Skip to main content

Part of the book series: Contemporary Neuroscience ((CNEURO))

  • 236 Accesses

Abstract

The goal in transplant therapy is to provide adequate numbers of cells to appropriate sites for useful cellular replacement. In principle, three types of therapy can be considered. One straightforward therapeutic approach is to use dissociated cells for replacement. In this approach, either purified populations of cells or mixed populations of cells can be used. A second therapeutic approach is to develop devices that are a combination of synthetic material and cells. A third possibility is to use stem cells and precursor cells to generate organs in culture. These synthetic organs can then be transplanted. Each of these approaches has been tried with varied amounts of success. Generating organs has been possible for some structures such as skin, blood vessels, lens, and bone (see ref. 1 and references therein), but the inherent complexity of even the simplest neural structures currently renders this an impractical approach for the nervous system. A combination of synthetic material and cells have been used in retinal implants, cochlear replacements, nerve electrode junctions, synthetic neural networks or guidance channels for nerve regrowth. These devices are still in developmental stages and a detailed discussion of such devices is beyond the scope of this chapter. In this chapter, we have limited our discussion to the relative advantages and disadvantages of the various human cell types that are available for dissociated cell replacement therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kamb, A. and Rao, M. S. (2000) Stem cells and gene discovery, in Stem Cells and CNS Development ( Rao, M. S., ed.), Humana, Totowa, NJ.

    Google Scholar 

  2. Chalmers-Redman, R. M., Priestley, T., Kemp, J. A., and Fine, A. (1997) In vitro propagation and inducible differentiation of multipotential progenitor cells from human fetal brain. Neuroscience 76, 1121–1128.

    Article  CAS  PubMed  Google Scholar 

  3. Vescovi, A. L., Gritti, A., Galli, R., and Parati, E. A. (1999) Isolation and intracerebral grafting of nontransformed multipotential embryonic human CNS stem cells. J. Neurotrauma 16, 689–693.

    Article  CAS  PubMed  Google Scholar 

  4. Carpenter, M. K., Cui, X., Hu, Z. Y., Jackson, J., Sherman, S., Seiger, A., et al. (1999) In vitro expansion of a multipotent population of human neural progenitor cells. Exp. Neurol. 158, 265–278.

    Article  CAS  PubMed  Google Scholar 

  5. Milward, E. A., Lundberg, C. G., Ge, B., Lipsitz, D., Zhao, M., and Duncan, I. D. (1997) Isolation and transplantation of multipotential populations of epidermal growth factor-responsive, neural progenitor cells from the canine brain. J. Neurosci. Res. 50, 862–871.

    Article  CAS  PubMed  Google Scholar 

  6. Gritti, A., Frolichsthal-Schoeller, P., Galli, R., Parati, E. A., Cova, L., Paganao, S. F., Bjornson, C. R., and Vescovi, A. L. (1999) Epidermal and fibroblast growth factors behave as mitogenic regulators for a single multipoint stem cell-like population from the subventricular region of the adult mouse forebrain. J. Neurosci. 19 (9), 3287–3297.

    CAS  PubMed  Google Scholar 

  7. Piper, D. R., Mujtaba, T., Rao, M. S., and Lucero, M. T. (2000) Immunocytochemical and physiological characterization of a population of cultured human neural precursors. J. Neurophysiol. 84, 534–548.

    CAS  PubMed  Google Scholar 

  8. Reynolds, B. A. and Weiss, S. (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255, 1707–1710.

    Article  CAS  PubMed  Google Scholar 

  9. Svendsen, C. N. Caldwell, M. A., and Ostenfeld, T. (1999) Human neural stem cells: isolation, expansion and transplantation. Brain Pathol. 9 (3), 499–513.

    CAS  Google Scholar 

  10. Svendsen, C. N. and Rosser, A. E. (1995) Neurones from stem cells? Trends Neurosci. 18, 465–467.

    Article  CAS  PubMed  Google Scholar 

  11. Ostenfeld, T., Caldwell, M. A., Prowse, K. R., Linskens, M. H., Jauniaux, E., and Svendsen, C. N. (2000) Human neural precursor cells express low levels of telomerase in vitro and show diminishing cell proliferation with extensive axonal outgrowth following transplantation. Exp. Neurol. 164, 215–226.

    Article  CAS  PubMed  Google Scholar 

  12. Fricker, R. A., Carpenter, M. K., Winkler, C., Greco, C., Gates, M. A., and Bjorklund, A. (1999) Site-specific migration and neuronal differentiation of human neural progenitor cells after transplantation in the adult rat brain. J. Neurosci. 19, 5990–6005.

    CAS  PubMed  Google Scholar 

  13. Learish, R. D., Brustle, O., Zhang, S. C., and Duncan, I. D. (1999) Intraventricular transplantation of oligodendrocyte progenitors into a fetal myelin mutant results in widespread formation of myelin. Ann. Neurol. 46 (5), 716–722.

    Article  CAS  PubMed  Google Scholar 

  14. Cai J. and Rao, M. S. (2002) Aging and stem cells, in Stem Cells: A Cellular Fountain of Youth ( Mattson, M. P. and Van Zant, G., eds.), Elsevier, Amsterdam, pp. 97–116.

    Chapter  Google Scholar 

  15. Homer, P. J., Power, A. E., Kempermann, G., Kuhn, H. G., Palmer, T. D., Winkler, J., et al. (2000) Proliferation and differentiation of progenitor cells throughout the intact adult rat spinal cord. J. Neurosci. 20, 2218–2228.

    Google Scholar 

  16. Schuldiner, M., Yanuka, O., Itskovitz-Eldor, J., Melton, D. A., and Benvenisty, N. (2000) From the cover: effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells. Proc. Natl. Acad. Sci. USA 97, 11,307–11, 312.

    Google Scholar 

  17. Cao, Q. L., Zhang, Y. P., Howard, R. M., Walters, W. M., Tsoulfas, P., and Whittemore, S. R. (2001) Pluripotent stem cells engrafted into the normal or lesioned adult rat spinal cord are restricted to a glial lineage. Exp. Neurol. 167, 48–58.

    Google Scholar 

  18. Kondo, T. and Raff, M. (2000) Oligodendrocyte precursor cells reprogrammed to become multipotential CNS stem cells. Science 289, 1754–1757.

    Article  CAS  PubMed  Google Scholar 

  19. Laywell, E. D., Rakic, P., Kukekov, V. G., Holland, E. C., and Steindler, D. A. (2000) Identification of a multipotent astrocytic stem cell in the immature and adult mouse brain. Proc. Natl. Acad. Sci. USA 97, 13, 883–13, 888.

    Article  CAS  Google Scholar 

  20. Quinn, S. M., Walters, W. M., Vescovi, A. L., and Whittemore, S. R. (1999) Lineage restriction of neuroepithelial precursor cells from fetal human spinal cord. J. Neurosci. Res. 57, 590–602.

    Article  CAS  PubMed  Google Scholar 

  21. Yang, H., Mujtaba, T., Venkatraman, G., Wu, Y. Y., Rao, M. S., and Luskin, M. B. (2000) Region-specific differentiation of neural tube-derived neuronal restricted progenitor cells after heterotopic transplantation. Proc. Natl. Acad. Sci. USA 97, 13, 366–13, 371.

    CAS  Google Scholar 

  22. Northcutt, R. G. and Gans, C. (1983) The genesis of neural crest and epidermal placodes: a reinterpretation of vertebrate origins. Q. Rev. Biol. 58, 1–28.

    Article  CAS  PubMed  Google Scholar 

  23. Nieto, M. A., Bradley, L. C., Hunt, P., Das Gupta, R., Krumlauf, R., and Wilkinson, D. G. (1992) Molecular mechanisms of pattern formation in the vertebrate hindbrain. Ciba Found. Symp. 165, 92–102; discussion 102–107.

    Google Scholar 

  24. Scherson, T., Serbedzija, G., Fraser, S., and Bronner-Fraser, M. (1993) Regulative capacity of the cranial neural tube to form neural crest. Development 118, 1049–1062.

    CAS  PubMed  Google Scholar 

  25. Anderson, D. J. (2000) Genes, lineages and the neural crest: a speculative review. Philo. Trans. R. Soc. (Lond) B 355, 953–964.

    Article  CAS  Google Scholar 

  26. Morrison, S. J., White, P. M., Zock, C., and Anderson, D. J. (1999) Prospective identification, isolation by flow cytometry, and in vivo self-renewal of multipotent mammalian neural crest stem cells. Cell 96, 737–749.

    Article  CAS  PubMed  Google Scholar 

  27. Hagedorn, L., Floris, J., Suter, U., and Sommer, L. (2000) Autonomic neuro-genesis and apoptosis are alternative fates of progenitor cell communities induced by TGFbeta. Dev. Biol. 228, 57–72.

    Article  CAS  PubMed  Google Scholar 

  28. Askanas, V., Engel, W. K., Dalakas, M. C., Lawrence, J. V., and Carter, L. S. (1980) Human schwann cells in tissue culture: histochemical and ultrastructural studies. Arch. Neurol. 37, 329–337.

    Article  CAS  PubMed  Google Scholar 

  29. Scarpini, E., Kreider, B. Q., Lisak, R. P., Meola, G., Velicogna, M. E., Baron, P., et al. (1988) Cultures of human Schwann cells isolated from fetal nerves. Brain Res. 440, 261–266.

    Article  CAS  PubMed  Google Scholar 

  30. Scarpini, E., Meola, G., Baron, P. L., Beretta, S., Velicogna, M., Moggio, M., et al. (1987) Human Schwann cells: cytochemical, ultrastructural and immunological studies in vivo and in vitro. Basic Appl. Histochem. 31, 33–42.

    CAS  PubMed  Google Scholar 

  31. Mathon, N. F., Malcolm, D. S., Harrisingh, M. C., Cheng, L., and Lloyd, A. C. (2001) Lack of replicative senescence in normal rodent glia. Science 291, 872–875.

    Article  CAS  PubMed  Google Scholar 

  32. Guenard, V., Gwynn, L. A., and Wood, R M. (1994) Astrocytes inhibit Schwann cell proliferation and myelination of dorsal root ganglion neurons in vitro. J. Neurosci. 14, 2980–2992.

    CAS  PubMed  Google Scholar 

  33. Harvey, A. R. and Plant, G. W. (1995) Schwann cells and fetal tectal tissue cografted to the midbrain of newborn rats: fate of Schwann cells and their influence on host retinal innervation of grafts. Exp. Neurol. 134, 179–191.

    Article  CAS  PubMed  Google Scholar 

  34. Guest, J. D., Rao, A., Olson, L., Bunge, M. B., and Bunge, R. P. (1997) The ability of human Schwann cell grafts to promote regeneration in the transected nude rat spinal cord. Exp. Neurol. 148, 502–522.

    Article  CAS  PubMed  Google Scholar 

  35. Blakemore, W. F. and Franklin, R. J. (2000) Transplantation options for therapeutic central nervous system remyelination. Cell Transplant. 9, 289–294.

    CAS  PubMed  Google Scholar 

  36. Le Douarin, N. M., Dupin, E., Baroffio, A., and Dulac, C. (1992) New insights into the development of neural crest derivatives. Int. Rev. Cytol. 138, 269–314.

    Article  PubMed  Google Scholar 

  37. Northcutt, R. G. (1990) Ontogeny and phylogeny: a re-evaluation of conceptual relationships and some applications. Brain Behay. Evol. 36, 116–140.

    Article  CAS  Google Scholar 

  38. Schlosser, G. and Northcutt, R. G. (2000) Development of neurogenic placodes in Xenopus laevis. J. Comp. Neurol. 418, 121–146.

    Article  CAS  Google Scholar 

  39. LaBonne, C. and Bronner-Fraser, M. (1999) Molecular mechanisms of neural crest formation. Annu. Rev. Cell Dev. Biol. 15, 81–112.

    Article  CAS  PubMed  Google Scholar 

  40. Costanzo, R. M. (1991) Regeneration of olfactory receptor cells. Ciba Found. Symp. 160, 233–242; discussion 243–248.

    Google Scholar 

  41. Calof, A. L., Rim, P. C., Askins, K. J., Mumm, J. S., Gordon, M. K., Iannuzzelli, P., et al. (1998) Factors regulating neurogenesis and programmed cell death in mouse olfactory epithelium. Ann. NY. Acad. Sci. 855, 226–229.

    Article  Google Scholar 

  42. Pagano, S. F., Impagnatiello, F., Girelli, M., Cova, L., Grioni, E., Onofri, M., et al. (2000) Isolation and characterization of neural stem cells from the adult human olfactory bulb. Stem Cells 18, 295–300.

    Article  CAS  PubMed  Google Scholar 

  43. Roisen, F. J., Klueber, K. M., Lu, C. L., Hatcher, L. M., Dozier, A., Shields, C. B., et al. (2001) Adult human olfactory stem cells. Brain Res. 890, 11–22.

    Article  Google Scholar 

  44. Goldstein, B. J., Fang, H., Youngentob, S. L., and Schwob, J. E. (1998) Transplantation of multipotent progenitors from the adult olfactory epithelium. Neuroreport 9, 1611–1617.

    Article  CAS  PubMed  Google Scholar 

  45. Huard, J. M.,Youngentob, S. L., Goldstein, B. J., Luskin, M. B., and Schwob, J. E. (1998) Adult olfactory epithelium contains multipotent progenitors that give rise to neurons and non-neural cells. J. Comp. Neurol. 400, 469–486.

    CAS  Google Scholar 

  46. Farbman, A. I. (1997) Injury-stimulated neurogenesis in sensory systems. Adv. Neurol. 72, 157–161.

    CAS  PubMed  Google Scholar 

  47. Doucette, R. (1995) Olfactory ensheathing cells: potential for glial cell transplantation into areas of CNS injury. Histol. Histopathol. 10, 503–507.

    CAS  PubMed  Google Scholar 

  48. Smale, K. A., Doucette, R., and Kawaja, M. D. (1996) Implantation of olfactory ensheathing cells in the adult rat brain following fimbria-fornix transection. Exp. Neurol. 137, 225–233.

    Article  CAS  PubMed  Google Scholar 

  49. Li, Y., Field, P. M., and Raisman, G. (1998) Regeneration of adult rat corticospinal axons induced by transplanted olfactory ensheathing cells. J. Neurosci. 18, 10,514–10, 524.

    Google Scholar 

  50. Kato, T., Yokouchi, K., Fukushima, N., et al. (2001) Related continual replacement of newly-generated olfactory neurons in adult rats. Neurosci. Lett. 307 (1), 17–20.

    Article  CAS  PubMed  Google Scholar 

  51. Ramon-Cueto, A., Cordero, M. I., Santos-Benito, F. F., and Avila, J. (2000) Functional recovery of paraplegic rats and motor axon regeneration in their spinal cords by olfactory ensheathing glia. Neuron 25, 425–435.

    Article  CAS  PubMed  Google Scholar 

  52. Roy, N. S., Wang, S., Harrison-Restelli, C., Benraiss, A., Fraser, R. A., Gravel, M., et al. (1999) Identification, isolation, and promoter-defined separation of mitotic oligodendrocyte progenitor cells from the adult human subcortical white matter. J. Neurosci. 19, 9986–9995.

    CAS  PubMed  Google Scholar 

  53. Roy, N. S., Wang, S., Jiang, L., Kang, J., Benraiss, A., Harrison-Restelli, C., et al. (2000) In vitro neurogenesis by progenitor cells isolated from the adult human hippocampus. Nat. Med. 6, 271–277.

    Article  CAS  PubMed  Google Scholar 

  54. Piper D. R., Mujtaba, T., Keyoung H., et al. (2001) Identification and characterization of neuronal precursors and their progeny from human fetal tissue. J. Neurosci. Res. 66, 356–368.

    Article  CAS  PubMed  Google Scholar 

  55. Wang, S., Roy, N. S., Benraiss, A., and Goldman, S. A. (2000) Promoter-based isolation and fluorescence-activated sorting of mitotic neuronal progenitor cells from the adult mammalian ependymal/subependymal zone. Den Neurosci. 22, 167–176.

    Article  Google Scholar 

  56. Huber, A. B. and Schwab, M. E. (2000) Nogo-A, a potent inhibitor of neurite outgrowth and regeneration. Biol. Chem. 381, 407–419.

    Article  CAS  PubMed  Google Scholar 

  57. Davies, S. J., Fitch, M. T., Memberg, S. P., Hall, A. K., Raisman, G., and Silver, J. (1997) Regeneration of adult axons in white matter tracts of the central nervous system. Nature 390, 680–683.

    CAS  PubMed  Google Scholar 

  58. Reier, P. J., Anderson, D. K., Thompson, F. J., and Stokes, B. T. (1992) Neural tissue transplantation and CNS trauma: anatomical and functional repair of the injured spinal cord. J. Neurotrauma 9 (Suppl 1), S223 - S248.

    PubMed  Google Scholar 

  59. Reier, P. J., Stokes, B. T., Thompson, F. J., and Anderson, D. K. (1992) Fetal cell grafts into resection and contusion/compression injuries of the rat and cat spinal cord. Exp. Neurol. 115, 177–188.

    Article  CAS  PubMed  Google Scholar 

  60. Clowry, G., Sieradzan, K., and Vrbova, G. (1991) Transplants of embryonic motoneurones to adult spinal cord: survival and innervation abilities. Trends Neurosci. 14, 355–357.

    Article  CAS  PubMed  Google Scholar 

  61. Tessler, A. (1991) Intraspinal transplants. Ann. Neurol. 29, 115–123.

    Article  CAS  PubMed  Google Scholar 

  62. Shetty, A. K. and Turner, D. A. (1998) In vitro survival and differentiation of neurons derived from epidermal growth factor-responsive postnatal hippocampal stem cells: inducing effects of brain-derived neurotrophic factor. J. Neurobiol. 35, 395–425.

    Article  CAS  PubMed  Google Scholar 

  63. Ling, Z. D., Potter, E. D., Lipton, J. W., and Carvey, P. M. (1998) Differentiation of mesencephalic progenitor cells into dopaminergic neurons by cytokines. Exp. Neurol. 149, 411–423.

    Article  CAS  PubMed  Google Scholar 

  64. Rao, M. S. (1999) Multipotent and restricted precursors in the central nervous system. Anat. Rec. 257, 137–148.

    Article  CAS  PubMed  Google Scholar 

  65. Wichterle, H., Garcia-Verdugo, J. M., Herrera, D. G., and Alvarez-Buylla, A. (1999) Young neurons from medial ganglionic eminence disperse in adult and embryonic brain. Nat. Neurosci. 2, 461–466.

    Article  CAS  PubMed  Google Scholar 

  66. Lee, J. C., Mayer-Proschel, M., and Rao, M. S. (2000) Gliogenesis in the central nervous system. Glia 30, 105–121.

    Article  CAS  PubMed  Google Scholar 

  67. Gudino-Cabrera, G. and Nieto-Sampedro, M. (2000) Schwann-like macroglia in adult rat brain. Glia 30, 49–63.

    Article  CAS  PubMed  Google Scholar 

  68. Jeffery, N. D., Crang, A. J., O’Leary M, T., Hodge, S. J., and Blakemore, W. F. (1999) Behavioural consequences of oligodendrocyte progenitor cell transplantation into experimental demyelinating lesions in the rat spinal cord. Eur. J. Neurosci. 11, 1508–1514.

    CAS  Google Scholar 

  69. Zhang, S. C., Ge, B., and Duncan, I. D. (2000) Tracing human oligodendroglial development in vitro. J. Neurosci. Res. 59, 421–429.

    Article  CAS  PubMed  Google Scholar 

  70. Franklin, R. J., Crang, A. J., and Blakemore, W. F. (1993) The reconstruction of an astrocytic environment in glia-deficient areas of white matter. J. Neurocytol. 22, 382–396.

    Article  CAS  PubMed  Google Scholar 

  71. Goldberg, W. J. and Bernstein, J. J. (1988) Fetal cortical astrocytes migrate from cortical homografts throughout the host brain and over the glia limitans. J. Neurosci. Res. 20, 38–45.

    Article  CAS  PubMed  Google Scholar 

  72. Goldberg, W. J. and Bernstein, J. J. (1988) Migration of cultured fetal spinal cord astrocytes into adult host cervical cord and medulla following transplantation into thoracic spinal cord. J. Neurosci. Res. 19, 34–42.

    Article  CAS  PubMed  Google Scholar 

  73. Houle, J. (1992) The structural integrity of glial scar tissue associated with a chronic spinal cord lesion can be altered by transplanted fetal spinal cord tissue. J. Neurosci. Res. 31, 120–130.

    Article  CAS  PubMed  Google Scholar 

  74. Bernstein, J. J. and Goldberg, W. J. (1989) Maintenance of host medullary nucleus gracilis neurons after C3 homografting of fetal spinal cord into host fasciculus gracilis. Brain Res. 488, 180–185.

    Article  CAS  PubMed  Google Scholar 

  75. Bernstein, J. J. and Goldberg, W. J. (1989) Rapid migration of grafted cortical astrocytes from suspension grafts placed in host thoracic spinal cord. Brain Res. 491, 205–211.

    Article  CAS  PubMed  Google Scholar 

  76. Oster-Granite, M. L. and Herndon, R. M. (1978) Studies of cultured human and simian fetal brain cells. I. Characterization of the cell types. Neuropathol. Appl. Neurobiol. 4, 429–442.

    Article  CAS  PubMed  Google Scholar 

  77. Bressler, J. P., Cole, R., and de Vellis, J. (1980) Cell culture systems to study glial transformation. Dev. Toxicol. Environ. Sci. 8, 187–192.

    CAS  PubMed  Google Scholar 

  78. Whittemore, S. R., Sanon, H. R., and Wood, P. M. (1993) Concurrent isolation and characterization of oligodendrocytes, microglia and astrocytes from adult human spinal cord. Int. J. Dev. Neurosci. 11, 755–764.

    Article  CAS  PubMed  Google Scholar 

  79. Ryder, E. F., Snyder, E. Y., and Cepko, C. L. (1990) Establishment and characterization of multipotent neural cell lines using retrovirus vector-mediated oncogene transfer. J. Neurobiol. 21, 356–375.

    Article  CAS  PubMed  Google Scholar 

  80. Renfranz, P. J., Cunningham, M. G., and McKay, R. D. (1991) Region-specific differentiation of the hippocampal stem cell line HiB5 upon implantation into the developing mammalian brain. Cell 66, 713–729.

    Article  CAS  PubMed  Google Scholar 

  81. Nakafuku, M. and Nakamura, S. (1995) Establishment and characterization of a multipotential neural cell line that can conditionally generate neurons, astrocytes, and oligodendrocytes in vitro. J. Neurosci. Res. 41, 153–168.

    Article  CAS  PubMed  Google Scholar 

  82. Rao, M. S. and Anderson, D. J. (1997) Immortalization and controlled in vitro differentiation of murine multipotent neural crest stem cells. J. Neurobiol. 32, 722–746.

    Article  CAS  PubMed  Google Scholar 

  83. Martinez-Serrano, A. and Bjorklund, A. (1997) Immortalized neural progenitor cells for CNS gene transfer and repair. Trends Neurosci. 20, 530–538.

    Article  CAS  PubMed  Google Scholar 

  84. Sah, D. W., Ray, J., and Gage, F. H. (1997) Bipotent progenitor cell lines from the human CNS. Nat. Biotechnol. 15, 574–580.

    Article  CAS  PubMed  Google Scholar 

  85. Li, R., Thode, S., Zhou, J., Richard, N., Pardinas, J., Rao, M. S., et al. (2000) Motoneuron differentiation of immortalized human spinal cord cell lines. J. Neurosci. Res. 59, 342–352.

    Article  CAS  PubMed  Google Scholar 

  86. Raymon, H. K., Thode, S., Zhou, J., Friedman, G. C., Pardinas, J. R., Barrere, C., et al. (1999) Immortalized human dorsal root ganglion cells differentiate into neurons with nociceptive properties. J. Neurosci. 19, 5420–5428.

    CAS  PubMed  Google Scholar 

  87. Saporta, S., Borlongan, C. V., and Sanberg, R R. (1999) Neural transplantation of human neuroteratocarcinoma (hNT) neurons into ischemic rats. A quantitative dose-response analysis of cell survival and behavioral recovery. Neuroscience 91, 519–525.

    Article  CAS  PubMed  Google Scholar 

  88. Muir, J. K., Raghupathi, R., Saatman, K. E., Wilson, C. A., Lee, V. M., Trojanowski, J. Q., et al. (1999) Terminally differentiated human neurons survive and integrate following transplantation into the traumatically injured rat brain. J. Neurotrauma 16, 403–414.

    Article  CAS  PubMed  Google Scholar 

  89. Hurlbert, M. S., Gianani, R. I., Hutt, C., Freed, C. R., and Kaddis, F. G. (1999) Neural transplantation of hNT neurons for Huntington’s disease. Cell Transplant. 8, 143–151.

    CAS  PubMed  Google Scholar 

  90. Barker, R. A., Kendall, A. L., and Widner, H. (2000) Neural tissue xenotransplantation: what is needed prior to clinical trials in Parkinson’s disease? Neural Tissue Xenographic Project. Cell Transplant 9 (2), 235–246.

    CAS  PubMed  Google Scholar 

  91. Kondziolka, D., Wechsler, L., Goldstein, S., Meltzer, C., Thulborn, K. R., Gebel, J., et al. (2000) Transplantation of cultured human neuronal cells for patients with stroke. Neurology 55, 565–569.

    Google Scholar 

  92. Flax, J. D., Aurora, S., Yang, C., Simonin, C., Wills, A. M., Billinghurst, L. L., et al. (1998) Engraftable human neural stem cells respond to developmental cues, replace neurons, and express foreign genes. Natl. Biotechnol. 16, 1033–1039.

    Article  CAS  Google Scholar 

  93. Yandava, B. D., Billinghurst, L. L., and Snyder, E. Y. (1999) “Global” cell replacement is feasible via neural stem cell transplantation: evidence from the dysmyelinated shiverer mouse brain. Proc. Natl. Acad. Sci. USA 96, 7029–7034.

    Article  CAS  PubMed  Google Scholar 

  94. Aboody, K. S., Brown, A., Rainov, N. G., Bower, K. A., Liu, S., Yang, W., et al. (2000) From the cover: neural stem cells display extensive tropism for pathology in adult brain: evidence from intracranial gliomas. Proc. Natl. Acad. Sci. USA 97, 12,846–12, 851.

    Google Scholar 

  95. Derrington, E. A., Dufay, N., Rudkin, B. B., and Belin, M. F. (1998) Human primitive neuroectodermal tumor cells behave as multipotent neural precursors in response to FGF2. Oncogene 17, 1663–1672.

    Article  CAS  PubMed  Google Scholar 

  96. Villa, A., Snyder, E. Y., Vescovi, A., and Martinez-Serrano, A. (2000) Establishment and properties of a growth factor-dependent, perpetual neural stem cell line from the human CNS. Exp. Neurol. 161, 67–84.

    Article  CAS  PubMed  Google Scholar 

  97. Rubio, F. J., Bueno, C., Villa, A., Navarro, B., and Martinez-Serrano, A. (2000) Genetically perpetuated human neural stem cells engraft and differentiate into the adult mammalian brain. Mol. Cell Neurosci. 16, 1–13.

    Article  CAS  PubMed  Google Scholar 

  98. Bocchini, V., Casalone, R., Collini, P., Rebel, G., and Lo Curto, E. (1991) Changes in glial fibrillary acidic protein and karyotype during culturing of two cell lines established from human glioblastoma multiforme. Cell Tissue Res. 265, 73–81.

    Article  CAS  PubMed  Google Scholar 

  99. Izumi, I., Mineura, K., Watanabe, K., and Kowada, M. (1994) Establishment of the two glioma cell lines: YH and AM. Hum. Cell 7, 101–105.

    CAS  PubMed  Google Scholar 

  100. Andres-Barquin, R. J., Hernandez, M. C., Hayes, T. E., McKay, R. D., and Israel, M. A. (1997) Id genes encoding inhibitors of transcription are expressed during in vitro astrocyte differentiation and in cell lines derived from astrocytic tumors. Cancer Res. 57, 215–220.

    CAS  PubMed  Google Scholar 

  101. Mao, X., Barfoot, R., Hamoudi, R. A., and Noble, M. (1998) Alleletyping of an oligodendrocyte-type-2 astrocyte lineage derive from a human glioblastoma multiforme. J. Neurooncol. 40, 243–250.

    Article  CAS  PubMed  Google Scholar 

  102. Gao, W. Q. and Hatten, M. E. (1994) Immortalizing oncogenes subvert the establishment of granule cell identity in developing cerebellum. Development 120, 1059–1070.

    CAS  PubMed  Google Scholar 

  103. Espinosa de los Monteros, A., Zhang, M., and De Vellis, J. (1993) O2A progenitor cells transplanted into the neonatal rat brain develop into oligodendrocytes but not astrocytes. Proc. Natl. Acad. Sci. USA 90, 50–54.

    Article  Google Scholar 

  104. O’Leary, M. T. and Blakemore, W. F. (1997) Oligodendrocyte precursors survive poorly and do not migrate following transplantation into the normal adult central nervous system. J. Neurosci. Res. 48, 159–167.

    Article  PubMed  Google Scholar 

  105. Espinosa de los Monteros, A., Zhao, R, Huang, C., Pan, T., Chang, R., Nazarian, R., et al. (1997) Transplantation of CG4 oligodendrocyte progenitor cells in the myelin-deficient rat brain results in myelination of axons and enhanced oligodendroglial markers. J. Neurosci. Res. 50, 872–887.

    Article  PubMed  Google Scholar 

  106. Malatesta, P., Hartfuss, E., and Gotz, M. (2000) Isolation of radial glial cells by fluorescent-activated cell sorting reveals a neuronal lineage. Development 127, 5253–5263.

    CAS  PubMed  Google Scholar 

  107. Tang, D. G., Tokumoto, Y. M., Apperly, J. A., Lloyd, A. C., and Raff, M. C. (2001) Lack of replicative senescence in cultured rat oligodendrocyte precursor cells. Science 291, 868–871.

    Article  CAS  PubMed  Google Scholar 

  108. Woodbury, D., Schwarz, E. J., Prockop, D. J., and Black, I. B. (2000) Adult rat and human bone marrow stromal cells differentiate into neurons. J. Neurosci. Res. 61, 364–370.

    Article  CAS  PubMed  Google Scholar 

  109. Brewer, G. J. (1999) Regeneration and proliferation of embryonic and adult rat hippocampal neurons in culture. Exp. Neurol. 159, 237–247.

    Article  CAS  PubMed  Google Scholar 

  110. Roy, N. S., Benraiss, A., Wang, S., Fraser, R. A., Goodman, R., Couldwell, W. T., et al. (2000) Promoter-targeted selection and isolation of neural progenitor cells from the adult human ventricular zone. J. Neurosci. Res. 59, 321–331.

    Article  CAS  PubMed  Google Scholar 

  111. Kaji, E. H. and Leiden, J. M. (2001) Gene and stem cell therapies. JAMA 285, 545–550.

    Article  CAS  PubMed  Google Scholar 

  112. Weissman, I. L. (2000) Translating stem and progenitor cell biology to the clinic: barriers and opportunities. Science 287, 1442–1446.

    Article  CAS  PubMed  Google Scholar 

  113. Ferrari, G., Cusella-De Angelis, G., Coletta, M., Paolucci, E., Stornaiuolo, A., Cossu, G., et al. (1998) Muscle regeneration by bone marrow-derived myogenic progenitors. Science 279, 1528–1530.

    Article  CAS  PubMed  Google Scholar 

  114. Gunsilius, E., Duba, H. C., Petzer, A. L., Kahler, C. M., Grunewald, K., Stockhammer, G., et al. (2000) Evidence from a leukaemia model for maintenance of vascular endothelium by bone-marrow-derived endothelial cells. Lancet 355, 1688–1691.

    Article  CAS  PubMed  Google Scholar 

  115. Mitaka, T. (2001) Hepatic stem cells: from bone marrow cells to hepatocytes. Biochem. Biophys. Res. Commun. 281, 1–5.

    Article  CAS  PubMed  Google Scholar 

  116. Bjornson, C. R., Rietze, R. L., Reynolds, B. A., Magli, M. C., and Vescovi, A. L. (1999) Turning brain into blood: a hematopoietic fate adopted by adult neural stem cells in vivo. Science 283, 534–537.

    Article  CAS  PubMed  Google Scholar 

  117. Brazelton, T. R., Rossi, F. M., Keshet, G. I., and Blau, H. M. (2000) From marrow to brain: expression of neuronal phenotypes in adult mice. Science 290, 1775–1779.

    Article  CAS  PubMed  Google Scholar 

  118. Mezey, E., Chandross, K. J., Harta, G., Maki, R. A., and McKercher, S. R. (2000) Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science 290, 1779–1782.

    Article  CAS  PubMed  Google Scholar 

  119. Chandross, K. and Mezey, E. (2002) Plasticity of adult bone marrow stem cells, in Stem Cells: A Cellular Fountain of Youth ( Mattson, M. P. and Van Zant, G., eds.), Elsevier, Amsterdam, pp. 74–96.

    Google Scholar 

  120. Sanchez-Ramos, J., Song, S., Cardozo-Pelaez, F., Hazzi, C., Stedeford, T., Willing, A., et al. (2000) Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp. Neurol. 164, 247–256.

    Article  CAS  PubMed  Google Scholar 

  121. Prockop, D. J. (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276, 71–74.

    Article  CAS  PubMed  Google Scholar 

  122. Brevig, T., Holgersson, J., and Widner, H. (2000) Xenotransplantation for CNS repair: immunological barriers and strategies to overcome them. Trends Neurosci. 23, 337–344.

    Article  CAS  PubMed  Google Scholar 

  123. Fishman, J. A. (1998) Infection and xenotransplantation. Developing strategies to minimize risk. Ann. NY.Acad. Sci. 862, 52–66.

    Article  CAS  PubMed  Google Scholar 

  124. Bjorklund, A. (1992) Dopaminergic transplants in experimental parkinsonism: cellular mechanisms of graft-induced functional recovery. Curr. Opin. Neurobiol. 2, 683–689.

    Article  CAS  PubMed  Google Scholar 

  125. Wictorin, K., Brundin, P., Sauer, H., Lindvall, O., and Bjorklund, A. (1992) Long distance directed axonal growth from human dopaminergic mesencephalic neuroblasts implanted along the nigrostriatal pathway in 6-hydroxydopamine lesioned adult rats. J. Comp. Neurol. 323, 475–494.

    Article  CAS  PubMed  Google Scholar 

  126. Larsson, L. C., Czech, K. A., Brundin, P., and Widner, H. (2000) Intrastriatal ventral mesencephalic xenografts of porcine tissue in rats: immune responses and functional effects. Cell Transplant. 9, 261–272.

    CAS  PubMed  Google Scholar 

  127. Larsson, L. C. and Widner, H. (2000) Neural tissue xenografting. Scand. J. Immunol. 52, 249–256.

    Article  CAS  PubMed  Google Scholar 

  128. Lambrigts, D., Sachs, D. H., and Cooper, D. K. (1998) Discordant organ xenotransplantation in primates: world experience and current status. Transplantation 66, 547–561.

    Article  CAS  PubMed  Google Scholar 

  129. Deacon, T., Schumacher, J., Dinsmore, J., Thomas, C., Palmer, P., Kott, S., et al. (1997) Histological evidence of fetal pig neural cell survival after transplantation into a patient with Parkinson’s disease. Nat. Med. 3, 350–353.

    Article  CAS  PubMed  Google Scholar 

  130. Hauser, R. A., Freeman, T. B., Snow, B. J., Nauert, M., Gauger, L., Kordower, J. H., et al. (1999) Long-term evaluation of bilateral fetal nigral transplantation in Parkinson disease. Arch. Neurol. 56, 179–187.

    Article  CAS  PubMed  Google Scholar 

  131. Lindvall, O. (1997) Neural transplantation: a hope for patients with Parkinson’s disease. Neuroreport 8, 3–10.

    Article  Google Scholar 

  132. Brevig, T., Pedersen, E. B., and Finsen, B. (2000) Molecular and cellular mechanisms in immune rejection of intracerebral neural transplants. Novartis Found. Symp. 231, 166–177; discussion 177–183, 302–306.

    Article  CAS  PubMed  Google Scholar 

  133. Hammer, C. (1998) Physiological obstacles after xenotransplantation. Ann. N. YAcad. Sci. 862, 19–27.

    Article  CAS  PubMed  Google Scholar 

  134. Fishman, J. A. (1995) Pneumocystis carinii and parasitic infections in transplantation. Infect. Dis. Clin. North Am. 9, 1005–1044.

    CAS  PubMed  Google Scholar 

  135. Fishman, J. A. (1997) Xenosis and xenotransplantation: addressing the infectious risks posed by an emerging technology. Kidney Int. 58 (Suppl.), S41 - S45.

    CAS  Google Scholar 

  136. Ono, K., Takii, T., Onozaki, K., Ikawa, M., Okabe, M., and Sawada, M. (1999) Migration of exogenous immature hematopoietic cells into adult mouse brain parenchyma under GFP-expressing bone marrow chimera. Biochem. Biophys. Res. Commun. 262, 610–614.

    Article  CAS  PubMed  Google Scholar 

  137. Wu, Y. P., McMahon, E., Kraine, M. R., Tisch, R., Meyers, A., Frelinger, J., et al. (2000) Distribution and characterization of GFP(+) donor hematogenous cells in Twitcher mice after bone marrow transplantation. Am. J. Pathol. 156, 1849–1854.

    Article  CAS  PubMed  Google Scholar 

  138. Platt, F. M. and Butters, T. D. (1998) New therapeutic prospects for the glycosphingolipid lysosomal storage diseases. Biochem. Pharmacol. 56, 421–430.

    Article  CAS  PubMed  Google Scholar 

  139. Miyauchi, A., Kanje, M., Danielsen, N., and Dahlin, L. B. (1997) Role of macrophages in the stimulation and regeneration of sensory nerves by transposed granulation tissue and temporal aspects of the response. Scand. J. Plast. Reconstr. Surg. Hand. Surg. 31, 17–23.

    Article  CAS  PubMed  Google Scholar 

  140. Rapalino, O., Lazarov-Spiegler, O., Agranov, E., Velan, G. J., Yoles, E., Fraidakis, M., et al. (1998) Implantation of stimulated homologous macrophages results in partial recovery of paraplegic rats. Nat. Med. 4, 814–821.

    Article  CAS  PubMed  Google Scholar 

  141. Evans M. J. and Kaufman, M. H. (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292 (5819), 154–156.

    Article  CAS  PubMed  Google Scholar 

  142. Martin, G. R. (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl. Acad. Sci. USA 78 (12), 7634–7638.

    Article  CAS  PubMed  Google Scholar 

  143. Tones, M. (1998) The use of embryonic stem cells for the genetic manipulation of the mouse. Curr. Top. Dey. Biol. 36, 99–114.

    Google Scholar 

  144. Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshall, V. S., et al. (1998) Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147.

    Article  CAS  PubMed  Google Scholar 

  145. Reubinoff, B. E., Pera, M. F., Fong, C. Y., Trounson, A., and Bongso, A. (2000) Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat. Biotechnol. 18, 399–404.

    Article  CAS  PubMed  Google Scholar 

  146. Shamblott, M. J., Axelman, J., Wang, S., Bugg, E. M., Littlefield, J. W., Donovan, P. J., et al. (1998) Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc. Natl. Acad. Sci. USA 95, 13,726–13, 731.

    Google Scholar 

  147. Kannagi, R., Nudelman, E., Levery, S. B., and Hakomori, S. (1982) A series of human erythrocyte glycosphingolipids reacting to the monoclonal antibody directed to a developmentally regulated antigen SSEA-1. J. Biol. Chem. 257(24), 14,865–14, 874.

    Google Scholar 

  148. Roach, S., Cooper, S., Bennett, W., and Pera, M. F. (1993) Cultured cell lines from human teratomas: windows into tumour growth and differentiation and early human development. Eur. Urol. 23, 82–87; discussion 87–88.

    Google Scholar 

  149. Pera, M. F., Cooper, S., Mills, J., and Parrington, J. M. (1989) Isolation and characterization of a multipotent clone of human embryonal carcinoma cells. Differentiation 42, 10–23.

    Article  CAS  PubMed  Google Scholar 

  150. Amit, M., Carpenter, M. K., Inokuma, M. S., Chiu, C. P., Harris, C. P., Waknitz, M. A., et al. (2000) Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dey. Biol. 227, 271–278.

    Article  CAS  Google Scholar 

  151. Andrews, P. W. (1984) Retinoic acid induces neuronal differentiation of a cloned human embryonal carcinoma cell line in vitro. Dey. Biol. 103, 285–293.

    Article  CAS  Google Scholar 

  152. Pleasure, S. J., Page, C., and Lee, V. M. (1992) Pure, postmitotic, polarized human neurons derived from NTera 2 cells provide a system for expressing exogenous proteins in terminally differentiated neurons. J. Neurosci. 12 (5), 1802–1815.

    CAS  PubMed  Google Scholar 

  153. Xu, C., Inokuma, M. S., Denham, J., Golds, K., Kundu, P., Gold, J. D., Carpenter, M. K. (2001) Feeder-free growth of undifferentiated human embryonic stem cells. Nat. Biotechnol. 19 (10), 971–974.

    Article  CAS  PubMed  Google Scholar 

  154. Carpenter M. K., Inokuma M. S., Denham J., Mujtaba, T., Chiu, C.-P., and Rao, M. S. (2001) Enrichment of neurons and neural precursors from human embryonic stem cells. Exp. Neurol. 172 (2), 383–397.

    Article  CAS  PubMed  Google Scholar 

  155. McDonald, J. W., Liu, X. Z., Qu, Y., Liu, S., Mickey, S. K., Turetsky, D., et al. (1999) Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord. Nat. Med. 5, 1410–1412.

    Article  CAS  PubMed  Google Scholar 

  156. Dinsmore, J., Ratliff, J., Deacon, T., Pakzaban, P., Jacoby, D., Galpern, W., and Isacson, O. (1996) Embryonic stem cells differentiated in vitro as a novel source of cells for transplantation. Cell Transplant. Mar-Apr; 5 (2), 131–143.

    CAS  Google Scholar 

  157. Brustle, O., Spiro, A. C., Karram, K., Choudhary, K., Okaabe, S., and McKay, R. D. (1997) In vitro-generated neural precursors participate in mammalian brain development. Proc. Natl. Acad. Sci. USA Dec. 23: 94(26), 14,809–14, 814.

    Google Scholar 

  158. Yamane, T., Hayashi, S., Mizoguchi, M., Yamazaki, H., and Kunisada, T. (1999) Derivation of melanocytes from embryonic stem cells in culture. Del., Dyn. 216, 450–458.

    Article  CAS  Google Scholar 

  159. Scolding, N. J. and Franklin, R. J. (1997) Remyelination in demyelinating disease. Baillieres Clin. Neurol. 6, 525–548.

    CAS  PubMed  Google Scholar 

  160. Kirschenbaum, B., Nedergaard, M., Preuss, A., Barami, K., Fraser, R. A., Goldman, S. A. (1994) In vitro neuronal production and differentiation by precursor cells derived from the adult human forebrain. Cereb. Cortex 4 (6), 576–589.

    Article  CAS  PubMed  Google Scholar 

  161. Wang, S., Wu, H., Jiang, J., Delohery, T. M., Isdell, F., Goldman, S. A. (1998) Isolation of neuronal precursors by sorting embryonic forebrain transfected with GFP regulated by the T alpha 1 tubulin promoter. Nature Biotechnology 16 (2), 196–201.

    Article  CAS  PubMed  Google Scholar 

  162. Gregori, N., Proschel, C., Noble, M., Mayer-Proschel, M. (2002) The tripotential glial-restricted precursor (GRP) cell and glial development in the spinal cord: generation of bipotential oligodendrocyte-type-2 astrocyte progenitor cells and dorsal-ventral differences in GRP cell function. J. Neuroscience 22 (1), 248–256.

    CAS  Google Scholar 

  163. Thomson, J. A., Kalishman, J., Golos, T. G., Durning, M., Harris, C. P., Becker, R. A., Hearn, J. P. (1995) Isolation of a primate embryonic stem cell line. PNAS 92 (17), 7844–7854.

    Article  CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Carpenter, M.K., Mattson, M., Rao, M.S. (2003). Sources of Cells for CNS Therapy. In: Zigova, T., Snyder, E.Y., Sanberg, P.R. (eds) Neural Stem Cells for Brain and Spinal Cord Repair. Contemporary Neuroscience. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-298-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-298-2_1

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-298-8

  • Online ISBN: 978-1-59259-298-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics