Skip to main content

Apoptosis vs Nonapoptotic Mechanisms in Neurodegeneration

  • Chapter
Neuroinflammation

Part of the book series: Contemporary Neuroscience ((CNEURO))

  • 242 Accesses

Abstract

Neurodegenerative disorders are morphologically featured by progressive cell loss in specific vulnerable neuronal populations of the brain and/or spinal cord, often associated with typical cytoskeletal protein changes forming intracytoplasmic and/or intra-nuclear inclusions and gliosis. In Alzheimer’s disease (AD), the most common type of dementia in advanced age, loss of cortical neurons and synapses is accompanied by extracellular deposition of Aβ4 amyloid peptide (Aβ) in senile plaques and cerebral vessels. Paired helical filaments containing hyperphosphorylated microtubule-associated tau protein forming neurofibrillary tangles (NFT), neuropil threads, and neuritic plaques are other histopathological hallmarks of AD (1). In Parkinson’s disease (PD), the most frequent extrapyramidal movement disorder in adults, neuron loss in substantia nigra (SN) and other subcortical nuclei is associated with widespread occurrence of intracytoplasmic Lewy bodies (LB) formed from fibrillary α-synuclein and hyperphosphorylated neurofilament protein (2–5). Frequent cortical LBs occur in dementia with Lewy bodies (DLB), which is the second most frequent type in adult age dementia (6), but small numbers are also seen in both PD and AD (7,8). In Pick disease (PiD), a rare presenile type of frontotemporal dementia (FTD), progressive cortical degeneration is associated with Pick bodies, intracytoplasmic accumulations of hyperphosphorylated tau protein (9–11). In multisystem atrophy (MSA), progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD), which are rigid-akinetic extrapyramidal disorders, multisystemic neuronal degeneration is accompanied by glial cytoplasmic inclusions (GCI) containing tau protein that differs from that in AD and PiD (2,10,11) and a-synuclein (12). In Huntington disease (HD), an autosomal dominantly inherited hyperkinetic extrapyramidal disorder resulting from mutation of the IT-15 gene on chromosome 4p16.3 with expanded polyglutamine CAG repeats, neurodegeneration in man and transgenic mice is related to neuronal intranuclear inclusions containing huntingtin and ubiquitin (13,14). Similar inclusions are seen in other rare autosomal dominant ataxic polyglutamine disorders (e.g., dentatorubropallidoluysian atrophy [DRPLA]), suggesting that these protein aggregates are a common feature of the pathogenesis of glutamine repeat neurodegenerations (13,15). In amyotrophic lateral sclerosis (ALS), which is an adult neurodegenerative disease of both lower and upper motor neurons, skein-like ubiquitin-containing inclusions are seen (16). The nature, time-course, and molecular causes of cell death and their relation to abnormal cytoskeletal protein aggregations, in these and other neurodegenerative disorders, are a matter of considerable controversy. Recent studies have provided new insights into cell death programs and their roles in neurodegeneration that will be discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jellinger, K. A. and Bancher, C. (1998) Neuropathology of Alzheimer’s disease; a critical update. J. Neural Transm. 54 (Suppl.), 77–95.

    CAS  Google Scholar 

  2. Jellinger, K. A. (1998) Neuropathology of movement disorders. Neurosurg. Clin. North. Am. 9, 237–262.

    CAS  Google Scholar 

  3. Forno, L. S. (1996) Neuropathology of Parkinson’s disease. J. Neuropathol. Exp. Neurol. 55, 259–272.

    Article  PubMed  CAS  Google Scholar 

  4. Jellinger, K. A. (2001) The pathology of Parkinson’s disease. Adv. Neurol. 86, 55–72.

    PubMed  CAS  Google Scholar 

  5. Braak, H. and Braak, E. (2000) Pathoanatomy of Parkinson’s disease. J. Neurol. 247, Suppl. 2, II3–10.

    Google Scholar 

  6. McKeith, I. G., Galasko, D., Kosaka, K., Perry, E. K., Dickson, D. W., Hansen, L. A., et al. (1996) Consensus guidelines for the clinical and pathological diagnosis of dementia with Lewy bodies (DLB), report of the consortium on DLB International Workshop. Neurology 47, 1113–1124.

    Article  PubMed  CAS  Google Scholar 

  7. Hughes, A. J., Daniel, S. E., Kilford, L., and Lees, A. J. (1992) Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J. Neurol. Neurosurg. Psychiatry 55, 181–184.

    Article  PubMed  CAS  Google Scholar 

  8. Hamilton, R. L. (2000) Lewy bodies in Alzheimer’s disease: a neuropathological review of 145 cases using a-synuclein immunohistochemistry. Brain Pathol. 10, 378–384.

    Article  PubMed  CAS  Google Scholar 

  9. Gleckman, A. M., Jiang, Z., Liu, Y., and Smith, T. W. (1999) Neuronal and glial DNA fragmentation in Pick’s disease. Acta Neuropathol. 98, 55–61.

    Article  PubMed  CAS  Google Scholar 

  10. Buée, L. and Delacourte, A. (1999) Comparative biochemistry of tau in progressive supra-nuclear palsy, corticobasal degeneration, FTD-17 and Pick’s disease. Brain Pathol. 9, 681–693.

    Article  PubMed  Google Scholar 

  11. Dickson, D. W. (1998) Pick’s disease: a modern approach. Brain Pathol. 8, 339–354.

    Article  PubMed  CAS  Google Scholar 

  12. Dickson, D. W., Lin, W.-I., Liu, W.-K., and Yen, S.-H. (1999) Multiple system atrophy: a sporadic synucleinopathy. Brain Pathol. 9, 721–732.

    Article  PubMed  CAS  Google Scholar 

  13. Sieradzan, K. A. and Mann, D. M. (2001) The selective vulnerability of nerve cells in Huntington’s disease. Neuropathol. Appl. Neurobiol. 27, 1–21.

    Article  PubMed  CAS  Google Scholar 

  14. Ho, L. W., Carmichael, J., Swartz, J., Wyttenbach, A., Rankin, J., and Rubinsztein, D. C. (2001) The molecular biology of Huntington’s disease. Psychol. Med. 31, 3–14.

    Article  PubMed  CAS  Google Scholar 

  15. Becher, M. W., Kotzuk, J. A., Sharp, A. H., Davies, S. W., Bates, G. P., Price, D. L., and Ross, C. A. (1998) Intranuclear neuronal inclusions in Huntington’s disease and dentatorubral and pallidoluysian atrophy: correlation between the density of inclusions and IT15 CAG triplet repeat length. Neurobiol. Dis. 4, 387–397.

    Article  PubMed  CAS  Google Scholar 

  16. Julien, J.-P. and Beaulieu, J.-M. (2000) Cytoskeletal abnormalities in amyotrophic lateral sclerosis: beneficial or detrimental effects? J. Neurol. Sci. 180, 7–14.

    Article  PubMed  CAS  Google Scholar 

  17. Nicotera, P., Leist, M., Fava, E., Berliocchi, L., and Volbracht, C. (2000) Energy requirement for caspase activation and neuronal cell death. Brain Pathol. 10, 276–282.

    Article  PubMed  CAS  Google Scholar 

  18. Kerr, J. F. R., Wyllie, A. H., and Currie, A. R. (1972) Apoptosis, a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26, 239–257.

    Article  PubMed  CAS  Google Scholar 

  19. Flemming, W. (1885) Ueber die Bildung von Richtungsfiguren in Säugethiereiern beim Untergang Graaf’scher Follikel. Arch. Anat. Physiol. 1885, 221–224.

    Google Scholar 

  20. Clarke, P. G. H. (1990) Developmental cell death: morphological diversity and multiple mechanisms. Anat. Embryol. 181, 195–213.

    Article  PubMed  CAS  Google Scholar 

  21. Clarke, P. G. H. (1999) Apoptosis versus necrosis, in Cell Death and Disease of the Nervous System ( Koliatsosue, M. and Ratan, R. R., eds.), Humana Press, Totowa, NJ, pp. 3–28.

    Chapter  Google Scholar 

  22. Wyllie, A. H., Kerr, J. F. R., and Currie, A. R. (1980) Cell death: the significance of apoptosis. Int. Rev. Cytol. 68, 251–305.

    Article  PubMed  CAS  Google Scholar 

  23. Wyllie, A. H. (1997) Apoptosis: an overview. Br. Med. Bull. 53, 451–465.

    Article  PubMed  CAS  Google Scholar 

  24. Majno, G. and Joris, I. (1995) Apoptosis, oncosis and necrosis: an overview of cell death. Am. J. Pathol. 146, 3–14.

    PubMed  CAS  Google Scholar 

  25. Nicotera, P., Leist, M., and Ferrando-May, E. (1999) Apoptosis and necrosis, different execution of the same death. Biochem. Soc. Symp. 66, 69–73.

    PubMed  CAS  Google Scholar 

  26. Thompson, C. B. (1995) Apoptosis in the pathogenesis and treatment of disease. Science 267, 1456–1462.

    Article  PubMed  CAS  Google Scholar 

  27. Bredesen, D. E. (1995) Neural apoptosis. Ann. Neurol. 38, 839–851.

    Article  PubMed  CAS  Google Scholar 

  28. Savitz, S. I. and Rosenbaum, D. M. (1998) Apoptosis in neurological disease. Neurosurgery 42, 555–574.

    Article  PubMed  CAS  Google Scholar 

  29. Levin, S., Bucci, T. J., Cohen, S. M., Fix, A. S., Hardisty, J. F., LeGrand, E. K., et al. (1999) The nomenclature of cell death: recommendations of an ad hoc committee of the Society of Toxicologic Pathologists. Toxic. Pathol. 27, 484–490.

    Article  CAS  Google Scholar 

  30. Yuan, J. Y. and Yankner, B. A. (2000) Apoptosis in the nervous system. Nature 407, 802–809.

    Article  PubMed  CAS  Google Scholar 

  31. Reed, J. C. (2000) Mechanisms of apoptosis. Am. J. Pathol. 157, 1415–1430.

    Article  PubMed  CAS  Google Scholar 

  32. Wang, K. K. W. (2000) Calpain and caspase; can you tell the difference? Trends Neurol. Sci. 23, 20–26.

    Article  Google Scholar 

  33. Behl, C. (2000) Apoptosis and Alzheimer’s disease. J. Neural Transm. 107, 1325–1344.

    Article  PubMed  CAS  Google Scholar 

  34. Bredesen, D. E. (2000) Apoptosis: overview and signal transduction pathways. J. Neuro-trauma 17, 801–810.

    CAS  Google Scholar 

  35. Bratton, S. B. and Cohen, G. M. (2001) Apoptotic death sensor: an organelle’s alter ego? Trends Pharmacol. Sci. 22, 306–315.

    Article  PubMed  CAS  Google Scholar 

  36. Gorman, A. M., Ceccatelli, S., and Orrenius, S. (2000) Role of mitochondria in neuronal apoptosis. Dev. Neurosci. 22, 348–358.

    Article  PubMed  CAS  Google Scholar 

  37. Desagher, S. and Martinou, J. C. (2001) Mitochondria as the central control point of apoptosis. Trends Cell Biol. 10, 369–377.

    Article  Google Scholar 

  38. Ishimaru, M. J., Ikonomidou, C., Tenkova, T. I., Der, T. C., Dikranian, K., Sesma, M. A., and Olney, J. W. (1999) Distinguishing excitotoxic from apoptotic neurodegeneration in the developing rat brain. J. Comp. Neurol. 408, 461–476.

    Article  PubMed  CAS  Google Scholar 

  39. Dikranian, K., Ishimaru, M. J., Tenkova, T., Labruyere, J., Qin, Y. Q., Ikonomidou, C., and Olney, J. W. (2001) Apoptosis in the in vivo mammalian forebrain. Neurobiol. Dis. 8, 359–379.

    Article  PubMed  CAS  Google Scholar 

  40. Lorenz, H. M., Herrmann, M., Winkler, T., Gaipl, U., and Kalden, J. R. (2000) Role of apoptosis in autoimmunity. Apoptosis 5, 443–449.

    Article  PubMed  CAS  Google Scholar 

  41. Cotman, C. W. (1998) Apoptosis decision cascades and neuronal degeneration in Alzheimer’s disease. Neurobiol. Aging 19 (Suppl. 1), S29 - S32.

    Article  PubMed  CAS  Google Scholar 

  42. Cotman, C. W. and Su, J. H. (1996) Mechanisms of neuronal cell death in Alzheimer’s disease. Brain Pathol. 6, 493–506.

    Article  PubMed  CAS  Google Scholar 

  43. Cotman, C. W., Qian, H. Y., and Anderson, A. J. (2000) Cellular signaling pathways in neuronal apoptosis. Role in neurodegeneration and Alzheimer’s disease, in Cerebral Signal Transduction. From First to Fourth Messengers ( Reith, M. E. A., ed.), Humana Press, Totowa, NJ, pp. 175–206.

    Chapter  Google Scholar 

  44. Michel, P. P., Lambeng, N., and Ruberg, M. (1999) Neuropharmacologic aspects of apoptosis: significance for neurodegenerative diseases. Clin. Neuropharmacol. 22, 137–150.

    PubMed  CAS  Google Scholar 

  45. Mattson, M. P. (2001) Mechanisms of neuronal apoptosis and excitotoxicity, in Pathogenesis of Neurodegenerative Disorders ( Mattson, M. P., ed.), Humana Press, Totowa, NJ, pp. 1–20.

    Chapter  Google Scholar 

  46. Mochizuki, H., Mori, H., and Mizuno, Y. (1997) Apoptosis in neurodegenerative disorders. J. Neural Transm. 50 (Suppl.), 125–140.

    CAS  Google Scholar 

  47. Anglade, P., Vyas, S., Javoy-Agid, F., Herrero, M. T., Michel, P. P., Marquez, J., et al. (1997) Apoptosis and autophagy in nigral neurons of patients with Parkinson’s disease. Histol. Histopathol. 12, 25–31.

    PubMed  CAS  Google Scholar 

  48. Tatton, W. G. and Olanow, C. W. (1999) Apoptosis in neurodegenerative disease: The role of mitochondria. Biochem. Biophys. Acta 1410, 195–214.

    Article  PubMed  CAS  Google Scholar 

  49. Gibson, R. M. (2001) Does apoptosis have a role in neurodegeneration? Br. M. J. 322, 1539–1540.

    Article  CAS  Google Scholar 

  50. Jellinger, K. A. (2000) Cell death mechanisms in Parkinson’s disease. J. Neural Transm. 107, 1–29.

    Article  PubMed  CAS  Google Scholar 

  51. Jellinger, K. A. and Stadelmann, C. (2000) The enigma of cell death in neurodegenerative disorders. J. Neural Transm., 60 (Suppl.), 365–380.

    Google Scholar 

  52. Jellinger, K. A. and Stadelmann, C. (2001) Problems of cell death in neurodegeneration and Alzheimer’s disease. J. Alz. Dis. 3, 31–40.

    CAS  Google Scholar 

  53. Jellinger, K. A. (2001) Cell death mechanisms in neurodegeneration. J. Cell. Mol. Med. 5, 1–17.

    Article  PubMed  CAS  Google Scholar 

  54. Graeber, M. B. and Moran, L. B. (2002) Mechanisms of cell death in neurodegenerative diseases: fashion, fiction, and facts. Brain Pathol. 12, 385–390.

    Article  PubMed  Google Scholar 

  55. Tatton, W. G., Chalmers-Redman, R. M. E., Rideout, H. J., and Tatton, N. A. (1999) Mitochondrial permeability in neuronal death: possible relevance to the pathogenesis of Parkinson’s disease. Parkinsonism Relat. Disord. 5, 221–229.

    Article  PubMed  CAS  Google Scholar 

  56. Tatton, N. A. (2000) Increased caspase-3 and BAX immunoreactivity accompanying nuclear GAPDH translocation and neuronal apoptosis in Parkinson’s disease. Exp. Neurol. 166, 29–43.

    Article  PubMed  CAS  Google Scholar 

  57. Vieira, H. L. and Kroemer, G. (1999) Pathophysiology of mitochondrial cell death control. Cell. Mol. Life Sci. 56, 971–976.

    Article  PubMed  CAS  Google Scholar 

  58. Tamatani, M., Ogawa, S., Niitsu, Y., and Tohyama, M. (1998) Involvement of bc1–2 family and caspase-3-like protease in NO-mediated neuronal apoptosis. J. Neurochem. 71, 1588–1596.

    Article  PubMed  CAS  Google Scholar 

  59. Wang, J., Silva, J. P., Gustafsson, C. M., Rustin, P., and Larsson, N. G. (2001) Increased in vivo apoptosis in cells lacking mitochondrial DNA gene expression. Proc. Natl. Acad. Sci. USA 98, 4036–4043.

    Google Scholar 

  60. Mattson, M. P. (2001) Inflammation, free radicals, glycation, metabolism and apoptosis, and heavy metals, in Functional Neurobiology of Aging ( Hof, R. R. and Mobbs, L. C. K., eds.), Academic Press, San Diego, CA, pp. 349–371.

    Chapter  Google Scholar 

  61. Sperandio, S., de Belle, I., and Bredesen, D. E. (2000) An alternative, nonapoptotic form of programmed cell death. Proc. Natl. Acad. Sci. USA 97, 14,376–14, 381.

    Google Scholar 

  62. Cohen, G. M. (1997) Caspases: the executioners of apoptosis. Biochem. J. 326, 1–16.

    PubMed  CAS  Google Scholar 

  63. Chan, S. L. and Mattson, M. P. (1999) Caspase and calpain substrates: roles in synaptic plasticity and cell death. J. Neurosci. Res. 58, 167–190.

    Article  PubMed  CAS  Google Scholar 

  64. Stadelmann, C. and Lassmann, H. (2000) Detection of apoptosis in tissue sections. Cell Tissue Res. 301, 19–31.

    Article  PubMed  CAS  Google Scholar 

  65. Adamec, E., Yang, F., Cole, G. M., and Nixon, R. A. (2001) Multiple-label immunocytochemistry for the evaluation of nature of cell death in experimental models of neurodegeneration. Brain Res. Brain Res. Protoc. 7, 193–202.

    Article  PubMed  CAS  Google Scholar 

  66. Green, D. R. and Reed, J. C. (1998) Mitochondria and apoptosis. Science 281, 1309–1312.

    Article  PubMed  CAS  Google Scholar 

  67. Leblanc, A. C., ed. (2002) Apoptosis techniques and protocols. 2nd edition. Humana Press, Totowa, NJ.

    Google Scholar 

  68. Wolf, B. B. and Green, D. R. (1999) Suicidal tendencies, apoptotic cell death by caspase family proteinases. J. Biol. Chem. 274, 20,049–20, 052.

    Google Scholar 

  69. Stennicke, H. R. and Salvesen, G. S. (1997) Biochemical characteristics of caspases-3, -6, -7, and -8. J. Biol. Chem. 272, 25,719–25, 723.

    Google Scholar 

  70. Roth, K. A., Kuan, C.-Y., Haydar, T. F., D’Sa-Eipper, C., Shindler, K. S., Zheng, T. S., et al. (2000) Epistatic and independent functions of caspase-3 and Bel-XL in developmental programmed cell death. Proc. Natl. Acad. Sci. USA 97, 466–471.

    Article  PubMed  CAS  Google Scholar 

  71. Gerhardt, E., Kugler, S., Leist, M., Beier, C., Berliocchi, L., Volbracht, C., et al. (2001) Cascade of caspase activation in potassium-deprived cerebellar granule neurons: targets for treatment with peptide and protein inhibitors of apoptosis. Mol. Cell. Neurosci. 17, 717–731.

    Article  PubMed  CAS  Google Scholar 

  72. Springer, J. E., Nottingham, S. A., McEwen, M. L., Azbill, R. D., and Jin, Y. (2001) Caspase-3 apoptotic signaling following injury to the central nervous system. Clin. Chem. Lab. Med. 39, 299–307.

    Article  PubMed  CAS  Google Scholar 

  73. Ferrer, I., Blanco, R., Cutillas, B., and Ambrosio, S. (2000) Fas and Fas-L expression in Huntington’s disease and Parkinson’s disease. Neuropathol. Appl. Neurobiol. 26, 424–433.

    Article  PubMed  CAS  Google Scholar 

  74. Budd, S. L., Tenneti, L., Lishnak, T., and Lipton, S. A. (2000) Mitochondrial and extramitochondrial apoptotic signaling pathways in cerebrocortical neurons. Proc. Natl. Acad. Sci. USA 97, 6161–6166.

    Article  PubMed  CAS  Google Scholar 

  75. Kuida, K., Zheng, T. S., Na, S., Kuan, C., Yang, D., Karasuyama, H., et al. (1996) Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature 384, 368–372.

    Article  PubMed  CAS  Google Scholar 

  76. Nakagawa, T., Zhu, H., Morishima, N., Li, E., Xu, J., Yankner, B. A., and Yuan, J. (2000) Caspase-12 mediates endoplasmic reticulum-specific apoptosis and cytotoxicity by amyloid-13. Nature 403, 98–103.

    Article  PubMed  CAS  Google Scholar 

  77. Mattson, M. P., Duan, W. Z., Chan, S. L., and Camandola, S. (1999) Par-4: An emerging pivotal player in neuronal apoptosis and neurodegenerative disorders. J. Molec. Neurosci. 13, 17–30.

    Article  PubMed  CAS  Google Scholar 

  78. Gross, A., McDonnell, J. M., and Korsmeyer, S. J. (1999) Bc1–2 family members and the mitochondria in apoptosis. Genet. Del). 13, 1899–1911.

    Article  CAS  Google Scholar 

  79. Adams, J. M. and Cory, S. (1998) The Bcl-2 protein family: arbiters of cell survival. Science 281, 1322–1326.

    Article  PubMed  CAS  Google Scholar 

  80. Susin, S. A., Lorenzo, H. K., Zamzami, N., Marzo, I., Snow, B. E., Brothers, G. M., et al. (1999) Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397, 441–446.

    Article  PubMed  CAS  Google Scholar 

  81. Joza, N., Susin, S. A., Daugas, E., Stanford, W. L., Cho, S. K., Li, C. Y. J., et al. (2001) Essential role of the mitochondrial apoptosis-inducing factor in programmed cell death. Nature 410, 549–554.

    Article  PubMed  CAS  Google Scholar 

  82. Finucane, D. M., Bossy-Wetzel, E., Waterhouse, N. J., Cotter, T. G., and Green, D. R. (1999) Bax-induced caspase activation and apoptosis via cytochrome c release from mitochondria is inhibitable by Bcl-xL. J. Biol. Chem. 274, 2225–2233.

    Article  PubMed  CAS  Google Scholar 

  83. Sadoul, R. (1998) Bc1–2 family members in the development and degenerative pathologies of the nervous system. Cell Death Diff. 5, 805–815.

    Article  CAS  Google Scholar 

  84. Hsu, Y. T., Wolter, K. G., and Youle, R. J. (1997) Cytosol to membrane re-distribution of Bax and Bc1-x-1 during apoptosis. Proc. Natl. Acad. Sci. USA 94, 3668–3672.

    Article  PubMed  CAS  Google Scholar 

  85. Reed, J. C. (1997) Double identity for proteins of the Bc1–2 family. Nature 387, 773–776.

    Article  PubMed  CAS  Google Scholar 

  86. Boonman, Z. and Isacson, O. (1999) Apoptosis in neuronal development and transplantation: role of caspases and trophic factors. Exp. Neurol. 156, 1–18.

    Article  PubMed  CAS  Google Scholar 

  87. Cregan, S. P., MacLaurin, J. G., Craig, C. G., Robertson, G. S., Nicholson, D. W., Park D. S., and Slack, R. S. (1999) Bax dependent caspase-3 activation is a key determinant in p53-induced apoptosis in neurons. J. Neurosci. 19, 7860–7869.

    PubMed  CAS  Google Scholar 

  88. Dargusch, R., Piasecki, D., Tan, S., Liu, Y. B., and Schubert, D. (2001) The role of Bax in glutamate-induced nerve cell death. J. Neurochem. 76, 295–301.

    Article  PubMed  CAS  Google Scholar 

  89. Miller, F. D., Pozniak, C. D., and Walsh, G. S. (2000) Neuronal life and death: an essential role for the p53 family. Cell Death Differ. 7, 880–888.

    Article  PubMed  CAS  Google Scholar 

  90. Keramaris, E., Stefanis, L., MacLaurin, J., Harada, N., Takaku, K., Ishikawa, T., et al. (2000) Involvement of caspase 3 in apoptotic death of cortical neurons evoked by DNA damage. Mol. Cell. Neurosci. 15, 368–379.

    Article  PubMed  CAS  Google Scholar 

  91. Kim, T. W., Pettingell, W. H., Jung, Y. K., Kovacs, D. M., and Tanzi, R. E. (1997) Alternative cleavage of Alzheimer-associated presenilins during apoptosis by a caspase-3 family protease. Science 277, 373–376.

    Article  PubMed  CAS  Google Scholar 

  92. Grunberg, J., Walter, J., Loetscher, H., Deuschle, U., Jacobsen, H., and Haass, C. (1998) Alzheimer’s disease associated presenilin-1 holoprotein and ist 18–20 kDa C-terminal fragment are death substrates for proteases of the caspase family. Biochemistry 37, 2263–2270.

    Article  PubMed  CAS  Google Scholar 

  93. Gervais, F. G., Xu, D., Robertson, G. S., Vaillancourt, J. P., Zhu, Y., Huang, J., et al. (1999) Involvement of caspases in proteolytic cleavage of Alzheimer’s amyloid-beta precursor protein and amyloidogenic A beta peptide formation. Cell 97, 395–406.

    Article  PubMed  CAS  Google Scholar 

  94. Goldberg, Y. P., Nicholson, D. W., Rasper, D. M., Kalchman, M. A., Koide, H. B., Graham, R. K., et al. (1996) Cleavage of huntingtin by apopain, a proapoptotic cysteine protease, is modulated by the polyglutamine tract. Nat. Genet. 13, 442–449.

    Article  PubMed  CAS  Google Scholar 

  95. Miyashita, T., Okamura-Oho, Y., Mito, Y., Nagafuchi, S., and Yamada, M. (1997) Dentatorubral pallidoluysian atrophy (DRPLA) protein is cleaved by caspase-3 during apoptosis. J. Biol. Chem. 272, 29,238–29, 242.

    Google Scholar 

  96. Hartmann, A., Hunot, S., Michel, P. P., Muriel, M. P., Vyas, S., Faucheux, B. A., et al. (2000) Caspase-3. A vulnerability factor and final effector in apoptotitc death of dopaminergic neurons in Parkinson’s disease. Proc. Natl. Acad. Sci. USA 97, 2875–2880.

    Article  PubMed  CAS  Google Scholar 

  97. Hartmann, A. and Hirsch, E. C. (2001) Parkinson’s disease: the apoptosis hypothesis revisited. Adv. Neurol. 86, 143–153.

    PubMed  CAS  Google Scholar 

  98. Allen, J. W., Eldadah, B. A., Huang, X., Knoblach, S. M., and Faden, A. I. (2001) Multiple caspases are involved in (3-amyloid-induced neuronal apoptosis. J. Neurosci. Res. 65, 45–53.

    Article  PubMed  CAS  Google Scholar 

  99. Roth, K. A. (2002) Caspases, apoptosis, and Alzheimer disease: causation, correlation, and confusion. J. Neuropathol. Exp. Neurol. 60, 829–838.

    Google Scholar 

  100. Wei, W., Norton, D. D., Wang, X., and Kusiak, J. W. (2002) Aß 17–42 in Alzheimer’s disease activates JNK and caspase-8 leading to neuronal apoptosis. Brain 125, 2036–2043.

    Article  PubMed  Google Scholar 

  101. Araya, R., Uehara, T., and Nomura, Y. (1998) Hypoxia induces apoptosis in human neuro-blastoma SK-N-MC cells by caspase activation accompanying cytochrome c release from mitochondria. FEBS Lett. 439, 168–172.

    Article  PubMed  CAS  Google Scholar 

  102. Northington, F. J., Ferriero, D. M., Flock, D. L., and Martin, L. J. (2001) Delayed neuro-degeneration in neonatal rat thalamus after hypoxia-ischemia is apoptosis. J. Neurosci. 21, 1931–1938.

    PubMed  CAS  Google Scholar 

  103. Herdegen, T., Skene, P., and Bähr, M. (1997) The c-Jun transcription factor: bipotential mediator of neuronal death, survival and regeneration. Trends Neurosci. 20, 227–231.

    Article  PubMed  CAS  Google Scholar 

  104. Grand, R. J., Milner, A. E., Mustoe, T., Johnson, G. D., Owen, D., Grant, M. L., and Gregory, C. D. (1995) A novel protein expressed in mammalian cells undergoing apoptosis. Exp. Cell. Res. 218, 439–451.

    Article  PubMed  CAS  Google Scholar 

  105. Ferrer, I., Planas, A. M., and Pozas, E. (1997) Radiation-induced apoptosis in developing rats and kainic acid-induced excitotoxicity in adult rats are associated with distinctive morphological and biochemical c-Jun/AP-1 (N) expression. Neuroscience 80, 449–458.

    Article  PubMed  CAS  Google Scholar 

  106. Pozas, E., Ballabriga, J., Planas, A. M., and Ferrer, I. (1997) Kainic acid-induced excitotoxicity is associated with a complex c-Fos and c-Jun response, which does not preclude either cell death or survival. J. Neurobiol. 33, 232–246.

    Article  PubMed  CAS  Google Scholar 

  107. Reimann-Philipp, U., Ovase, R., Weigel, P. H., and Grammas, P. (2001) Mechanisms of cell death in primary cortical neurons and PC12 cells. J. Neurosci. Res. 64, 654–660.

    Article  PubMed  CAS  Google Scholar 

  108. Wolozin, B. and Behl, C. (2000) Mechanisms of neurodegenerative disorders. Part I. Protein aggregates. Arch. Neurol. 57, 793–796.

    Article  PubMed  CAS  Google Scholar 

  109. Duda, J. E., Lee, V. M. Y., and Trojanowski, J. Q. (2000) Neuropathology of synuclein aggregates. New insights into mechanism of neurodegenerative diseases. J. Neurosci. Res. 61, 121–127.

    Article  PubMed  CAS  Google Scholar 

  110. Lucking, C. B. and Brice, A. (2000) a-Synuclein and Parkinson’s disease. Cell. Mol. Life Sci. 57, 1894–1908.

    Google Scholar 

  111. Kahns, S., Lykkebo, S., Jakobsen, L. D., Nielsen, M. S., and Jensen, P. H. (2002) Caspase-mediated parkin cleavage in apoptotic cell death. J. Biol. Chem. 277, 15,303–15, 308.

    Google Scholar 

  112. Miller, L. K. (1999) An exegesis of IAPs: salvation and surprises from BIR motifs. Trends Cell Biol. 9, 323–328.

    Article  PubMed  CAS  Google Scholar 

  113. Tschopp, J., Thome, M., Hofmann, K., and Meinl, E. (1998) The fight of viruses against apoptosis. Curr. Opin. Genet. Dev. 8, 82–87.

    Article  PubMed  CAS  Google Scholar 

  114. Verhagen, A. M., Ekert, P. G., Pakusch, M., Silke, J., Connolly, L. M., Reid, G. E., et al. (2000) Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 102, 43–53.

    Article  PubMed  CAS  Google Scholar 

  115. Du, C., Fang, M., Li, Y., Li, L., and Wang, X. (2000) Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102, 33–42.

    Article  PubMed  CAS  Google Scholar 

  116. Jaattela, M., Wissing, D., Kokholm, K., Kallunki, T., and Egeblad, M. (1998) Hsp70 exerts its anti-apoptotic function downstream of caspase-3-like proteases. EMBO J. 17, 6124–6134.

    Article  PubMed  CAS  Google Scholar 

  117. Volbracht, C., Leist, M., Kolb, S. A., and Nicotera, P. (2001) Apoptosis in caspase-inhibited neurons. Mol. Med. 7, 36–48.

    PubMed  CAS  Google Scholar 

  118. Huppertz, B., Frank, H. G., and Kaufmann, P. (1999) The apoptosis cascade—morphological and immunohistochemical methods for its visualization. Anat. Embryol. 200, 1–18.

    Article  PubMed  CAS  Google Scholar 

  119. Willingham, M. C. (1999) Cytochemical methods for the detection of apoptosis. J. Histochem. Cytochem. 47, 1101–1110.

    Article  PubMed  CAS  Google Scholar 

  120. Gavrieli, Y., Sherman, Y., and Ben-Sasson, S. A. (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J. Cell Biol. 119, 483–501.

    Article  Google Scholar 

  121. Gold, R., Schmied, M., Giegerich, G., Breitschopf, H., Hartung, H. P., Toyka, K., and Lassmann, H. (1994) Differentiation between cellular apoptosis and necrosis by combined use of in situ tailing and nick translation techniques. Lab. Invest. 71, 219–225.

    PubMed  CAS  Google Scholar 

  122. Grasl-Kraupp, B., Ruttkay-Nedecky, B., Kondelka, H., Bukowska, K., Bursch, W., and Schulte-Hermann, R. (1995) In situ detection of fragmented DNA (TUNEL assay) fails to discriminate among apoptosis, necrosis and autolytic cell death: a cautionary note. Hepatology 21, 1465–1468.

    PubMed  CAS  Google Scholar 

  123. Tatton, N. A., Maclean-Fraser, A., Tatton, W. G., Perl, D. P., and Olanow, C. W. (1998) A fluorescent double-labeling method to detect and confirm apoptotic nuclei in Parkinson’s disease. Ann. Neurol. 44 (Suppl. 1), S 142–S148.

    Google Scholar 

  124. Lassmann, H., Bancher, C., Breitschopf, H., Wegiel, J., Bobinski, M., Jellinger, K., and Wisniewski, H. M. (1995) Cell death in Alzheimer’s disease evaluated by DNA fragmentation in situ. Acta Neuropathol. 89, 35–41.

    Article  PubMed  CAS  Google Scholar 

  125. Anderson, A. J., Su, J. H., and Cotman, C. W. (1996) DNA damage and apoptosis in Alzheimer’s disease: colocalization with c-Jun immunoreactivity, relationship to brain area and effect of post mortem delay. J. Neurosci. 16, 1710–1719.

    PubMed  CAS  Google Scholar 

  126. Kingsbury, A. E., Fester, O. J. F., Nisbet, A. P., et al. (1995) Tissue pH as an indicator of mRNA preservation in post-mortem brain. Mol. Brain. Res. 28, 311–318.

    Article  PubMed  CAS  Google Scholar 

  127. Dragunow, M., Faull, R., Lawlor, P., Beilharz, E. J., Singleton, K., Walker, E. B., and Mee, E. (1995) In situ evidence for DNA fragmentation in Huntington’s disease striatum and Alzheimer’s disease temporal lobes. Neuroreport 6, 1053–1057.

    Article  PubMed  CAS  Google Scholar 

  128. Kingsbury, A. E., Mardsen, C. D., and Foster, O. J. (1998) DNA fragmentation in human substantia nigra: apoptosis or perimortem effect? Mov. Disord. 13, 877–884.

    Article  PubMed  CAS  Google Scholar 

  129. Tompkins, M. M., Basgall, E. J., Zamrini, E., and Hill, W. D. (1997) Apoptotic-like changes in Lewy-body-associated disorders and normal aging in substantia nigral neurons. Am. J. Pathol. 150, 119–131.

    PubMed  CAS  Google Scholar 

  130. Kockx, M. M., Muhring, J., Knaapen, M. W., and de Meyer, G. R. (1998) RNA synthesis and splicing interferes with DNA in situ end labeling techniques used to detect apoptosis. Am. J. Pathol. 152, 885–888.

    PubMed  CAS  Google Scholar 

  131. Srinivasan, A., Roth, K. A., Sayers, R. O., Shindler, K. S., Wong, A. M., Fritz, L. C., and Tomaselli, K. (1998) In situ immunodetection of activated caspase-3 in apoptotic neurons in the developing nervous system. Cell Death Differ. 5, 1004–1016.

    Article  PubMed  CAS  Google Scholar 

  132. Stadelmann, C., Deckwerth, T. L., Srinivasan, A., Bancher, C., Brück, W., Jellinger, K., and Lassmann, H. (1999) Activation of caspase-3 in single apopototic neurons and granules of granulovacuolar degeneration in Alzheimer disease and Down’s syndrome: a role for autophagy as antiapoptotic counterregulatory mechanism? Am. J. Pathol. 155, 1459–1466.

    Article  PubMed  CAS  Google Scholar 

  133. Guo, Q., Sebastian, L., Sopher, B. L., Miller, M. W., Ware, C. B., Martin, G. M., and Mattson, M. P. (1999) Increased vunerability of hippocampal neurons from presenilin-1 mutant knock-in mice to amyloid 13-peptide toxicity: central roles of superoxide production and caspase activation. J. Neurochem. 72, 1019–1029.

    Article  PubMed  CAS  Google Scholar 

  134. Chui, D. H., Tanahashi, H., Ozawa, K., Ikeda, S., Checler, F., Ueda, O., et al. (1999) Transgenic mice with Alzheimer presenilin 1 mutations show accelerated neurodegeneration without amyloid plaque formation. Nature Med. 5, 560–564.

    Article  PubMed  CAS  Google Scholar 

  135. Lucassen, P. J. (2000) Presenilins and cellular damage: a link through amyloid? J. Alz. Dis. 2, 61–67.

    Google Scholar 

  136. Yo, Y. H. and Fortin, M. E. (1999) Apopototic activities of wild-type and Alzheimer’s disease related mutant presenilins in Drosophila melanogaster. J. Cell Biol. 146, 1351–1364.

    Article  Google Scholar 

  137. Guo, Q., Fu, W., Sopher, B. L., Miller, M. W., Ware, C. B., Martin, G. M., and Mattson, M. P. (1999) Increased vulnerability of hippocampal neurons to excitotoxic necrosis in presenilin-1 mutant knock-in mice. Nature Med. 5, 101–106.

    Article  PubMed  CAS  Google Scholar 

  138. Zhou, Y., Zhang, W., Easton, R., Ray, J. W., Lampe, P., Jiang, Z., et al. (2002) Presenilin-1 protects against neuronal apoptosis caused by its interacting protein PAG. Neurobiol. Dis. 9, 126–138.

    Article  PubMed  CAS  Google Scholar 

  139. Terro, F., Czech, C., Esclaire, F., Elyaman, W., Yardin, C., Baclet, M. C., et al. (2002) Neurons overexpressing mutant presenilin-1 are more sensitive to apoptosis induced by endoplasmic reticulum-Golgi stress. J. Neurosci. Res. 69, 530–539.

    Article  PubMed  CAS  Google Scholar 

  140. Mori, M., Nakagami, H., Morishita, R., Mitsuda, N., Yamamoto, K., Yoshimura S., et al. (2002) N141I mutant presenilin-2 gene enhances neuronal cell death and decreases bc1–2 expression. Life Sci. 70, 2567–2580.

    Article  PubMed  CAS  Google Scholar 

  141. Kwok, J. B., Li, Q. X., Hallupp, M., Whyte, S., Ames, D., Beyreuther, K., et al. (2000) Novel Leu723Pro amyloid precursor protein mutation increases amyloid 042(43) peptide levels and induces apoptosis. Ann. Neurol. 47, 249–253.

    Article  PubMed  CAS  Google Scholar 

  142. Uetsuki, T., Takemoto, K., Nishimura, I., Okamoto, M., Niinobe, M., Momoi, T., et al. (1999) Activation of neuronal caspase-3 by intracellular accumulation of wild-type Alzheimer amyloid precursor protein. J. Neurosci. 19, 6955–6964.

    PubMed  CAS  Google Scholar 

  143. Nishimura, I., Uetsuki, T., Kuwako, K., Hara, T., Kawakami, T., Aimoto, S., and Yoshikawa, K. (2002) Cell death induced by a caspase-cleaved transmembrane fragment of the Alzheimer amyloid precursor protein. Cell Death Differ. 9, 199–208.

    Article  PubMed  CAS  Google Scholar 

  144. Ohyagi, Y., Yamada, T., Nishioka, K., Clarke, N. J., Tomlinson, A. J., Naylor, S., et al. (2000) Selective increase in cellular A beta 42 is related to apoptosis but not necrosis. Neuroreport 11, 167–171.

    Article  PubMed  CAS  Google Scholar 

  145. Borghi, R., Pellegrini, L., Lacana, E., Diaspro, A., Pronzato, M. A., Vitali, A., et al. (2002) Neuronal apoptosis is accompanied by amyloid beta-protein accumulation in the endoplasmic reticulum. J. Alzheimer’s Dis. 4, 31–37.

    PubMed  Google Scholar 

  146. Ramsden, M., Shukla, C., Pearson, H. A., and Bridges, L. R. (2000) Neurodegeneration induced by aggregated A(3 in central neurons may be apoptotic. Neuropathol. Appl. Neurobiol. 26, 205–206.

    Google Scholar 

  147. Ditaranto, K., Tekirian, T. L., and Yang, A. J. (2001) Lysosomal membrane damage in soluble Aß-mediated cell death in Alzheimer’s disease. Neurobiol. Dis. 8, 19–31.

    Article  PubMed  CAS  Google Scholar 

  148. Kaltschmidt, B., Uherek, M., Wellmann, H., Volk, B., and Kaltschmidt, C. (1999) Inhibition of NF-KB potentiates amyloid 3-mediated neuronal apoptosis. Proc. Natl. Acad. Sci. USA 96, 9409–9414.

    Article  PubMed  CAS  Google Scholar 

  149. Lu, D. C., Rabizadeh, S., Chandra, S., Shayya, R. F., Ellerby, L. M., Ye, X., et al. (2000) A second cytotoxic proteolytic peptide derived from amyloid ß-protein precursor. Nature Med. 6, 397–404.

    Article  PubMed  CAS  Google Scholar 

  150. Milligan, C. E. (2000) Caspase cleavage of APP results in a cytotoxic proteolytic peptid. Nature Med. 6, 385–386.

    Article  PubMed  CAS  Google Scholar 

  151. Saez-Valero, J., Angeretti, N., and Forloni, G. (2000) Caspase-3 activation by 3-amyloid and prion protein peptides is independent from their neurotoxic effect. Neurosci. Lett. 293, 207–210.

    Article  PubMed  CAS  Google Scholar 

  152. Selznick, L. A., Zheng, T. S., Flavell, R. A., Rakic, P., and Roth, K. A. (2000) Amyloid (3-induced neuronal death is Bax-dependent but caspase-independent. J. Neuropathol. Exp. Neurol. 59, 271–279.

    PubMed  CAS  Google Scholar 

  153. Troy, C. M., Rabacchi, S. A., Xu, Z. H., Maroney, A. C., Connors, T. J., Shelanski, M. L., and Greene, L. A. (2001) (3-amyloid-induced neuronal apoptosis requires c-Jun N-terminal kinase activation. J. Neurochem. 77, 157–164.

    Google Scholar 

  154. Saito, T., Kijima, H., Kiuchi, Y., Isobe, Y., and Fukushima, K. (2001) G3-amyloid induces caspase-dependent early neurotoxic change in PC12 cells: correlation with H2O2 neuro-toxicity. Neurosci. Lett. 305, 61–64.

    Article  PubMed  CAS  Google Scholar 

  155. White, A. R., Guirguis, R., Brazier, M. W., Jobling, M. F., Hill, A. F., Beyreuther, K., et al. (2001) Sublethal concentrations of prion peptide PrP106–126 or the amyloid p peptide of Alzheimer’s disease activates expression of proapoptotic markers in primary cortical neurons. Neurobiol. Dis. 8, 299–316.

    Article  PubMed  CAS  Google Scholar 

  156. Giovanni, A., Keramaris, E., Morris, E. J., Hou, S. T., O’Hare, M., Dyson, N., et al. (2000) E2F1 mediates death of 3-amyloid-treated cortical neurons in a manner independent of p53 and dependent on Bax and caspase 3. J. Biol. Chem. 275, 11,553–11, 560.

    Google Scholar 

  157. Troy, C. M., Rabacchi, S. A., Friedman, W. J., Frappier, T. F., Brown, K., and Shelanski, M. L. (2000) Caspase-2 mediates neuronal cell death induced by (3-amyloid. J. Neurosci. 20, 1386–1392.

    PubMed  CAS  Google Scholar 

  158. Bozyczko-Coyne, D., O’Kane, T. M., Wu, Z. L., Dobrzanski, P., Murthy, S., Vaught, J. L., and Scott, R. W. (2001) CEP-1347/KT-7515, an inhibitor of SAPK/JNK pathway activation, promotes survival and blocks multiple events associated with A(3-induced cortical neuron apoptosis. J. Neurochem. 77, 849–863.

    Article  PubMed  CAS  Google Scholar 

  159. Xu, J., Chen, S. W., Ku, G., Ahmed, S. H., Xu, M., Chen, H., and Hsu, C. Y. (2001) Amyloid-(3 peptide-induced cerebral endothelial cell death involves mitochondrial dysfunction and caspase activation. J. Cereb. Blood Flow Metab. 21, 702–710.

    Article  PubMed  CAS  Google Scholar 

  160. Kajkowski, E. M., Lo, C. F., Ning, X. P., Walker, S., Sofia, H. J., Wang, W., et al. (2001) (3-amyloid peptide-induced apoptosis regulated by a novel protein containing a G protein activation module. J. Biol. Chem. 276, 18,748–18,756.

    Google Scholar 

  161. Luetjens, C. M., Lankiewicz, S., Bui, N. T., Krohn, A. J., Poppe, M., and Prehn, J. H. (2001) Up-regulation of Bc1-xL in response to subtoxic beta-amyloid: role in neuronal resistance against apoptotic and oxidative injury. Neuroscience 102, 139–150.

    Article  PubMed  CAS  Google Scholar 

  162. Passer, B. J., Pellegrini, L., Vito, P., Ganjei, J. K., and D’Adamio, L. (1999) Interaction of Alzheimer’s presenilin-1 and presenilin-2 with BcI-X-L—a potential role in modulating the threshold of cell death. J. Biol. Chem. 274, 2400–2414.

    Article  Google Scholar 

  163. Marcon, G., Atzori, C., Srinivasan, A. N., Okazawa, H., Ghetti, B., and Migheli, A. (2000) Caspase-3 is activated in Alzheimer disease but not in frontotemporal dementia. (Abstr.) Neurobiol. Aging 21, 81.

    Article  Google Scholar 

  164. Litersky, J. M. and Johnson, G. V. (1995) Phosphorylation of tau in situ: inhibition of calcium-dependent proteolysis. J. Neurochem. 65, 903–911.

    Article  PubMed  CAS  Google Scholar 

  165. Chung, C. W., Song, Y. H., Kim, I. K., Yoon, W. J., Ryu, B. R., Jo, D. G., et al. (2001) Proapoptotic effects of tau cleavage product generated by caspase-3. Neurobiol. Dis. 8, 162–172.

    Article  PubMed  CAS  Google Scholar 

  166. Eckert, A., Steiner, B., Marques, C., Leutz, S., Romig, H., Haass, C., and Muller, W. E. (2001) Elevated vulnerability to oxidative stress-induced cell death and activation of caspase-3 by the Swedish amyloid precursor protein mutation. J. Neurosci. Res. 64, 183–192.

    Article  PubMed  CAS  Google Scholar 

  167. Lorio, G., Avila, J., and Diaz-Nido, J. (2001) Modifications of tau protein during neuronal cell death. J. Alzheimer’s Dis. 3, 563–575.

    PubMed  CAS  Google Scholar 

  168. Atzori, C., Ghetti, B., Piva, R., Srinivasan, A. N., Zolo, P., Delisle, M. B., et al. (2001) Activation of the JNK/p38 pathway occurs in diseases characterized by tau protein pathology and is related to tau phosphorylation but not to apoptosis. J. Neuropathol. Exp. Neurol. 60, 1190–1197.

    PubMed  CAS  Google Scholar 

  169. Ekinci, F. J., Linsley, M. D., and Shea, T. B. (2000) (3-Amyloid-induced calcium influx induces apoptosis in culture by oxidative stress rather than tau phosphorylation. Mol. Brain Res. 76, 389–395.

    Google Scholar 

  170. Bhat, N. R. and Zhang, P. (1999) Hydrogen peroxide activation of multiple mitogenactivated protein kinases in an oligodendrocyte cell line: role of extracellular signal-regulated kinase in hydrogen peroxide-induced cell death. J. Neurochem. 72, 112–119.

    Article  PubMed  CAS  Google Scholar 

  171. Oh-Hashi, K., Maruyama, W., Yi, H., Takahashi, T., Naoi, M., and Isobe, K. (1999) Mitogen-activated protein kinase pathway mediates peroxynitrite-induced apoptosis in human dopaminergic neuroblastoma SH-SY5Y cells. Biochem. Biophys. Res. Commun. 263, 504–509.

    Article  PubMed  CAS  Google Scholar 

  172. Dineley, K. T., Westerman, M., Bui, D., Bell, K., Ashe, K. H., and Sweatt, J. D. (2001) (3-amyloid activates the mitogen-activated protein kinase cascade via hippocampal (37 nicotinic acetylcholine receptors: in vitro and in vivo mechanisms related to Alzheimer’s disease. J. Neurosci. 21, 4125–4133.

    Google Scholar 

  173. Hetman, M., Kanning, K., Cavanaugh, J. E., and Xia, Z. (1999) Neuroprotection by brain-derived neurotrophic factor is mediated by extracellular signal-regulated kinase and phosphatidylinositol 3-kinase. J. Biol. Chem. 274, 22,569–22, 580.

    Google Scholar 

  174. Owada, K., Sanjo, N., Kobayashi, T., Mizusawa, H., Muramatsu, H., Muramatsu, T., and Michikawa, M. (1999) Midkine inhibits caspase-dependent apoptosis via the activation of mitogen-activated protein kinase and phosphatidylinositol 3-kinase in cultured neurons. J. Neurochem. 73, 2084–2092.

    PubMed  CAS  Google Scholar 

  175. Mielke, K., Brecht, S., Dorst, A., and Herdegen, T. (1999) Activity and expression of JNK1, p38 and ERK kinases, c-Jun N-terminal phosphorylation, and c-Jun promoter binding in the adult rat brain following kainate-induced seizures. Neuroscience 91, 471–483.

    Article  PubMed  CAS  Google Scholar 

  176. Zhu, X., Rottkamp, C. A., Boux, H., Takeda, A., Perry, G., and Smith, M. A. (2000) Activation of p38 kinase links tau phosphorylation, oxidative stress, and cell cycle-related events in Alzheimer disease. J. Neuropathol. Exp. Neurol. 59, 880–888.

    PubMed  CAS  Google Scholar 

  177. Ferrer, I., Blanco, R., Carmona, M., Ribera, R., Goutan, E., Puig, B., et al. (2001) Phosphorylated MAP kinase (ERK1, ERK2) expression is associated with early tau deposition in neurones and glial cells, but not with increased nuclear DNA vulnerability and cell death, in Alzheimer disease, Pick’s disease, progressive supranuclear palsy and corticobasal degeneration. Brain Pathol. 11, 144–158.

    Google Scholar 

  178. Hartley, A., Stone, J. M., Heron, C., et al. (1994) Complex I inhibitors induce dose-dependent apoptosis in PC12 cells: relevance to Parkinson’s disease. J. Neurochem. 63, 1987–1990.

    Article  PubMed  CAS  Google Scholar 

  179. Mochizuki, H., Nakamura, N., Nishi, K., and Mizuno, Y. (1994) Apoptosis is induced by 1-methyl-4-phenylpyridinium ion (MPP+) in ventral mesencephalic striatal co-culture in rat. Neurosci. Lett. 170, 191–194.

    Article  PubMed  CAS  Google Scholar 

  180. Sheehan, J. P., Palmter, P. E., Helm, G. A., and Tuttle, J. B. (1997) MPP+ induced apoptotic cell death in SH-SY5Y neuroblastoma cells. An electron microscopic study. J. Neuro-sci. Res. 48, 226–237.

    Article  CAS  Google Scholar 

  181. Blum, D., Torch, S., Lambeng, N., Nissou, M., Benabid, A., Sadoul, R., and Verna, J. (2001) Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: contribution to the apoptotic theory in Parkinson’s disease. Prog. Neurobiol. 65, 135–172.

    Article  PubMed  CAS  Google Scholar 

  182. Dodel, R. C., Du, Y., Bales, K. R., Ling, Z. D., Carvey, P. M., and Paul, S. M. (1998) Peptide inhibitors of caspase-3-like proteases attenuate 1-methyl-4-phenyl-pyridium-induced toxicity of cultured fetal rat mesencephalic dopamine neurons. Neuroscience 86, 701–707.

    Article  PubMed  CAS  Google Scholar 

  183. Oo, T. F. and Burke, R. E. (1997) The time course of developmental cell death in phenotypically defined dopaminergic neurons of the substantia nigra. Dev. Brain Res. 98, 191–196.

    Article  CAS  Google Scholar 

  184. Tepper, J. M., Damlama, M., and Trent, F. (1994) Postnatal changes in the distribution and morphology of rat substantia nigra dopaminergic neurons. Neuroscience 60, 469–477.

    Article  PubMed  CAS  Google Scholar 

  185. Kelly, W. J. and Burke, R. E. (1996) Apoptotic neuron death in rat substantia nigra induced by striatal excitotoxic injury is developmentally dependent. Neurosci. Lett. 220, 85–88.

    Article  PubMed  CAS  Google Scholar 

  186. Marti, M. J., James, C. J., Oo, T. F., Kelly, W. J., and Burke, R. E. (1997) Early developmental destruction of terminals in the striatal target induces apoptosis in dopamine neurons of the substantia nigra. J. Neurosci. 17, 2030–2039.

    PubMed  CAS  Google Scholar 

  187. Seaton, T. A., Cooper, J. M., and Schapira, A. H. V. (1997) Free radical scavengers protect dopaminergic cell lines from apoptosis induced by complex I inhibitors. Brain Res. 777, 110–118.

    Article  PubMed  CAS  Google Scholar 

  188. Ziv, I., Melamed, E., Nardi, N., Luria, D., Achiron, A., Offen, D., and Barzilai, A. (1994) Dopamine induces apoptosis-like cell death in cultured chick sympathetic neurons—a possible novel pathogenetic mechanism in Parkinson’s disease. Neurosci. Lett. 170, 136–140.

    Article  PubMed  CAS  Google Scholar 

  189. Ziv, I., Offen, D., Barzilai, A., Haviv, R., Stein, R., Zilkhafalb, R., Shirvan, A., and Melamed, E. (1997) Modulation of control mechanisms of dopamine-induced apoptosis —a future approach to the treatment of Parkinson’s disease. J. Neural Transm. 49 (Suppl.), 195–202.

    CAS  Google Scholar 

  190. Ziv, I., Offen, D., Haviv, R., Stein, R., Panet, H., Zilkhavan, R., et al. (1997) The proto-oncogene Bc1–2 inhibits cellular toxicity of dopamine—possible implications for Parkinson’s disease. Apoptosis 2, 149–155.

    Article  PubMed  CAS  Google Scholar 

  191. Ziv, I., Zilkhavan, R., Offen, D., Shirvan, A., Barzilai, A., and Melamed, E. (1997) Levodopa induces apoptosis in cultured neuronal cells—a possible accelerator of nigrostriatal degeneration in Parkinson’s disease. Mov. Disord. 12, 17–23.

    Article  PubMed  CAS  Google Scholar 

  192. Offen, D., Ziv, I., Panet, H., Wasserman, L., Stein, R., Melamed, E., and Barzilai, A. (1997) Dopamine-induced apoptosis is inhibited in PC12 cells expressing Bc1–2. Cell. Mol. Neurobiol. 17, 289–304.

    Article  PubMed  CAS  Google Scholar 

  193. Zhang, J., Price, J. O., Graham, D. G., and Montine, T. J. (1998) Secondary excitotoxicity contributes to dopamine-induced apoptosis of dopaminergic neuronal cultures. Biochem. Biophys. Res. Commun. 248, 812–816.

    Article  PubMed  CAS  Google Scholar 

  194. Offen, D., Ziv, I., Barzilai, A., Grordin, S., Glater, E., Hochman, A., and Melamed, E. (1997) Dopamine-melanin induces apoptosis in PC12 cells-possible implications for the etiology of Parkinson’s disease. Neurochem. Int. 31, 207–216.

    Article  PubMed  CAS  Google Scholar 

  195. Velezpardo, C., Delrio, M. J., Vershueren, H., Ebinger, G., and Vauquelin, G. (1997) Dopamine and iron induce apoptosis in PC12 cells. Pharmacol. Toxicol. 80, 76–84.

    Article  CAS  Google Scholar 

  196. Ruberg, M., Brugg, B., Prigent, A., Hirsch, E., Brice, A., and Agid, Y. (1997) Is differential regulation of mitochondrial transcription in Parkinson’s disease related to apoptosis? J. Neurochem. 68, 2098–2110.

    Article  PubMed  CAS  Google Scholar 

  197. Tatton, N. A. and Kish, S. J. (1997) In situ detection of apoptotic nuclei in the substantia nigra compacta of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mice using terminal deoxynucleotidyl transferase labelling and acridine orange staining. Neuroscience 77, 1037–1048.

    Article  PubMed  CAS  Google Scholar 

  198. Waters, C. M. and Walkinshaw, G. (1995) Induction of apoptosis in catecholaminergic PC12 cells by L-dopa. Implications for the treatment of Parkinson’s disease. J. Clin. Invest. 95, 2458–2464.

    Article  PubMed  Google Scholar 

  199. Chen, S. D., Guo, M., Liu, Z. G., and Chen, H. Z. (1998) The possible role of apoptosis in the pathogenesis of Parkinson’s disease (abstr.). Mov. Disord. 13 (Suppl. 2), 194.

    Google Scholar 

  200. Jackson-Lewis, V. and Przedborski, S. (1998) MPTP-induced necrosis or apoptosis is a dose-dependent phenomenon. (abstr.) Mov. Disord. 13 (Suppl. 2), 237.

    Google Scholar 

  201. Maruyama, W., Takahashi, T., and Naoi, M. (1998) (-)-deprenyl protects human dopaminergic neuroblastoma SH-SYSY cells from apoptosis induced by peroxynitrite and nitric oxide. J. Neurochem. 70, 2510–2515.

    Google Scholar 

  202. Li, F., Srinivasan, A., Wang, Y., Armstrong, R. C., Tomaselli, K. J., and Fritz, L. C. (1997) Cell specific induction of apoptosis by microinjection of cytochrome c. J. Biol. Chem. 272, 30,299–30, 305.

    Google Scholar 

  203. Yang, W. and Sun, A. Y. (1998) Paraquat-induced free radical reaction in mouse brain microsomes. Neurochem. Res. 23, 47–53.

    Article  PubMed  CAS  Google Scholar 

  204. Burke, R. E. and Kholodilov, N. G. (1998) Programmed cell death: does it play a role in Parkinson’s disease? Ann. Neurol. 44 (Suppl. 1), 5126–5133.

    Google Scholar 

  205. Olanow, C. W. and Tatton, W. G. (1999) Etiology and pathogenesis of Parkinson’s disease. Ann. Rev. Neurosci. 22, 123–144.

    Article  PubMed  CAS  Google Scholar 

  206. Hirsch, E. C., Hunot, S., and Hartmann, A. (2000) Mechanism of cell death in experimental models of Parkinson’s disease. Funct. Neurol. 15, 229–237.

    PubMed  CAS  Google Scholar 

  207. Fukudo, T., Takahashi, J., Xiang, F., and Tanaka, J. (2000) Apoptosis in 1-methyl-4phenyl-1,2,3,6-tetrahydropyridine-treated mice (abstr.). Brain Pathol. 10, 787.

    Google Scholar 

  208. Spooren, W. P., Gentsch, C., and Wiessner, C. (1998) TUNEL-positive cells in the sub-stantia nigra of C57BL/6 mice after a single bolus of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Neuroscience 85, 649–651.

    Article  PubMed  CAS  Google Scholar 

  209. Hartmann, A., Hunot, S., Michel, P. P., Muriel, M. P., Vyas, S., Faucheux, B. A., et al. (2000) Caspase-3. A vulnerability factor and final effector in apoptotitc death of dopaminergic neurons in Parkinson’s disease. Proc. Natl. Acad. Sci. USA 97, 2875–2880.

    Article  PubMed  CAS  Google Scholar 

  210. Turmel, H., Hartmann, A., Parain, K., Douhou, A., Srinivasan, A., Agid, Y., and Hirsch, E. C. (2001) Caspase-3 activation in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)treated mice. Mov. Disord. 16, 185–189.

    Article  PubMed  CAS  Google Scholar 

  211. Hartmann, A., Troadec, J. D., Hunot, S., Kikly, K., Faucheux, B. A., Mouatt-Prigent, A., et al. (2001) Caspase-8 is an effector in apoptotic death of dopaminergic neurons in Parkinson’s disease, but pathway inhibition results in neuronal necrosis. J. Neurosci. 21, 2247–2255.

    PubMed  CAS  Google Scholar 

  212. Vila, M., Jackson-Lewis, V., Vukosavic, S., Djaldetti, R., Liberatore, G., Offen, D., et al. (2001) Bax ablation prevents dopaminergic neurodegeneration in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease. Proc. Natl. Acad. Sci. USA 98, 2837–2842.

    Article  PubMed  CAS  Google Scholar 

  213. Offen, D., Beart, P. M., Cheung, N. S., Pascoe, C. J., Hochman, A., Gorodin, S., et al. (1998) Transgenic mice expressing human Bc1–2 in their neurons are resistant to 6-hydroxydopamine and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity. Proc. Natl. Acad. Sci. USA 95, 5789–5794.

    Article  PubMed  CAS  Google Scholar 

  214. Oh, Y. J., Wong, S. C., Moffat, M., and O’Malley, K. L. (1995) Overexpression of Bc1–2 attenuates MPP+, but not 6-ODHA, induced cell death in a dopaminergic neuronal cell line. Neurobiol. Dis. 2, 157–167.

    Article  PubMed  CAS  Google Scholar 

  215. Hartmann, A., Michel, P. P., Troadec, J. D., Mouatt-Prigent, A., Faucheux, B. A., Ruberg, M., et al. (2001) Is Bax a mitochondrial mediator in apoptotic death of dopaminergic neurons in Parkinson’s disease? J. Neurochem. 76, 1785–1793.

    Article  PubMed  CAS  Google Scholar 

  216. Neystat, M., Rzhetskaya, M., Oo, T. F., Kholodilov, N., Yarygina, O., Wilson, A., et al. (2001) Expression of cyclin-dependent kinase 5 and its activator p35 in models of induced apoptotic death in neurons of the substantia nigra in vivo. J. Neurochem. 77, 1611–1625.

    Article  CAS  Google Scholar 

  217. Hattori, A., Luo, Y. Q., Umegaki, H., Munoz, J., and Roth, G. S. (1998) Intrastriatal injection of dopamine results in DNA damage and apoptosis in rats. Neuroreport 9, 2569–2572.

    Article  PubMed  CAS  Google Scholar 

  218. Jeon, B. S., Jackson-Lewis, V., and Burke, R. E. (1995) 6-Hydroxydopamine lesion of the rat substantia nigra: time course and morphology of cell death. Neurodegeneration 4, 131–137.

    Google Scholar 

  219. Oo, T. F., Henchcliffe, C., Harrison, et al. (1995) Neuronal death in substantia nigra in murine Weaver mutation is nonapoptotic. Mov. Disord. 10, 693–694.

    Google Scholar 

  220. Choi, W. S., Yoon, S. Y., Oh, T. H., Choi, E. J., O’Malley, K. L., and Oh, Y. J. (1999) Two distinct mechanisms are involved in 6-hydroxydopamine-and MPP+-induced dopaminergic neuronal cell death: role of caspases, ROS, and JNK. J. Neurosci. Res. 57, 86–94.

    Article  PubMed  CAS  Google Scholar 

  221. Duan, W., Zhang, Z., Gash, D. M., and Mattson, M. P. (1999) Participation of prostate apoptosis response-4 in degeneration of dopaminergic neurons in models of Parkinson’s disease. Ann. Neurol. 46, 587–597.

    Article  PubMed  CAS  Google Scholar 

  222. Yu, H. Z., Rong, J., Chen, S. D., Li, B., and Liu, Z. G. (2001) 6-hydroxydopamine-induced apoptosis and its probable molecular mechanisms (abstr.). Parkinsonism Rel. Disord. 7, 5113.

    Google Scholar 

  223. Ochu, E. E., Rothwell, N. J., and Waters, C. M. (1998) Caspases mediate 6-hydroxydopamine-induced apoptosis but not necrosis in PC12 cells. J. Neurochem. 70, 2637–2640.

    Article  PubMed  CAS  Google Scholar 

  224. Takai, N., Nakanishi, H., Tanabe, K., Nishioku, T., Sugiyama, T., Fujiwara, M., and Yamamoto, K. (1998) Involvement of caspase-like proteinases in apoptosis of neuronal PC12 cells and primary cultured microglia induced by 6-hydroxydopamine. J. Neurosci. Res. 54, 214–222.

    Article  PubMed  CAS  Google Scholar 

  225. Dodel, R. C., Du, Y., Bales, K. R., Ling, Z., Carvey, P. M., and Paul, S. M. (1999) Caspase-3-like proteases and 6-hydroxydopamine induced neuronal cell death. Brain Res. Mol. Brain. Res. 64, 141–148.

    Article  PubMed  CAS  Google Scholar 

  226. Blum, D., Wu, Y., Nissou, M. F., Arnaud, S., Benabid, A. L., and Verna, J. M. (1997) P53 amd Bax activation in 6-hydroxydopamine-induced apoptosis in PC12 cells. Brain Res. 751, 139–142.

    Article  PubMed  CAS  Google Scholar 

  227. Li, X. and Sun, A. Y. (1999) Paraquat induced activation of transcription factor AP-1 and apoptosis in PC12 cells. J. Neural Transm. 106, 1–21.

    Article  PubMed  CAS  Google Scholar 

  228. Hou, S. T., Cowan, E., Dostanic, S., Rasquinha, I., Comas, T., Morley, P., and MacManus, J. P. (2001) Increased expression of the transcription factor E2F1 during dopamine-evoked, caspase-3-mediated apoptosis in rat cortical neurons. Neurosci. Lett. 306, 153–156.

    Article  PubMed  CAS  Google Scholar 

  229. Hassouna, I., Wickert, H., Zimmermann, M., and Gollardon, F. (1996) Increase in Bax expression in substantia-nigra following 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment of mice. Neurosci. Lett. 204, 85–88.

    Article  PubMed  CAS  Google Scholar 

  230. Nishi, K. (1997) Expression of c-jun in dopaminergic neurons of the substantia nigra in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-trated mice. Brain Res. 771, 133–141.

    Article  PubMed  CAS  Google Scholar 

  231. Takai, N., Nakanishi, H., Tanabe, K., Nishioku, T., Sugiyama, T., Fujiwara, M., and Yamamoto, K. (1998) Involvement of caspase-like proteinases in apoptosis of neuronal PC 12 cells and primery cultured microglia induced by 6-hydroxydopamine. J. Neurosci. Res. 54, 214–222.

    Article  PubMed  CAS  Google Scholar 

  232. Gash, D. M., Zhang, Z., Ovadia, A., Cass, W. A., Yi, A., Simmermann, L., et al. (1996) Functional recovery in parkinsonian monkeys treated with GDNF. Nature 380, 252–255.

    Article  PubMed  CAS  Google Scholar 

  233. Gash, D. M., Zhang, Z., and Gerhardt, G. (1998) Neuroprotective and neurorestorative properties of GDNF. Ann. Neurol. 44 (Suppl. 1), S121–S125.

    PubMed  CAS  Google Scholar 

  234. Burke, R. E., Antonelli, M., and Sulzer, D. (1998) Glial cell line-derived neurotrophic growth factor inhibits apoptotic death of postnatal substantia nigra dopamine neurons in primary culture. J. Neurochem. 71, 517–525.

    Article  PubMed  CAS  Google Scholar 

  235. Offen, D., Ziv, I., Sternin, H., Melamed, E., and Hochman, A. (1996) Prevention of dopamine-induced cell death by thiol antioxidants—possible implications for treatment of Parkinson’s disease. Exp. Neurol. 141, 32–39.

    Article  PubMed  CAS  Google Scholar 

  236. Sawada, H., Ibi, M., Kihara, T., Urushitani, M., Akaike, A., and Shimohama, S. (1998) Estradiol protects mesencephalic dopaminergic neurons from oxidative stress-induced neuronal death. J. Neurosci. Res. 54, 707–719.

    Article  PubMed  CAS  Google Scholar 

  237. Ziv, I., Barzilai, A., Daily, D., Shirvan, A., Offen, D., and Melamed, E. (1998) The role of p53 in dopamine induced apoptosis: possible implications for the neuronal loss in Parkinson’s disease. (abstr.) Mov. Disord. 13 (Suppl. 2), 22.

    Google Scholar 

  238. Mayo, J. C., Sainz, R. M., Uria, H., Antolin, I., Esteban, M. M., and Rodriguez, C. (1998) Melatonin prevents Apoptosis induced by 6-hydroxydopamine in neuronal cells—implications for Parkinson’s disease. J. Pineal. Res. 24, 179–192.

    Article  PubMed  CAS  Google Scholar 

  239. Lotharius, J., Dugan, L. L., and O’Malley, K. L. (1999) Distinct mechanisms underlie neurotoxin-mediated cell death in cultured dopaminergic neurons. J. Neurosci. 19, 1284–1293.

    PubMed  CAS  Google Scholar 

  240. Lambeng, N., Hourez, R., Torch, S., Verna, J. M., and Blum, D. (2002) Biochemical and molecular mechanisms of neuronal cell death in the experimental neurotoxic models of Parkinson’s disease. M S-Med. Sci. 18, 457–466.

    Google Scholar 

  241. Oh, J. H., Choi, W.-S., Kim, J.-E., Seo, J.-W., O’Mally, K. L., and Oh, Y. J. (1998) Overexpression of HA-Bax but not Bc1–2 or Bcl-XL attenuates 6-hydroxydopamineinduced neuronal apoptosis. Exp. Neurol. 154, 193–198.

    Article  PubMed  CAS  Google Scholar 

  242. von Coelln, R., Kugler, S., Bahr, M., Weller, M., Dichgans, J., and Schulz, J. B. (2001) Rescue from death but not from functional impairment: caspase inhibition protects dopaminergic cells against 6-hydroxydopamine-induced apoptosis but not against the loss of their terminals. J. Neurochem. 77, 263–273.

    Article  Google Scholar 

  243. Natsume, A., Mata, M., Goss, J., Huang, S. H., Wolfe, D., Oligino, T., et al. (2001) Bc1–2 and GDNF delivered by HSV-mediated gene transfer act additively to protect dopaminergic neurons from 6-OHDA-induced degeneration. Exp. Neurol. 169, 231–238.

    Article  PubMed  CAS  Google Scholar 

  244. Jha, N., Jurma, O., Lalli, G., Liu, Y., Pettus, E. H., Greenamyre, J. T., et al. (2000) Glutathione depletion in PC 12 results in selective inhibition of mitochondrial complex I activity. Implications for Parkinson’s disease. J. Biol. Chem. 275, 26,096–26, 101.

    Google Scholar 

  245. Tamatani, M., Ogawa, S., Niitsu, Y., and Tohyama, M. (1998) Involvement of Bc1–2 family and caspase-3-like protease in NO-mediated neuronal apoptosis. J. Neurochem. 71, 1588–1596.

    Article  PubMed  CAS  Google Scholar 

  246. Chun, H. S., Gibson, G. E., DeGiorgio, L. A., Zhang, H., Kidd, V. J., and Son, J. H. (2001) Dopaminergic cell death induced by MPP(+), oxidant and specific neurotoxicants shares the common molecular mechanism. J. Neurochem. 76, 1010–1021.

    Article  PubMed  CAS  Google Scholar 

  247. Fukuhara, Y., Takeshima, T., Kashiwaya, Y., Shimoda, K., Ishitani, R., and Nakashima, K. (2001) GAPDH knockdown rescues mesencephalic dopaminergic neurons from MPP+-induced apoptosis. Neuroreport 12, 2049–2052.

    Article  PubMed  CAS  Google Scholar 

  248. Jeon, B. S., Kholodilov, N. G., Oo, T. F., Kim, S. Y., Tomaselli, K. J., Srinivasan, A., et al. (1999) Activation of caspase-3 in developmental models of programmed cell death in neurons of the substantia nigra. J. Neurochem. 73, 322–333.

    Article  PubMed  CAS  Google Scholar 

  249. Saporito, M. S., Thomas, B. A., and Scott, R. W. (2000) MPTP activates c-Jun NH(2)terminal kinase (JNK) and its upstream regulatory kinase MKK4 in nigrostriatal neurons in vivo. J. Neurochem. 75, 1200–1208.

    Article  CAS  Google Scholar 

  250. Zhou, W., Schaack, J., Zawada. W. M., and Freed, C. R. (2002) Overexpression of human alpha-synuclein causes dopamine neuron death in primary human mesencephalic culture. Brain Res. 926, 41–50.

    Google Scholar 

  251. Stefanova, N., Klimaschewski, L., Poewe, W., Wenning, G. K., and Reindl, M. (2001) Glial cell death induced by overexpression of a-synuclein. J. Neurosci. Res. 65, 432–438.

    Article  PubMed  CAS  Google Scholar 

  252. Kakimura, J., Kitamura, Y., Takata, K., Kohno, Y., Nomura, Y., and Taniguchi, T. (2001) Release and aggregation of cytochrome c and a-synuclein are inhibited by the antiparkinsonian drugs, talipexole and pramipexole. Eur. J. Pharmacol. 417, 59–67.

    Article  PubMed  CAS  Google Scholar 

  253. Greenamyre, J. T., MacKenzie, G., Peng, T. I., and Stephans, S. E. (1999) Mitochondrial dysfunction in Parkinson’s disease. Biochem. Soc. Symp. 66, 85–97.

    PubMed  CAS  Google Scholar 

  254. Reichmann, H. and Janetzky, B. (2000) Mitochondrial dysfunction—a pathogenetic factor in Parkinson’s disease. J. Neurol. 247(Suppl. 2), II63–1168.

    Google Scholar 

  255. Raha, S. and Robinson, B. H. (2001) Mitochondria, oxygen free radicals, and apoptosis. Am. J. Med. Genet. 106, 62–70.

    Article  PubMed  CAS  Google Scholar 

  256. Bernardi, P. (1999) Mitochondrial transport of cations: channels, exchangers, and permeability transition. Physiol. Rev. 79, 1127–1155.

    PubMed  CAS  Google Scholar 

  257. Nicole, A., Santiard-Baron, D., and Ceballos-Picot, I. (1998) Direct evidence for glutathione as mediator of apoptosis in neuronal cells. Biomed. Pharmacother. 52, 349–355.

    Article  PubMed  CAS  Google Scholar 

  258. Merad-Boudia, M., Nicole, A., Santiardbaron, D., Saille, C., and Ceballospicot, I. (1998) Mitochondrial impairment as an early event in the process of apoptosis induced by glutathione depletion in neuronal cells—relevance to Parkinson’s disease. Biochem. Pharmacol. 56, 645–655.

    Article  PubMed  CAS  Google Scholar 

  259. He, Y., Lee, T., and Leong, S. K. (2000) 6-Hydroxydopamine induced apoptosis of dopaminergic cells in the rat substantia nigra. Brain Res. 858, 163–166.

    Google Scholar 

  260. Turmaine, M., Raza, A., Mahal, A., Mangiarini, L., Bates, G. P., and Davies, S. W. (2000) Nonapoptotic neurodegeneration in a transgenic mouse model of Huntington’ s disease. Proc. Natl. Acad. Sci. USA 97, 8093–8097.

    Article  PubMed  CAS  Google Scholar 

  261. Jackson, G. R., Salecker, I., Dong, X., Yao, X., Arnheim, N., Faber, P. W., et al. (1998) Polyglutamine-expanded human huntingtin transgenes induce degeneration of Drosophila photoreceptor neurons. Neuron 21, 633–642.

    Article  PubMed  CAS  Google Scholar 

  262. Reddy, P. H., Williams, M., Charles, V., Garrett, L., Pike-Buchanan, L., Whetsell, W. O. Jr., et al. (1998) Behavioural abnormalities and selective neuronal loss in HD transgenic mice expressing mutated full-length HD cDNA. Nat. Genet. 20, 198–202.

    Article  PubMed  CAS  Google Scholar 

  263. Wellington, C. L., Singaraja, R., Ellerby, L., Savill, J., Roy, S., Leavitt, B., et al. (2000) Inhibiting caspase cleavage of huntingtin reduces toxicity and aggregate formation in neuronal and nonneuronal cells. J. Biol. Chem. 275, 19,831–19, 838.

    Google Scholar 

  264. Duan, W., Guo, Z., and Mattson, M. P. (2000) Participation of par-4 in the degeneration of striatal neurons induced by metabolic compromise with 3-nitropropionic acid. Exp. Neurol. 165, 1–11.

    Article  PubMed  CAS  Google Scholar 

  265. Vis, J. C., Verbeek, M. M., De Waal, R. M., Ten Donkelaar, H. J., and Kremer, B. (2001) The mitochondrial toxin 3-nitropropionic acid induces differential expression patterns of apoptosis-related markers in rat striatum. Neuropathol. Appl. Neurobiol. 27, 68–76.

    Article  PubMed  CAS  Google Scholar 

  266. Petersen, A., Larsen, K. E., Behr, G. G., Romero, N., Przedborski, S., Brundin, P., and Sulzer, D. (2001) Expanded CAG repeats in exon 1 of the Huntington’s disease gene stimulate dopamine-mediated striatal neuron autophagy and degeneration. Hum. Mol. Genet. 10, 1243–1254.

    Article  PubMed  CAS  Google Scholar 

  267. Kiechle, T., Dedeoglu, A., Kubilus, J„ Kowall, N. W., Beal, M. F., Friedlander, R., et al. (2002) Cytochrome C and caspase-9 expression in Huntington’s disease. Neuromolecular Med. 1, 183–195.

    Article  PubMed  CAS  Google Scholar 

  268. Kim, Y. J., Yi, Y., Sapp, E., Wang, Y., Cuiffo, B., Kegel, K. B., et al. (2001) Caspase-3cleaved N-terminal fragments of wild-type and mutant huntingtin are present in normal and Huntington’s disease brains, associate with membranes, and undergo calpain-dependent proteolysis. Proc. Natl. Acad. Sci. USA 48, 12,784–12, 789.

    Google Scholar 

  269. Koliatsos, V. F., Portera-Cailliau, C., Schilling, G., Borechlt, D. B., Becher, M. W., and Ross, C. (2001) Mechanisms of neuronal death in Huntington’s disease, in Pathogenesis of Neurodegenerative Disorders ( Mattson, P., ed.), Humana Press, Totowa, NJ, pp. 93–111.

    Chapter  Google Scholar 

  270. Migheli, A., Piva, R., Atzori, C., Troost, D., and Schiffer, D. (1997) c-Jun, JNK/SAPK kinases and transcription factor NF-kappa B are selectively activated in astrocytes, but not motor neurons, in amyotrophic lateral sclerosis. J. Neuropathol. Exp. Neurol. 56, 1314–1322.

    Google Scholar 

  271. Dal Canto, M. C. and Gurney, M. E. (1994) Development of central nervous system pathology in a murine transgenic model of human amyotrophic lateral sclerosis. Am. J. Pathol. 145, 1271–1279.

    Google Scholar 

  272. Martin, L. J. (1999) Neuronal death in amyotrophic lateral sclerosis is apoptosis: possible contribution of a programmed cell death mechanism. J. Neuropathol. Exp. Neurol. 58, 459–471.

    Article  PubMed  CAS  Google Scholar 

  273. He, B. P. and Strong, M. J. (2000) Motor neuronal death in sporadic amyotrophic lateral sclerosis (ALS) is not apoptotic. A comparative study of ALS and chronic aluminium chloride neurotoxicity in New Zealand white rabbits. Neuropathol. Appl. Neurobiol. 26, 150–160.

    Article  PubMed  CAS  Google Scholar 

  274. Anderson, A., Stoltzner, S., Lai, F., Su, J., and Nixon, R. A. (2000) Morphological and biochemical assessment of DNA damage and apoptosis in Down syndrome and Alzheimer disease, and effects of postmortem tissue archival on TUNEL. Neurobiol. Aging 21, 511–524.

    Article  PubMed  CAS  Google Scholar 

  275. Kitamura, Y., Shimohama, S., Kamoshima, W., Ota, T., Matsuoka, Y., Nomura, Y., et al. (1998) Alteration of proteins regulating apoptosis, Bcl-2, Bel-x, Bax, Bak, Bad, ICH-1 and CPP32, in Alzheimer’s disease. Brain Res. 780, 260–269.

    Google Scholar 

  276. MacGibbon, G. A., Lawlor, P. A., Walton, M., Sirimanne, E., Faull, R. L. M., Synek, B., et al. (1997) Expression of Fos, Jun, and Krox family proteins in Alzheimer’s disease. Exp. Neurol. 147, 316–332.

    Article  PubMed  CAS  Google Scholar 

  277. Ferrer, I., Blanco, R., Cutillas, B., and Ambrosio, S. (2000) Fas and Fas-L expression in Huntington’s disease and Parkinson’s disease. Neuropathol. Appl. Neurobiol. 26, 424–433.

    Article  PubMed  CAS  Google Scholar 

  278. Mogi, M., Togari, A., Kondo, T., Mizuno, Y., Komure, O., Kuno, S., et al. (2000) Caspase activities and tumor necrosis factor receptor RI (p55) level are elevated in the substantia nigra from Parkinsonian brains. J. Neural Transm. 107, 335–341.

    Article  PubMed  CAS  Google Scholar 

  279. Simic, G., Seso-Simic, D., Lucassen, P. L., Islam Arsnik, Z., Cviko, A., Jelasic, D., et al. (2000) Ultrastructural analysis and TUNEL demonstrate motor neuron apoptosis in WerdnigHoffmann disease. J. Neuropathol. Exp. Neurol. 59, 398–407.

    PubMed  CAS  Google Scholar 

  280. Su, J. H., Deng, G. M., and Cotman, C. W. (1997) Bax protein expression is increased in Alzheimers brain: correlations with DNA damage, Bcl-2 expression, and brain pathology. J. Neuropathol. Exp. Neurol. 56, 86–93.

    Article  PubMed  CAS  Google Scholar 

  281. Su, J. H., Satou, T., Anderson, A. J., and Cotman, C. W. (1996) Up-regulation of Bcl-2 is associated with neuronal DNA damage in Alzheimer’s disease. Neuroreport 7, 437–440.

    Article  PubMed  CAS  Google Scholar 

  282. Mochizuki, H., Mori, H., and Mizuno, Y. (1997) Apoptosis in neurodegenerative disorders. J. Neural Transm. 50 (Suppl.), 125–140.

    CAS  Google Scholar 

  283. Banati, R. B., Daniel, S. E., Path, M. R. C., and Blunt, S. B. (1998) Glial pathology but absence of apoptotic nigral neurons in long-standing Parkinson’s disease. Mov. Disord. 13, 221–227.

    Article  PubMed  CAS  Google Scholar 

  284. Graeber, M. B., Grasbon-Frodl, E., Abell-Aleff, P., and Kösel, S. (1999) Nigral neurons are likely to die of a mechanism other than classical apoptosis in Parkinson’s disease. Parkinsonism Relat. Disord. 5, 187–192.

    Article  PubMed  CAS  Google Scholar 

  285. Wüllner, U., Kornhuber, J., Weller, M., Schulz, J. B., Löschmann, P. A., and Riederer, P. (1999) Cell death and apoptosis regulating proteins in Parkinson’s disease-a cautionary note. Acta Neuropathol. 97, 408–412.

    Article  PubMed  Google Scholar 

  286. Kösel, S., Egensperger, R., von Eitzen, U., Mehraein, P., and Graeber, M. (1997) On the question of apoptosis in the parkinsonian substantia nigra. Acta Neuropathol. 93, 105–108.

    Article  PubMed  Google Scholar 

  287. Probst-Cousin, S., Rickert, C. H., Schmid, K. W., and Gullotta, F. (1998) Cell mechanisms in multiple system atrophy. J. Neuropathol. Exp. Neurol. 57, 814–821.

    Article  PubMed  CAS  Google Scholar 

  288. Selznick, L. A., Holtzman, D. M., Han, B. H., Gokder, M., Srinivasan, A. N., Johnson, M. J., and Roth, K. A. (1999) In situ immunodetection of neuronal caspase-3 activation in Alzheimer disease. J. Neuropathol. Exp. Neurol. 58, 1020–1026.

    Article  PubMed  CAS  Google Scholar 

  289. Embacher, N., Kaufmann, W. A., Beer, R., Maier, H., Jellinger, K. A., Poewe, W., and Ransmayr, G. (2001) Apoptosis signals in sporadic amyotrophic lateral sclerosis. An immunocytochemical study. Acta Neuropathol. 102, 426–434.

    PubMed  CAS  Google Scholar 

  290. Adamec, E., Vonsattel, J. P., and Nixon, R. A. (1999) DNA strand breaks in Alzheimer’s disease. Brain Res. 849, 67–77.

    Article  PubMed  CAS  Google Scholar 

  291. Mullaart, E., Boerrigter, M. E., Ravid, R., Swaab, D. F., and Vijg, J. (1990) Increased levels of DNA breaks in cerebral cortex of Alzheimer’s disease patients. Neurobiol. Aging 11, 169–173.

    Article  PubMed  CAS  Google Scholar 

  292. Smale, J. G., Nichols, N. R., Brady, D. R., Finch, C. E., and Horton, W. E. Jr. (1995) Evidence for apoptotic cell death in Alzheimer’s disease. Exp. Neurol. 133, 225–230.

    Article  PubMed  CAS  Google Scholar 

  293. Sheng, J. G., Mrak, R. E., and Griffin, W. S. T. (1998) Progressive neuronal DNA damage associated with neurofibrillary tangle formation in Alzheimer’s disease. J. Neuropathol. Exp. Neurol. 57, 323–328.

    Article  PubMed  CAS  Google Scholar 

  294. de la Monte, S. M., Sohn, Y. K., and Wands, J. R. (1997) Correlates of p53- and Fas (CD95)-mediated apoptosis in Alzheimer’s disease. J. Neurol. Sci. 152, 73–83.

    Article  PubMed  Google Scholar 

  295. Chui, D.H., Dobo, E., Makifuchi, T., et al. (2001) Apoptotic neurons in Alzheimer’s disease frequently show intracellular A1342 labeling. J. Alzh. Dis. 3, 231–239.

    CAS  Google Scholar 

  296. Wirths, O., Multhaup, G., Czech, C., Blanchard, V., Moussaoui, S., Tremp, G., et al. (2001) Intraneuronal AP accumulation precedes plaque formation in (3-amyloid precursor protein and presenilin-1 double-transgenic mice. Neurosci. Lett. 306, 116–120.

    Article  PubMed  CAS  Google Scholar 

  297. Lucassen, P. J., Chung, W. C. J., Kamphorst, W., and Swaab, D. F. (1997) DNA damage distribution in the human brain as shown by in situ end labelling. Area-specific differences in aging and Alzheimer’s disease in the absence of apoptotic morphology. J. Neuropathol. Exp. Neurol. 56, 887–900.

    Article  PubMed  CAS  Google Scholar 

  298. Troncoso, J. C., Sukhov, R. R., Kawas, C. H., and Koliatsos, V. E. (1996) In situ labeling of dying cortical neurons in normal aging and in Alzheimer’s disease. Correlations with senile plaques and disease progression. J. Neuropathol. Exp. Neurol. 55, 1134–1142.

    Article  PubMed  CAS  Google Scholar 

  299. Kobayashi, K., Hayashi, M., Nakano, H., Fukutani, Y., Sasaki, K., Shimazaki, M., and Koshino, Y. (2002) Apoptosis of astrocytes with enhanced lysosomal activity and oligodendrocytes in white matter lesions in Alzheimer’ s disease. Neuropathol. Appl. Neurobiol. 28, 238–251.

    Article  PubMed  CAS  Google Scholar 

  300. Braak, H. and Braak, E. (1991) Neuropathological staging of Alzheimer-related changes. Acta Neuropathol. 82, 239–259.

    Article  PubMed  CAS  Google Scholar 

  301. Ferrer, I., Segui, J., and Planas, A. M. (1996) Amyloid deposition is associated with c-Jun expression in Alzheimer’s disease and amyloid angiopathy. Neuropathol. Appl. Neurobiol. 22, 521–526.

    Article  PubMed  CAS  Google Scholar 

  302. Nishimura, T., Akiyama, H., Yonehara, S., Kondo, H., Ikeda, K., Kato, M., et al. (1995) Fas antigen expression in brains of patients with Alzheimer-type dementia. Brain Res. 695, 137–145.

    Article  PubMed  CAS  Google Scholar 

  303. Guo, Q., Fu, W., Xie, J., Luo, H., Sells, S. F., Geddes, J. W., et al. (1998) Par-4 is a mediator of neuronal degeneration associated with the pathogenesis of Alzheimer disease. Nature Med. 4, 957–962.

    Article  PubMed  CAS  Google Scholar 

  304. Marcus, D. L., Strafaci, J. A., Miller, D. C., Masia, S., Thomas, C. G., Rosman, J., et al. (1998) Quantitative neuronal c-Fos and c-Jun expression in Alzheimer’s disease. Neurobiol. Aging 19, 393–400.

    Article  PubMed  CAS  Google Scholar 

  305. Tortosa, A., López, W., and Ferrer, I. (1998) BcI-2 and Bax protein expression in Alzheimer’s disease. Acta Neuropathol. 95, 407–412.

    Article  PubMed  CAS  Google Scholar 

  306. Torp, R., Su, J. H., Deng, G., and Cotman, C. W. (1998) GADD45 is induced in Alzheimer’s disease, and protects against apoptosis in vitro. Neurobiol. Dis. 5, 245–252.

    Article  PubMed  CAS  Google Scholar 

  307. Engidawork, E., Gulesserian, T., Yoo, B. C., Cairns, N., and Lubec, G. (2001) Alteration of caspases and apoptosis-related proteins in brains of patients with Alzheimer’s disease. Biochem. Biophys. Res. Commun. 281, 84–93.

    Article  PubMed  CAS  Google Scholar 

  308. Nagy, Z. S. and Esiri, M. M. (1997) Apoptosis-related protein expression in the hippo-campus of Alzheimer’ s disease. Neurobiol. Aging 18, 655–671.

    Article  Google Scholar 

  309. Copani, A., Uberti, D., Sortino, M. A., Bruno, V., Nicoletti, F., and Memo, M. (2001) Activation of cell cycle-associated proteins in neuronal death: a mandatory or dispensable path? Trends Neurosci. 24, 25–31.

    Article  PubMed  CAS  Google Scholar 

  310. Yang, Y., Geldmacher, D. S., and Herrup, K. (2001) DNA replication precedes neuronal cell death in Alzheimer’s disease. J. Neurosci. 21, 2661–2668.

    PubMed  CAS  Google Scholar 

  311. Smith, M. A., Zhu, X., Sun, Z., and Perry, G. (2001) Activation of c-jun in Alzheimer disease (abstr.). J. Neuropathol. Exp. Neurol. 60, 546.

    Google Scholar 

  312. Vickers, J. C., Dickson, T. C., Adlard, P. A., Saunders, H. L., King, C. E., and McCormack, G. (1999) The cause of neuronal degeneration in Alzheimer’s disease. Prog. Neurobiol. 60, 1–27.

    Google Scholar 

  313. Giannakopoulos, P., Kövari, E., Savioz, A., De Bilabao, F., Dubois-Dauphin, M., Hof, P. R., and Bouras, C. (1999) Differential distribution of presenilin-1, Bax, and Bcl-X in Alzheimer’s disease and frontotemporal dementia. Acta Neuropathol. 98, 141–149.

    Article  PubMed  CAS  Google Scholar 

  314. Stadelmann, C., Brück, W., Bancher, C., Jellinger, K., and Lassmann, H. (1998) Alzheimer disease: DNA fragmentation indicates increased neuronal vulnerability but not apoptosis. J. Neuropathol. Exp. Neurol. 57, 456–464.

    Article  PubMed  CAS  Google Scholar 

  315. Su, J. H., Kesslak, J. P., Head, E., and Cotman, C. W. (2002) Caspase-cleaved amyloid precursor protein and activated caspase-3 are co-localized in the granules of granulovacuolar degeneration in Alzheimer’s disease and Down’ syndrome brain. Acta Neuropathol. 104, 1–6.

    Article  PubMed  CAS  Google Scholar 

  316. Masliah, E., Mallory, M., Alford, M., Tanaka, S., and Hansen, L. A. (1998) Caspase dependent DNA fragmentation might be associated with excitotoxicity in Alzheimer’s disease. J. Neuropathol. Exp. Neurol. 57, 1041–1052.

    Article  PubMed  CAS  Google Scholar 

  317. Bancher, C., Brunner, C., Lassmann, H., Budka, H., Jellinger, K., Wiche, O., et al. (1989) Accumulation of abnormally phosphorylated i precedes the formation of neurofibrillary tangles in Alzheimer’s disease. Brain Res. 477, 90–99.

    Article  PubMed  CAS  Google Scholar 

  318. Su, J. H., Zhao, M., Anderson, A. J., Srinivasan, A., and Cotman, C. W. (2001) Activated caspase-3 expression in Alzheimer’s and aged control brain: correlation with Alzheimer pathology. Brain Res. 898, 350–357.

    Article  PubMed  CAS  Google Scholar 

  319. Ayala-Grosso, C., Ng, G., Roy, S., and Robertson, G. S. (2002) Caspase-cleaved amyloid precursor protein in Alzheimer’s disease. Brain Pathol. 12, 430–441.

    Article  PubMed  CAS  Google Scholar 

  320. Ghoshal, N., Smiley, J. R, DeMaggio, A. J., Hoekstra, M. F., Cochran, E. J., Binder, L. I., and Kuret, J. (1999) A new molecular link between the fibrillar and granulovacuolar lesions of Alzheimer’s disease. Am. J. Pathol. 155, 1163–1172.

    Article  PubMed  CAS  Google Scholar 

  321. Perry, G, Numomura, A., Lucassen, P. J., Lassmann, H., and Smith, M. A. (1998) Apoptosis and Alzheimer’s disease. Science 282, 1265.

    Article  Google Scholar 

  322. Ferrer, I., Puig, B., Krupinski, J., Marmona, M., and Blanco, R. (2001) Fas and Fas ligand expression in Alzheimer’s disease. Acta Neuropathol. 102, 121–131.

    PubMed  CAS  Google Scholar 

  323. de la Monte, S. M., Luong, T., Neely, T. R., Robinson, D., and Wands, J. R. (2000) Mitochondrial DNA damage as a mechanism of cell loss in Alzheimer’s disease. Lab. Invest. 80, 1323–1335.

    Article  PubMed  Google Scholar 

  324. Pei, J.-J., Braak, E., Braak, H., Grundke-Iqbal, I., Winblad, K., Winblad, B., and Cowburn, E. R. (2001) Localization of active forms of c-Jun kinase (JNK) and p38 kinase in Alzheimer’ s disease brains at different stages of neurofibrillary degeneration. J. Alz. Dis. 3, 41–48.

    CAS  Google Scholar 

  325. Galvin, J. E., Lee, V. M., and Trojanowski, J. Q. (2001) Synucleinopathies: clinical and pathological implications. Arch. Neurol. 58, 186–190.

    Article  PubMed  CAS  Google Scholar 

  326. Mochizuki, H., Goto, K., Mori, H., and Mizuno, Y. (1996) Histochemical detection of apoptosis in Parkinson’s disease. J. Neurol. Sci. 137, 120–123.

    Article  PubMed  CAS  Google Scholar 

  327. Marshall, K. A., Daniel, S. E., Cairns, N., Jenner, P., and Halliwell, B. (1997) Upregulation of the anti-apoptotic protein Bcl-2 may be early event in neurodegeneration: studies on Parkinson’s incidental Lewy body disease. Biochem. Biophys. Res. Commun. 240, 84–87.

    Article  PubMed  CAS  Google Scholar 

  328. Vyas-Boissiere, F., Hibner, U., and Agid, Y. (1997) Expression of Bel 2 in adult human brain regions with special reference to neurodegenerative disorders. J. Neurochem. 69, 223–231.

    Article  Google Scholar 

  329. Hartmann, A., Mouatt-Prigent, A., Vila, M., Abbas, N., Perier, C., Faucheux, B. A., et al. (2002) Increased expression and redistribution of the antiapoptotic molecule Bcl-xL in Parkinson’s disease. Neurobiol. Dis. 10, 28–32.

    Article  PubMed  CAS  Google Scholar 

  330. Tortosa, A., Lopez, E., and Ferrer, I. (199) Bc1–2 and Bax proteins in Lewy bodies from patients with Parkinson’s disease and diffuse Lewy body disease. Neurosci. Leu. 238, 78–80.

    Google Scholar 

  331. Gonzalez-Garcia, M., Garcia, I., Ding, L., O’Shea, S., Boise, L. H., Thompson, C. B., and Nunoz, G. (1995) Bcl-x is expressed in embryonic and postnatal neural tissues and functions to prevent neuronal cell death. Proc. Natl. Acad. Sci. USA 92, 4304–4308.

    Article  PubMed  CAS  Google Scholar 

  332. Fearnley, J. M. and Lees, A. J. (1994) Pathology of Parkinson’s disease, in Neurodegenerative Diseases (19) ( Caine, D. B., ed.), Saunders, Philadelphia, pp. 545–554.

    Google Scholar 

  333. Tatton, W. G., Chalmers-Redman, R. M., Elstner, M., Leesch, W., Jagodzinski, F. B., Stupak, D. P., et al. (2000) Glyceraldehyde-3-phosphate dehydrogenase in neurodegeneration and apoptosis signaling. J. Neural Transm. 60 (Suppl.), 77–100.

    Google Scholar 

  334. Anderson, J. K. (2001) Does neuronal loss in Parkinson’s disease involve programmed cell death? Bio Essays 23, 640–647.

    Google Scholar 

  335. Tompkins, M. M. and Hill, W. D. (1997) Contribution of somal Lewy bodies to neuronal death. Brain Res. 775, 24–29.

    Article  PubMed  CAS  Google Scholar 

  336. Ferrer, I., Blanco, R., Marmona, M., Puig, B., Barrachina, M., Gomec, C., and Ambrosio, S. (2001) Active, phosphorylation-dependent mitogen-activated protein kinase (MAPK/ ERK), stress-activated protein kinase/c jun, N-terminal kinase (SAPK/JNK) and p38 kinase expression in Parkinson’s disease and dementia with Lewy bodies. J. Neural Transm. 108, 1383–1396.

    Article  PubMed  CAS  Google Scholar 

  337. Langston, J. W., Forno, L. S., Tetrud, J., Reeves, A. G., Kaplan, J. A., and Karluk, D. (1999) Evidence of active nerve cell degeneration in the substantia nigra of humans years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposure. Ann. Neurol. 46, 598–605.

    Article  PubMed  CAS  Google Scholar 

  338. Liu, B., Wang, K., Gao, H. M., Mandavilli, B., Wang, J. Y., and Hong, J. S. (2001) Molecular consequences of activated microglia in the brain: overactivation induces apoptosis. J. Neurochem. 77, 182–189.

    Article  PubMed  CAS  Google Scholar 

  339. Kingham, P. J. and Pocock, J. M. (2001) Microglial secreted cathepsin ß induces neuronal apoptosis. J. Neurochem. 76, 1475–1484.

    Article  PubMed  CAS  Google Scholar 

  340. McGeer, P. L., Pagani, S., Boyes, B. E., and McGeer, E. G. (1988) Reactive microglia are posiitve for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology 38, 1385–1391.

    Article  Google Scholar 

  341. McGeer, P. L., Yasojima, K., and McGeer, E. G. (2001) Inflammation in Parkinson’s disease. Adv. Neurol. 86, 83–89.

    PubMed  CAS  Google Scholar 

  342. Jellinger, K., Paulus, W., Grundke-Iqbal, I., Riederer, P., and Youdim, M. B. (1990) Brain iron and ferritin in Parkinson’s and Alzheimer’s diseases. J. Neural Transm. Park. Dis. Dement. Sect. 2, 327–340.

    Article  PubMed  CAS  Google Scholar 

  343. Shoham, S. and Youdim, M. B. (2000) Iron involvement in neural damage and microgliosis in models of neurodegenerative diseases. Cell. Mol. Biol. 46, 743–760.

    PubMed  CAS  Google Scholar 

  344. Linert, W. and Jellinger, K. A. (2001) Cell death mechanisms and the role of iron in neurodegeneration, in Mechanisms of Degeneration and Protection of the Dopaminergic System ( Segura-Aquilar, J., ed.), FP Graham Publishing, Johnson City, TN, pp. 21–65.

    Google Scholar 

  345. Orth, M. and Schapira, A. H. V. (2001) Mitochondria and degenerative disorders. Am. J. Med. Genet. 106, 27–36.

    Article  PubMed  CAS  Google Scholar 

  346. Schapira, A. H. V. (1999) Mitdchondrial DNA. Adv. Neurol. 80, 233–237.

    PubMed  CAS  Google Scholar 

  347. Schapira, A. H. V. (2001) Causes of neuronal death in Parkinson’s disease. Adv. Neurol. 86, 155–161.

    PubMed  CAS  Google Scholar 

  348. Lantos, P. L. (1999) The definition of multiple system atrophy: A review of recent developments. J. Neuropathol. Exp. Neurol. 57, 1099–1111.

    Article  Google Scholar 

  349. Charles, P. D., Robertson, D., Kerr, L. D., Lonce, S., Austin, M. T., Gelbman, B. D., et al. (1997) Evidence of apoptotic cell death in multiple-system atrophy. (abstr.) Ann. Neurol. 42, 408–409.

    Google Scholar 

  350. Hauw, J.-J., Daniel, S. E., Dickson, D., Horoupian, D. S., Jellinger, K., Lantos, P. L., et al. (1994) Preliminary NINDS neuropathologic criteria for Steele-Richardson-Olszewski syndrome (progressive supranuclear palsy). Neurology 44, 2015–2019.

    Article  PubMed  CAS  Google Scholar 

  351. Komori, T. (1999) Tau-positive glial inclusions in progressive supranuclear palsy, corticobasal degeneration and Pick’s disease. Brain Pathol. 9, 663–679.

    Article  PubMed  CAS  Google Scholar 

  352. Dickson, D. W. (1999) Neuropathologie differentiation of progressive supranuclear palsy and corticobasal degeneration. J. Neurol. 246 (Suppl. 2), 116–1115.

    Article  Google Scholar 

  353. Litvan, I., Hauw, J. J., Bartko, J. J., Lantos, P. L., Daniel, S. E., Horoupian, D. S., et al. (1996) Validity and reliability of the preliminary NINDS neuropathologie criteria for progressive supranuclear palsy and related disorders. J. Neuropathol. Exp. Neurol. 55, 97–105.

    Article  PubMed  CAS  Google Scholar 

  354. Litvan, I., Dickson, D. W., Buttner-Ennever, J. A., Delacourte, A., Hutton, M., Dubois, B., et al. (2000) Research goals in progressive supranuclear palsy. First International Brainstorming Conference on PSP. Mov. Disord. 15, 446–458.

    Article  PubMed  CAS  Google Scholar 

  355. Tortosa, A., Blanco, R., and Ferrer, I. (1998) Bc1–2 and Bax protein expression in neurofibrillary tangles in progressive supranuclear palsy. NeuroReport 9, 1049–1052.

    Article  PubMed  CAS  Google Scholar 

  356. Albers, D. S., Swerdlow, R. H., Manfredi, G., Gajewski, C., Yang, L., Parker, W. D. Jr., and Beal, M. F. (1999) Further evidence for mitochondrial dysfunction in progressive supranuclear palsy. Exp. Neurol. 168, 196–198.

    Article  CAS  Google Scholar 

  357. Litvan, I., Grimes, D. A., Lang, A. E., Jankovic, J., McKee, A., Verny, M., Jellinger, K., et al. (1999) Clinical features differentiating patients with postmortem confirmed progressive supranuclear palsy and corticobasal degeneration. J. Neurol. 246 (Suppl. 2), III - I15.

    Article  Google Scholar 

  358. Litvan, I., Goetz, C. G., and Lang, A. E. (2000) Corticobasal degeneration and related disorders. Adv. Neurol. 82.

    Google Scholar 

  359. Dickson, D. W., Bergeron, C., Chin, S. S., Duyckaerts, C., Horoupian, D., Ikeda, K., et al. (2002) Neuropathologie criteria for the diagnosis of corticobasal degeneration. J. Neuropathol. Exp. Neurol. 62, in press.

    Google Scholar 

  360. Su, J. H., Nichol, K. E., Sitch, T., Sheu, P., Chubb, C., Miller, B. L., et al. (2000) DNA damage and activated caspase-3 expression in neurons and astrocytes: evidence for apoptosis in frontotemporal dementia. Exp. Neurol. 163, 9–19.

    Article  PubMed  CAS  Google Scholar 

  361. Martinac, J. A., Craft, D. K., Su, J. H., Kim, R. C., and Cotman, C. W. (2001) Astrocytes degenerate in frontotemporal dementia: possible relation to hypoperfusion. Neurobiol. Aging 22, 195–207.

    Article  Google Scholar 

  362. Thomas, L. B., Gates, D. J., Richfield, E. K., Tf, O. B., Schweitzer, J. B., and Steindler, D. A. (1995) DNA end labeling (TUNEL) in Huntington’s disease and other neuropathological conditions. Exp. Neurol. 133, 265–272.

    Article  PubMed  CAS  Google Scholar 

  363. Portera-Cailliau, C., Hedreen, J. C., Price, D. L., and Koliatsos, V. E. (1995) Evidence for apoptotic cell death in Huntington’ s disease and excitotoxic animal models. J. Neuro-sci. 15, 3775–3787.

    CAS  Google Scholar 

  364. Butterworth, N. J., Williams, L., Bullock, J. Y., Love, D. R., Faull, R. L. M., and Dragunow, M. (1998) Trinucleotide (CAG) repeat length is positively correlated with the degree of DNA fragmentation in Huntington’s disease striatum. Neuroscience 87, 49–53.

    Article  PubMed  CAS  Google Scholar 

  365. Zeron, M. M., Chen, N., Moshaver, A., Ting-Chun Lee, A., Wellington, C. L., Hayden, M. R., and Raymond, L. A. (2001) Mutant huntingtin enhances excitotoxic cell death. Mol. Cell. Neurosci. 17, 41–53.

    Article  PubMed  CAS  Google Scholar 

  366. Sapp, E., Kegel, K. B., Aronin, N., Hashikawa, T., Uchiyama, Y., Tohyama, K., et al. (2001) Early and progressive accumulation of reactive microglia in the Huntington disease brain. J. Neuropathol. Exp. Neurol. 60, 161–172.

    PubMed  CAS  Google Scholar 

  367. Mantamadiotis, T., Lemberger, T., Bleckmann, S. C., Kern, H., Kretz, O., Martin Villalba, A., et al. (2002) Disruption of CREB function in brain leads to neurodegeneration. Nat. Genet. 31, 47–54.

    Article  PubMed  CAS  Google Scholar 

  368. Troost, D., Aten, J., Morsink, F., and de Jong, J. M. B. V. (1995) Apoptosis in amyotrophic lateral sclerosis is not restricted to motor neurons: Bc1–2 expression is increased in unaffected post-central gyrus. Neuropathol. Appl. Neurobiol. 21, 498–504.

    Article  PubMed  CAS  Google Scholar 

  369. Mu, X., He, J., Anderson, D. W., Trojanowski, J. Q., and Springer, J. E. (1996) Altered expression of Bc1–2 and Bax mRNA in amyotrophic lateral sclerosis spinal cord motor neurons. Ann. Neurol. 40, 379–386.

    Article  PubMed  CAS  Google Scholar 

  370. Fitzmaurice, P. S., Shaw, I. C., Kleiner, H. E., Miller, R. T., Monks, T. J., Lau, S. S., et al. (1996) Evidence for DNA damage in amyotrophic lateral sclerosis. Muscle Nerve 19, 797–798.

    PubMed  CAS  Google Scholar 

  371. Martin, L. J. (1999) Neuronal death in amyotrophic lateral sclerosis is apoptosis: possible contribution of a programmed cell death mechanism. J. Neuropathol. Exp. Neurol. 58, 459–471.

    Article  PubMed  CAS  Google Scholar 

  372. Ekegren, T., Grundstrom, E., Lindholm, D., and Aquilonius, S. M. (1999) Upregulation of Bax protein and increased DNA degradation in ALS spinal cord motor neurons. Acta Neurol. Scand. 100, 317–321.

    Article  PubMed  CAS  Google Scholar 

  373. Sathasivam, S., Ince, P. G., and Shaw, P. J. (2001) Apoptosis in amyotrophic lateral sclerosis: a review of the evidence. Neuropathol. Appl. Neurobiol. 27, 257–274.

    Article  PubMed  CAS  Google Scholar 

  374. Kihira, T., Yoshida, S., Hironishi, M., Wakayama, I., and Yase, Y. (1998) Neuronal degeneration in amyotrophic lateral sclerosis is TI mediated by a possible mechanism different from classical apoptosis. Neuropathology 18, 301–308.

    Article  Google Scholar 

  375. Martin, L. J. (2000) p53 is abnormally elevated and active in the CNS of patients with amyotrophic lateral sclerosis. Neurobiol. Dis. 7, 613–622.

    Google Scholar 

  376. Vukosavic, S., Stefanis, L., Jackson-Lewis, V., Guegan, C., Romero, N., Chen, C., et al. (2000) Delaying caspase activation by Bc1–2, A clue to disease retardation in a transgenic mouse model of amyotrophic lateral sclerosis. J. Neurosci. 20, 9119–9125.

    PubMed  CAS  Google Scholar 

  377. Bar-Peled, O., Knudson, M., Korsmeyer, S. J., and Rothstein, J. D. (1999) Motor neuron degeneration is attenuated in bax-deficient neurons in vitro. J. Neurosci. Res. 55, 542–556.

    CAS  Google Scholar 

  378. Lucassen, P. J., Muller, M. B., Holsboer, F., Bauer, J., Holtrop, A., Wouda, J., et al. (2001) Hippocampal apoptosis in major depression is a minor event and absent from subareas at risk for glucocorticoid overexposure. Am. J. Pathol. 158, 453–468.

    Article  PubMed  CAS  Google Scholar 

  379. Perry, G., Nunomura, A., and Smith, M. A. (1998) A suicide note from Alzheimer disease neurons? Nature Med. 4, 897–898.

    Article  PubMed  CAS  Google Scholar 

  380. Smith, M. A., Raina, A. K., Nunomura, A., Hochman, A., Takeda, A., and Perry, G. (2000) Apoptosis in Alzheimer disease: fact or fiction. Brain Pathol. 10, 797.

    Google Scholar 

  381. Trucco, C., Oliver, F. J., de Murcia, G., and Menissier-de Murcia, J. (1998) DNA repair defect in poly(ADP-ribose) polymerase-deficient cell lines. Nucleic Acids Res. 26, 26442649.

    Google Scholar 

  382. Raina, A. K., Hochman, A., Zhu, X., Rottkamp, C. A., Nunomura, A., Siedlak, S. L., et al. (2001) Abortive apoptosis in Alzheimer’s disease. Acta Neuropathol. 101, 305–310.

    PubMed  CAS  Google Scholar 

  383. Morsch, R., Simon, W., and Coleman, P. D. (1999) Neurons may live for decades with neurofibrillary tangles. J. Neuropathol. Appl. Neurol. 58, 188–197.

    Article  CAS  Google Scholar 

  384. Schwab, C., Schulzer, M., Steele, J. C., and McGeer, P. L. (1999) On the survival time of a tangled neuron in the hippocampal CA4 region in parkinsonism dementia complex of Guam. Neurobiol. Aging 20, 57–63.

    Article  PubMed  CAS  Google Scholar 

  385. Nunomura, A. and Chiba, S. (2002) Avoidance of apoptosis in Alzheimer’s disease. J. Alzheimer’s Dis. 2, 59–60.

    Google Scholar 

  386. Clarke, G., Collins, R. A., Leavitt, B. R., Andrews, D. F., Hayden, M. R., Lumsden, C. J., and McInnes, R. R. (2000) A one-hit model of cell death in inherited neuronal degenerations. Nature 406, 195–199.

    Article  PubMed  CAS  Google Scholar 

  387. Overmyer, M., Kraszpulki, M., Seppo, H., Hilkka, S., and Alafuzzoff, I. (2001) DNA-fragmentation, gliosis and histological hallmarks of Alzheimer’s disease. Acta Neuropathol. 100, 681–687.

    Article  Google Scholar 

  388. Broe, M., Shephard, C. E., Milward, E. A., and Halliday, G. M. (2001) Relationship between DNA-fragmentation, morphological changes and dementia with Lewy bodies. Acta Neuropathol. 101, 616–624.

    PubMed  CAS  Google Scholar 

  389. Anderson, A. J., Ruehl, W. W., Fleischmann, L. K., Stenstrom, K., Entriken, T. L., and Cummings, B. J. (2000) DNA damage and apoptosis in the aged canine brain: relationship to A(3 deposition in the absence of neuritic pathology. Prog. Neuro-Psychopharmacol. Biol. Psychiat. 24, 787–799.

    Article  CAS  Google Scholar 

  390. Rohn, T. T., Head, E., Su, J. H., Anderson, A. J., Bahr, B. A., Cotman, C. W., and Cribbs, D. H. (2001) Correlation between caspase activation and neurofibrillary tangle formation in Alzheimer’s disease. Am. J. Pathol. 158, 189–198.

    Article  PubMed  CAS  Google Scholar 

  391. Beal, M. F. (199) Mitochondria, free radicals, and neurodegeneration. Curr. Opin. Neurobiol. 6, 661–666.

    Google Scholar 

  392. Simonian, N. A. and Coyle, J. T. (1996) Oxidative stress in neurodegenerative diseases. Ann. Rev. Pharmacol. Toxicol. 36, 83–106.

    Article  CAS  Google Scholar 

  393. Multhaup, G., Masters, C. L., and Beyreuther, K. (1998) Oxidative stress in Alzheimer’s disease. Alzheimer’s Rep. 1, 147–154.

    Google Scholar 

  394. Markesberry, W. R. and Carney, J. M. (1999) Oxidative alterations in Alzheimer’s disease (Review). Brain Pathol. 9, 133–146.

    Article  Google Scholar 

  395. Markesbery, W. R., Montine, D. J., and Lovell, M. A. (2001) Oxidative alterations in neurodegenerative diseases, in Pathogenesis of Neurodegenerative Disorders ( Mattson, M. P., ed.), Humana Press, Totowa, NJ, pp. 21–51.

    Chapter  Google Scholar 

  396. Smith, M. A., Rottkamp, C. A., Nunomura, A., Raina, A. K., and Perry, G. (2000) Oxidative stress in Alzheimer’s disease. Biochim. Biophys. Acta 1502, 139–144.

    Article  PubMed  CAS  Google Scholar 

  397. de la Monte, S. M., Neely, T. R., Cannon, J., and Wands, J. R. (2000) Oxidative stress and hypoxia-like injury cause Alzheimer-type molecular abnormalities in central nervous system neurons. Cell. Mol. Life Sci. 57, 1471–1481.

    Article  PubMed  Google Scholar 

  398. de la Monte, S. M., Ganju, N., Feroz, N., et al. (2000) Oxygen free radical injury is sufficient to cause some Alzheimer-type molecular abnormalities in human CNS neuronal cells. J. Alz. Dis. 2, 1–21.

    Google Scholar 

  399. Aksenov, M. Y., Aksenova, M. V., Butterfield, D. A., Geddes, J. W., and Markesbery,W. R. (2001) Protein oxidation in the brain in Alzheimer’s disease. Neuroscience 103, 373–383.

    Article  PubMed  CAS  Google Scholar 

  400. Butterfield, D. A. and Kanski, J. (2001) Brain protein oxidation in age-related neuro-degenerative disorders that are associated with aggregated proteins. Mech. Ageing Dev. 122, 945–962.

    Article  PubMed  CAS  Google Scholar 

  401. de la Monte, S. M., Luong, T., Neely, T. R., Robinson, D., and Wands, J. R. (2000) Mitochondrial DNA damage as a mechanism of cell loss in Alzheimer’ s disease. Lab. Invest. 80, 1323–1335.

    Article  PubMed  Google Scholar 

  402. de la Monte, S. M. and Wands, J. R. (2001) Alzheimer-associated neuronal thread protein-induced apoptosis and impaired mitochondrial function in human central nervous system-derived neuronal cells. J. Neuropathol. Exp. Neurol. 60, 195–207.

    PubMed  Google Scholar 

  403. Pollanen, M. S., Dickson, D. W., and Bergeron, C. (1993) Pathology and biology of the Lewy body. J. Neuropathol. Exp. Neurol. 52, 183–191.

    Article  PubMed  CAS  Google Scholar 

  404. Dale, G. E., Probst, A., Luthert, P., Martin, J., Anderton, B. H., and Leigh, P. N. (1992) Relationships between Lewy bodies and pale bodies in Parkinson’s disease. Acta Neuropathol. 83, 525–529.

    Article  PubMed  CAS  Google Scholar 

  405. Head, M. W. and Goldman, J. E. (2000) Small heat shock proteins, the cytoskeleton, and inclusion body formation. Neuropathol. Appl. Neurobiol. 26, 304–312.

    Article  PubMed  CAS  Google Scholar 

  406. Baba, M., Nakajo, S., Tu, P. H., Tomita, T., Nakaya, K., Lee, V. M., Trojanowski, J. Q., and Iwatsubo, T. (1998) Aggregation of a-synuclein in Lewy bodies of sporadic Parkinson’s disease and dementia with Lewy bodies. Am. J. Pathol. 152, 879–884.

    PubMed  CAS  Google Scholar 

  407. Spillantini, M. G., Crowther, R. A., Jakes, R., Hasegawa, M., and Goedert, M. (1998) a-synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with Lewy bodies. Proc. Natl. Acad. Sci. USA 95, 6469–6473.

    Google Scholar 

  408. Irizarry, M. C., Growdon, W., Gomez-Isla, T., Newell, K., George, J. M., Clayton, D. F., and Hyman, B. T. (1998) Nigral and cortical Lewy bodies and dystrophic nigral neurites in Parkinson’s disease and cortical Lewy body disease contain a-synuclein immunoreactivity. J. Neuropathol. Exp. Neurol. 57, 334–337.

    Article  PubMed  CAS  Google Scholar 

  409. Trojanowski, J. Q., Goedert, M., Iwatsubo, T., and Lee, V. M. Y. (1998) Fatal attractions —abnormal protein aggregation and neuron death in Parkinson’ s disease and Lewy body-dementia. Cell Death Different. 5, 832–837.

    Article  CAS  Google Scholar 

  410. Hashimoto, M. and Masliah, E. (1999) a-synuclein in Lewy body disease and Alzheimer’s disease. Brain Pathol. 9, 707–720.

    Google Scholar 

  411. Galvin, J. F., Lee, V. M. Y., Schmidt, L., Tu, P.-H., Iwatsubo, T., and Trojanowski, J. Q. (1999) Pathobiology of the Lewy body. Adv. Neurol. 80, 313–324.

    PubMed  CAS  Google Scholar 

  412. Wakabayashi, K., Engelender, S., Yoshimoto, M., Tsuji, S., Ross, C. A., and Takahashi, H. (2000) Synphilin-1 is present in Lewy bodies in Parkinson’s disease. Ann. Neurol. 47, 521–523.

    Article  PubMed  CAS  Google Scholar 

  413. Gai, W. P., Yuan, H. X., Li, X. Q., Power, J. T., Blumbergs, P. C., and Jensen, P. H. (2000) In situ and in vitro study of colocalization and segregation of a-synuclein, ubiquitin, and lipids in Lewy bodies. Exp. Neurol. 166, 324–333.

    Article  PubMed  CAS  Google Scholar 

  414. Castellani, R. J., Siedlak, S. L., Perry, G., and Smith, M. A. (2000) Sequestration of iron by Lewy bodies in Parkinson’s disease. Acta Neuropathol. 100, 111–114.

    Article  PubMed  CAS  Google Scholar 

  415. Nakamura, S., Kawamoto, Y., Nakano, S., Akiguchi, I., and Kimura, J. (1998) Cyclindependent kinase 5 and mitogen-activated protein kinase in glial cytoplasmic inclusions in multiple system atrophy. J. Neuropathol. Exp. Neurol. 57, 690–698.

    Article  PubMed  CAS  Google Scholar 

  416. Braak, E., Sandmann-Keil, D., Rüb, U., Gai, W. P., de Vos, R. A. I., Jansen Steur, E. N. H., Arai, K., and Braak, H. (2001) a-Synuclein immunopositive Parkinson’s disease-related inclusion bodies in lower brain stem nuclei. Acta Neuropathol. 101, 195–202.

    Google Scholar 

  417. Narhi, L., Wood, S. J., Stevenson, S., Jiang, Y., Wu, G. M., Anafi, D., et al. (1999) Both familial Parkinson’s disease mutations accelerate a-synuclein aggregation. J. Biol. Chem. 273, 9843–9846.

    Article  Google Scholar 

  418. Farrer, M., Gwinn-Hardy, K., Hutton, M., and Hardy, J. (1999) The genetics of disorders with synuclein pathology and parkinsonism. Hum. Mol. Genet. 8, 1901–1905.

    Article  PubMed  CAS  Google Scholar 

  419. Volles, M. J., Lee, S. J., Rochet, J. C., Shtilerman, M. D., Ding, T. T., Kessler, J. C., and Lansbury, P. T. Jr. (2001) Vesicle permeabilization by protofibrillar a-synuclein: implications for the pathogenesis and treatment of Parkinson’s disease. Biochemistry 40, 7812–7819.

    Article  PubMed  CAS  Google Scholar 

  420. Davidson, W. S., Jonas, A., Clayton, D. F., and George, J. M. (1998) Stabilization of ocsynuclein secondary structure upon binding to synthetic membranes. J. Biol. Chem. 273, 9443–9449.

    Article  PubMed  CAS  Google Scholar 

  421. Jellinger, K. A. (1999) The role of iron in neurodegeneration. Prospects for pharmacotherapy of Parkinson’s disease. Drugs Aging 14, 115–140.

    Article  PubMed  CAS  Google Scholar 

  422. Riederer, P., Reichmann, H., Janetzky, B., Sian, J., Lesch, K.-P., Lange, K. W., et al. (2001) Neural degeneration in Parkinson’s disease. Adv. Neurol. 86, 125–136.

    PubMed  CAS  Google Scholar 

  423. Hashimoto, M., Hsu, L. J., Xia, Y., Takeda, A., Sisk, A., Sundsmo, M., and Masliah, E. (1999) Oxidative stress induces amyloid-like aggregate formation of NACP/a-synuclein in vitro. Neuroreport 10, 717–721.

    Article  CAS  Google Scholar 

  424. Olesen, O. F., Mikkelsen, J. D., Gerdes, C., and Jensen, P. H. (1997) Isoform-specific binding of human apolipoprotein E to the non-amyloid beta component of Alzheimer’s disease amyloid. Mol. Brain. Res. 44, 105–112.

    CAS  Google Scholar 

  425. Krüger, R., Vieira-Saecker, A. M., Kuhn, W., Berg, D., Muller, T., Kuhnl, N., et al. (1999) Increased susceptibility to sporadic Parkinson’s disease by a certain combined oc-synuclein/apolipoprotein E genotype. Ann. Neurol. 45, 611–617.

    Article  Google Scholar 

  426. Zhou, W., Hurlbert, M. S., Schaak, J., Prasad, K. N., and Freed, C. R. (1999) Over-expression of mutant human a-synuclein (A53T) causes dopamine neuron death in rat primary culture and in rat mesencephalon-derived cell line (1RB3AN27) (Abs.). Soc. Neuro-sci. 25, 27. 25.

    Google Scholar 

  427. Masliah, E., Rockenstein, E., Veinbergs, I., Mallory, M., Hashimoto, M., Takeda, A., et al. (2000) Dopaminergic loss and inclusion body formation in oc-synuclein mice: implications for neurodegenerative disorders. Science 287, 1265–1269.

    Article  PubMed  CAS  Google Scholar 

  428. Feany, M. B. and Bender, W. W. (2000) A Drosophila model of Parkinson’s disease. Nature 404, 394–398.

    Article  PubMed  CAS  Google Scholar 

  429. Lee, M., Hyun, D., Halliwell, B., and Jenner, P. (2001) Effect of the overexpression of wild-type or mutant alpha-synuclein on cell susceptibility to insult. J. Neurochem. 76, 998–1009.

    Article  PubMed  CAS  Google Scholar 

  430. Kholodilov, N. G., Oo, T. F., and Burke, R. E. (1999) Synuclein expression is decreased in rat substantia nigra following induction of apoptosis by intrastriatal 6-hydroxydopamine. Neurosci. Lett. 275, 105–108.

    Article  PubMed  CAS  Google Scholar 

  431. Neystat, M., Lynch, T., Przedborski, S., Kholodilov, N., Rzhatskaya, M., and Burke, R. E. (1999) a-synuclein expression in substantia nigra and cortex in Parkinson’s disease. Mov. Disord. 14, 417–422.

    Google Scholar 

  432. Itoh, K., Weis, S., Mehraein, P., and Müller-Höcker, J. (1997) Defects of cytochrome c oxidase in the substantia nigra of Parkinson’s disease: an immunohictochemical and morphometric study. Mov. Disord. 12, 9–16.

    Article  PubMed  CAS  Google Scholar 

  433. Hashimoto, M., Takeda, A., Hsu, L. J., Takenouchi, T., and Masliah, E. (1999) Role of cytochrome c as a stimulator of a-synuclein aggregation in Lewy body disease. J. Biol. Chem. 274, 28,849–28, 852.

    Google Scholar 

  434. Hsu, L. J., Sagara, Y., Arroyo, A., Rockenstein, E., Sisk, A., Mallory, M., et al. (2000) a-synuclein promotes mitochondrial deficit and oxidative stress. Am. J. Pathol., 157, 401–440.

    Google Scholar 

  435. Saha, A. R., Ninkina, N. N., Hanger, D. P., Anderton, B. H., Davies, A. M., and Buchman, V. L. (2000) Induction of neuronal death by a-synuclein. Eur. J. Neurosci. 12, 3073–3077.

    Article  PubMed  CAS  Google Scholar 

  436. Hansen, L. and Masliah, E. (2001) Neurobiology of disorders with Lewy bodies, in Functional Neurobiology of Aging ( Hof, R. R. and Mobbs, L. C. K., eds.), Academic Press, San Diego, CA, pp. 173–182.

    Chapter  Google Scholar 

  437. Munch, G., Luth, H. J., Wong, A., Arendt, T., Hirsch, E., Ravid, R., and Riederer, P. (2000) Crosslinking of a-synuclein by advanced glycation endproducts-an early pathophysiological step in Lewy body formation? J. Chem. Neuroanat. 20, 253–257.

    Article  PubMed  CAS  Google Scholar 

  438. Kingsbury, A. E., Marsden, C. D., and Foster, O. J. F. (1999) The vulnerability of nigral neurons to Parkinson’s disease is unrelated to their intrinsic capacity for dopamine synthesis: an in situ hybridisation study. Mov. Disord. 14, 206–219.

    Article  PubMed  CAS  Google Scholar 

  439. Calingasan, N. Y., Park, L. C., Calo, L. L., Trifiletti, R. R., Gandy, S. E., and Gibson, G. E. (1998) Induction of nitric oxide synthase and microglial responses precede selective cell death induced by chronic impairment of oxidative metabolism. Am. J. Pathol. 153, 599–610.

    Article  PubMed  CAS  Google Scholar 

  440. McRae, A., Dahlstrom, A., and Ling, E. A. (1997) Microglial in neurodegenerative disorders: emphasis on Alzheimer’s disease. Gerontology 43, 95–108.

    Article  PubMed  CAS  Google Scholar 

  441. McGeer, P. L. and McGeer, E. G. (2000) Autotoxicity and Alzheimer disease. Arch. Neurol. 57, 789–790.

    Article  PubMed  CAS  Google Scholar 

  442. Hirsch, E. C. (2000) Glial cells and Parkinson’s disease. J. Neurol. 247(Suppl. 21, 1158–1162.

    Google Scholar 

  443. Tu, P.-H., Galvin, J. E., Baba, M., Giasson, B., Tomita, T., Leight, S., Nakajo, S., et al. (1998) Glial cytoplasmic inclusions in white matter oligodendrocytes of multiple system atrophy brains contain insoluble a-synuclein. Ann. Neurol. 44, 415–422.

    Article  PubMed  CAS  Google Scholar 

  444. Gai, W. P., Power, J. H., Blumbergs, P. C., Culvenor, J. G., and Jensen, P. H. (1999) a-Synuclein immunoisolation of glial inclusions from multiple system atrophy brain tissue reveals multiprotein components. J. Neurochem. 73, 2093–2100.

    Google Scholar 

  445. Dickson, D. W., Liu, W., Hardy, J., Farrer, M., Mehta, N., et al. (1999) Widespread alterations of a-synuclein in multiple system atrophy. Am. J. Pathol. 155, 1241–1251.

    Article  PubMed  CAS  Google Scholar 

  446. Spillantini, M. G., Crowther, R. A., Jakes, R., Cairns, N. J., Lantos, P. L., and Goedert, M. (1998) Filamentous a-synuclein inclusions link multiple system atrophy with Parkinson’s disease and dementia with Lewy bodies. Neurosci. Lett. 251, 205–208.

    Article  PubMed  CAS  Google Scholar 

  447. Arima, K., Ueda, K., Sunohara, N., Arakawa, K., Hirai, S., Nakamura, M., et al. (1998) NACP/a-synuclein immunoreactivity in fibrillary components of neuronal and oligodendroglial cytoplasmic inclusions in the pontine nuclei in multiple system atrophy. Acta Neuropathol. 96, 439–444.

    Article  PubMed  CAS  Google Scholar 

  448. Nakamura, S., Kawamoto, Y., Nakano, S., Akiguchi, I., and Kimura, J. (1998) Cyclindependent kinase 5 and mitogen-activated protein kinase in glial cytoplasmic inclusions in multiple system atrophy. J. Neuropathol. Exp. Neurol. 57, 690–698.

    Article  PubMed  CAS  Google Scholar 

  449. Campbell, B. C., McLean, C. A., Culvenor, J. G., Gai, W. P., Blumbergs, P. C., Jakala, P., et al. (2001) Solubility of a-synuclein differs between multiple system atrophy and dementia with Lewy bodies. J. Neurochem. 76, 87–96.

    Article  PubMed  CAS  Google Scholar 

  450. Morrison, B. M., Hof, P. R., and Morrison, J. H. (1998) Determinants of neuronal vulnerability in neurodegenerative diseases. Ann. Neurol. 44 (Suppl. 1), S32 - S44.

    PubMed  CAS  Google Scholar 

  451. Arendt, T., Holzer, M., Fruth, R., Bruckner, M. K., and Gärtner, U. (1998) Phosphorylation of tau, A(3-formation, and apoptosis after in vivo inhibition of PP-1 and PP-2A. Neurobiol. Aging 19, 3–13.

    Article  PubMed  CAS  Google Scholar 

  452. Ferreira, S.T. and De Felice, F. G. (2001) Protein dynamics, folding and misfolding: from basic physical chemistry to human conformational diseases. FEBS Lett. 498, 129–134.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Jellinger, K.A. (2003). Apoptosis vs Nonapoptotic Mechanisms in Neurodegeneration. In: Wood, P.L. (eds) Neuroinflammation. Contemporary Neuroscience. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-297-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-297-5_2

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9720-5

  • Online ISBN: 978-1-59259-297-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics