Skip to main content

Part of the book series: Contemporary Neuroscience ((CNEURO))

  • 131 Accesses

Abstract

It had long been held that neurogenesis in the mammalian central nervous system (CNS) was largely completed by birth. This opinion held sway until the early 1960s, when cellular proliferation was discovered in the subventricular zone (SVZ) (1) and neurogenesis was observed to occur in the olfactory bulb (2,3). The significance of these studies went unexplored until recently, when the ability to extract, grow, and reimplant neural stem cells (NSCs) into the brain forced a re-examination of the intrinsic capacity of the cerebrum to marshal endogenous stem cell pools (4–6). Similarly for the spinal cord, Adrian and Walker (7), employing 3H-thymidine, a mitotic marker, labeled a small population of cells lining the central canal of the intact adult rat. Because these cells had only a limited life-span, however, their role was deemed to be trivial. The significance of this observation for spinal cord dysfunction and repair has also recently been revisited in light of the possible existence of NSCs within the spinal cord.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sidman, R. L., Miale, I. L., and Feder, N. (1959) Cell proliferation and migration in the primitive ependymal zone: an autoradiographic study of histogenesis in the nervous system. Exp. Neurol. 1, 322–333.

    Article  PubMed  CAS  Google Scholar 

  2. Altman, J. (1963) Autoradiographic investigation of cell proliferation in the brains of rats and cats. Anat. Rec. 145, 573–591.

    Article  PubMed  CAS  Google Scholar 

  3. Altman, J. and Das, G. D. (1967) Postnatal neurogenesis in the guinea-pig. Nature 214 (93), 1098–1101.

    Article  PubMed  CAS  Google Scholar 

  4. Lois, C. and Alvarez-Buylla, A. (1994) Long-distance neuronal migration in the adult mammalian brain. Science 264, 1145–1148.

    Article  PubMed  CAS  Google Scholar 

  5. Johansson, C., Momma, S., Clarke, D., Risling, M., Lendahl, U., and Frisen, J. (1999) Identification of a neural stem cell in the adult mammalian central nervous system. Cell 96, 25–34.

    Article  PubMed  CAS  Google Scholar 

  6. Doetsch, F., Caille, I., Lim, D., Garcia-Verdugo, J. M., and Alvarez-Buylla, A. (1999) Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97, 703–716.

    Article  PubMed  CAS  Google Scholar 

  7. Adrian, E. K., Jr. and Walker, B. E. (1962) Incorporation of thymidine—H 3 by cells in normal and injured mouse spinal cord. J. Neuropathol. Exp. Neurol. 21, 597–609.

    Article  PubMed  Google Scholar 

  8. Horner, P., Power, A., Kempermann, G., Kuhn, H., Palmer, T., Winkler, J., et al. (2000) Proliferation and differentiation of progenitor cells throughout the intact adult rat spinal cord. J. Neurosci. 20 (6), 2218–2228.

    PubMed  CAS  Google Scholar 

  9. Park, K. I., Liu, S., Flax, J. D., Nissim, S., Stieg, P. E., and Snyder, E. Y. (1999) Transplantation of neural progenitor & stem-like cells: developmental insights may suggest new therapies for spinal cord and other CNS dysfunction. J. Neurotrauma 16 (8), 675–687.

    Article  PubMed  CAS  Google Scholar 

  10. Weiss, S., Dunne, C., Hewson, J., Wohl, C., Wheatley, M., Peterson, A. C., et al. (1996) Multipotent CNS stem cells are present in the adult mammalian spinal cord. J. Neurosci. 16, 7599–7609.

    PubMed  CAS  Google Scholar 

  11. Shihabuddin, L. S., Ray, J., and Gage, F. H. (1997) FGF-2 is sufficient to isolate progenitors found in the adult mammalian spinal cord. Exp. Neurol. 148 (2), 577–586.

    Article  PubMed  CAS  Google Scholar 

  12. Shihabuddin, L., Homer, P., Ray, J., and Gage, F. (2000) Adult spinal cord stem cells generate neurons after transplantation in the adult dentate gyrus. J. Neurosci. 20 (23), 8727–8735.

    PubMed  CAS  Google Scholar 

  13. Snyder, E. Y. (1998) Neural stem-like cells: developmental lessons with therapeutic potential. The Neuroscientist 4 (6), 408–425.

    Article  Google Scholar 

  14. Snyder, E. Y., Yoon, C., Flax, J. D., and Macklis, J. D. (1997) Multipotent neural precursors can differentiate toward replacement of neurons undergoing targeted apoptotic degeneration in adult mouse neocortex. Proc. Natl. Acad. Sci. USA 94(21), 11,663–11, 668.

    Article  Google Scholar 

  15. Leavitt, B. R., Canales, M., Snyder, E. Y., and Macklis, J. D. (1996) Multipotent neural precursors transplanted to regions of targeted neuronal apoptosis in adult mouse somatosensory cortex differentiate into neurons & reform callosal projections. Soc. Neurosci. Abstr. 22, 505.

    Google Scholar 

  16. Wang, Y., Sheen, V. L., and Macklis, J. D. (1998) Cortical interneurons upregulate neurotrophins in vivo in response to targeted apoptotic degeneration of neighboring pyramidal neurons. Exp. Neurol. 154, 389–402.

    Article  PubMed  CAS  Google Scholar 

  17. Wrathall, J. R., Choiniere, D., and Teng, Y. D. (1994) Dose-dependent reduction of tissue loss and functional impairment after spinal cord trauma with the AMPA/kainate antagonist NBQX. J. Neurosci. 14, 6598–6607.

    PubMed  CAS  Google Scholar 

  18. Teng, Y. D., Mocchetti, I., Taveira-DaSilva, A. M., Gillis, R. A., and Wrathall, J. R. (1999) Basic fibroblast growth factor increases long-term survival of spinal cord motor neurons and improves respiratory function after experimental spinal cord injury. J. Neurosci. 19, 7037–7047.

    PubMed  CAS  Google Scholar 

  19. Magavi, S., Leavitt, B., and Macklis, J. (2000) Induction of neurogenesis in the neocortex of adult mice. Nature 405, 951–955.

    Article  PubMed  CAS  Google Scholar 

  20. Park, K. I., Jensen, F. E., Stieg, R. E., and Snyder, E.Y. (1998) Hypoxic—ischemic injury may direct the proliferation, migation, and differentiation of endogenous neural progenitors. Soc. Neurosci. Abstr. 24, 1310.

    Google Scholar 

  21. White, M. K. C. (2001) Potential for neurogenesis in amyotrophic lateral sclerosis. Senior thesis for bachelor of arts, Princeton University, Princeton, NJ.

    Google Scholar 

  22. Basso, D. M., Beattie, M. S., and Bresnahan, J. C. (1995) A sensitive and reliable locomotor rating scale for open field testing in rats. J. Neurotrauma 12, 1–21.

    Article  PubMed  CAS  Google Scholar 

  23. Lu, R, Jones, L., Park, K. I., Snyder E. Y., and Tuszynski, M. (2000) Neural stem cells secrete BDNF & GDNF, & promote axonal growth after spinal cord injury. Soc. Neurosci. Abstr. 26, 332.

    Google Scholar 

  24. McDonald, J. W., et al. (1999) Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord. Nat. Med. 5, 1410–1412.

    Article  PubMed  CAS  Google Scholar 

  25. Liu, S., et al. (2000) Embryonic stem cells differentiate into oligodendrocytes and myelinate in culture and after spinal cord transplantation. Proc. Natl. Acad. Sci. USA 97, 6126–6131.

    Article  PubMed  CAS  Google Scholar 

  26. Teng, Y. D., Lavik, E., Qu, X., Park, K. I., Ourednik, J., Langer, R., et al. (2000) Transplantation of neural stem cells seeded in biodegradable polymer scaffold ameliorates long-term functional deficits resulting from spinal cord hemisection in adult rats. American Society of Neural Transplantation and Repair; Meeting, Vol 7, p. 61.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Teng, Y.D. et al. (2003). Neural Stem Cells in and from the Spinal Cord. In: Zigova, T., Snyder, E.Y., Sanberg, P.R. (eds) Neural Stem Cells for Brain and Spinal Cord Repair. Contemporary Neuroscience. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-298-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-298-2_12

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-298-8

  • Online ISBN: 978-1-59259-298-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics