) Survival and integration of transplanted postmitotic human neurons following experimental brain injury in immunocompetent rats. J. Neurosurg. 90, 116–124.

    Article  PubMed  CAS  Google Scholar 

  44. Connor, B. and Dragunow, M. (1998) The role of neuronal growth factors in neurodegenerative disorders of the human brain. Brain Res. Rev. 27, 1–39.

    Article  PubMed  CAS  Google Scholar 

  45. Hughes, P. E., Alexi, T., Walton, M., Williams, C. E., Dragunow, M., Clark, R. G., (1999) Activity and injury-dependent expression of inducible transcription factors, growth factors, and apoptosis-related genes within the central nervous system. Prog. Neurobiol. 57, 421–450.

    Article  PubMed  CAS  Google Scholar 

  46. Lin, S. Z., Chiang, Y. H., Wang, Y., Hayashi, T., Su, T. P., Hoffer, B. J., et al. (1999) Transplantation for chronic stroke: fetal cortical cells, fetal kidney cells and human derived cell line (hNT) neurons as graft source. Soc. Neurosci. Abstr. 29, 1506.

    Google Scholar 

  47. Borlongan, C. V. and Freeman, T. B. (2000) Transplantation of human cultured neurons protects against 6 hydroxydopamine-induced parkinsonism in adult rats. Soc. Neurosci. Abstr. 30, 209.

    Google Scholar 

  48. Tomac, A. C., Grinberg, A., Huang, S. P., Nosrat, C., Wang, Y., Borlongan, C., (2000) Glial cell line-derived neurotrophic factor receptor alphal availability regulates glial cell line-derived neurotrophic factor signaling:evidence from mice carrying one or two mutated alleles. Neuroscience 95, 1011–1023.

    Article  PubMed  CAS  Google Scholar 

  49. Chiang, Y. H., Lin, S. Z., Borlongan, C. V., Hoffer, B. J., Morales, M., and Wang, Y. (1999) Transplantation of fetal kidney tissue reduces cerebral infarction induced by middle cerebral artery ligation. J. Cereb. Blood Flow Metab. 19, 1329–1335.

    Article  PubMed  CAS  Google Scholar 

  50. Schinstine, M., Stull, N. D., and Iacovitti, L. (1996) Induction of tyrosine hydroxylase in hNT neurons. Soc. Neurosci. Abstr. 22, 1959.

    Google Scholar 

  51. Iacovitti, L. and Stull, N. D. (1997) Expression of tyrosine hydroxylase in newly differentiated neurons from a human cell line (hNT). NeuroReport 8, 1471–1474.

    CAS  Google Scholar 

  52. Borlongan, C. V., Saporta, S., Poulos, S. G., Othberg, A., and Sanberg, P. R. (1998) Viability and survival of hNT neurons determine degree of functional recovery in grafted ischemic rats. NeuroReport 9, 2837–2842.

    CAS  Google Scholar 

  53. Tornatore, C., Baker-Cairns, B.,Yadid, G., Hamilton, R., and Meyers, K. (1996) Expression of tyrosine hydroxylase in an immortalized human fetal astrocyte cell line; in vitro characterization and engraftment into the rodent striatum. Cell Transplant. 5, 145–163.

    CAS  Google Scholar 

  54. Kondziolka, D., Wechsler, L., Goldstein, S., Meltzer, C., Thulborn, K. R., Gebel, J., (2000) Transplantation of cultured human neuronal cells for patients with stroke. Neurology 55, 565–569.

    Article  PubMed  CAS  Google Scholar 

  55. Zivin, J. A. (2000) Cell transplant therapy for stroke: hope or hype. Neurology 55, 467.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Borlongan, C.V., Sanberg, P.R. (2003). Preclinical Basis for Use of NT2N Cells in Neural Transplantation Therapy. In: Zigova, T., Snyder, E.Y., Sanberg, P.R. (eds) Neural Stem Cells for Brain and Spinal Cord Repair. Contemporary Neuroscience. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-298-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-298-2_16

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-298-8

  • Online ISBN: 978-1-59259-298-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics