Skip to main content

The Amyloid Hypothesis of Cognitive Dysfunction

  • Chapter
Neuroinflammation

Part of the book series: Contemporary Neuroscience ((CNEURO))

  • 226 Accesses

Abstract

The amyloid hypothesis of Alzheimer’s disease posits that a critical event in the pathogenesis of the disorder is the deposition of amyloid fibrils containing the amyloid β (Aβ) peptide derived from the processing of the amyloid precursor protein. This hypothesis is the subject of multiple reviews (1,2). The greatest support for this hypothesis derives from the genetics of familial Alzheimer’s disease, where all mutations known to cause Alzheimer’s disease share the capacity to increase production of the long form of the Aβ peptide (3). Still, acceptance of this hypothesis is far from universal (see ref. 4 and affiliated commentaries). Importantly, Alzheimer’s disease is, by definition, a cognitive disorder, requiring a patient to have a graded deterioration in multiple cognitive domains before a diagnosis can be made. In the absence of biopsy, pathological criteria for the disorder can only be met by autopsy. Thus, a critical question in the context of the amyloid hypothesis is the role of amyloid in the cognitive dysfunction of Alzheimer’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. George-Hyslop, P. H. (2000) Piecing together Alzheimer’s. Sci. Am. 283, 76–83.

    Article  Google Scholar 

  2. Selkoe, D. J. (2000) Toward a comprehensive theory for Alzheimer’s disease. Hypothesis: Alzheimer’s disease is caused by the cerebral accumulation and cytotoxicity of amyloid beta-protein. Ann. NYAcad. Sci. 924, 17–25.

    Article  CAS  Google Scholar 

  3. Hardy, J. (1997) Amyloid, the presenilins and Alzheimer’s disease. Trends Neurosci. 20, 154–160.

    Article  PubMed  CAS  Google Scholar 

  4. Joseph, J. A., Shukhitt-Hale, B. D. N. A., Martin, A., Perry, G., and Smith, M. A. (2001) Copernicus revisited: amyloid beta in Alzheimer’s disease. Neurobiol. Aging 22, 131–146.

    Article  PubMed  CAS  Google Scholar 

  5. Blessed, G. T. B. E. (1968) The association between quantitative measures of dementia and of senile change in the cerebral grey matter of elderly subjects. Br. J. Psychiatry 114, 797–811.

    Article  PubMed  CAS  Google Scholar 

  6. Terry, R. D., Masliah, E., Salmon, D. P., Butter, N., DeTeresa, R., Hill, R., et al. (1991) Physical basis of cogntive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann. Neurol. 30, 572–580.

    Article  PubMed  CAS  Google Scholar 

  7. Cummings, B. J., Pike, C. J., Shankle, R., and Cotman, C. W. (1996) Beta-amyloid deposition and other measures of neuropathology predict cognitive status in Alzheimer’s disease. Neurobiol. Aging 17, 921–933.

    Article  PubMed  CAS  Google Scholar 

  8. Naslund, J. H., Haroutunian, V., Mohs, R., Davis, K. L., Davies, P., Greengard, P., et al. (2000) Correlation between elevated levels of amyloid beta-peptide in the brain and cognitive decline. JAMA 283 (12), 1571–1577.

    Article  PubMed  CAS  Google Scholar 

  9. Roses, A. D. (1994) Apolipoprotein E affects the rate of Alzheimer disease expression: beta-amyloid burden is a secondary consequence dependent on APOE genotype and duration of disease. [see comments]. J. Neuropathol. Exp. Neurol. 53, 429–437.

    CAS  Google Scholar 

  10. Bennett, D. A., Cochran, E. J., Saper, C. B., Leverenz, J. B., Gilley, D. W., and Wilson, R. S. (1993) Pathological changes in frontal cortex from biopsy to autopsy in Alzheimer’s disease. Neurobiol. Aging 14, 589–596.

    Article  PubMed  CAS  Google Scholar 

  11. Mann, D. M., Marcyniuk, B., Yates, P. 0., Neary, D., and Snowden, J. S. (1988) The progression of the pathological changes of Alzheimer’s disease in frontal and temporal neo-cortex examined both at biopsy and at autopsy. Neuropathol. Appl. Neurobiol. 14, 177–195.

    CAS  Google Scholar 

  12. Hyman, B. T., Marzloff, K., and Arriagada, P. V. (1993) The lack of accumulation of senile plaques or amyloid burden in Alzheimer’s disease suggests a dynamic balance between amyloid deposition and resolution. J. Neuropathol. Exp. Neurol. 52, 594–600.

    Article  PubMed  CAS  Google Scholar 

  13. Akiyama, H., Barger, S., Barnum, S., Bradt, B., Bauer, J., Cole, G. M., et al. (2000) Inflammation and Alzheimer’s disease. Neurobiol. Aging 21, 383–421.

    Article  PubMed  CAS  Google Scholar 

  14. Crystal, H., Dickson, D., Fuld, P., Masur, D., Scott, R., Mehler, M., et al. (1988) Clinico-pathological studies in dementia: nondemented subjects with pathologically confirmed Alzheimer’s disease. Neurology 38, 1682–1687.

    Article  PubMed  CAS  Google Scholar 

  15. Davis, D. G., Schmitt, F. A., Wekstein, D. R., and Markesbery, W. R. (1999) Alzheimer neuropathologic alterations in aged cognitively normal subjects. J. Neuropathol. Exp. Neurol. 58, 376–388.

    Article  PubMed  CAS  Google Scholar 

  16. Wolf, D. S., Gearing, M., Snowdon, D. A., Mori, H., Markesbery, W. R., and Mirra, S. S. (1999) Progression of regional neuropathology in Alzheimer disease and normal elderly: findings from the Nun study. Alzheimer Dis. Assoc. Disord. 13, 226–231.

    Article  PubMed  CAS  Google Scholar 

  17. Griffin, W. S., Sheng, J. G., Roberts, G. W., and Mrak, R. E. (1995) Interleukin-1 expression in different plaque types in Alzheimer’s disease: significance in plaque evolution. J. Neuropathol. Exp. Neurol. 54, 276–281.

    Article  PubMed  CAS  Google Scholar 

  18. Rogers, J., Webster, S., Lue, L. F., Brachova, L., Civin, W. H., Emmerling, M., et al. (1996) Inflammation and Alzheimer’s disease pathogenesis. Neurobiol. Aging 17, 681–686.

    Article  PubMed  CAS  Google Scholar 

  19. Lue, L., Brachova, L., Civin, H., and Rogers, J. (1996) Inflammation, Abeta deposition and neurofibrillary tangle formation as correlates of Alzheimer’s disease neurodegeneration. J. Neuropathol. Exp. Neurol. 55, 1083–1088.

    PubMed  CAS  Google Scholar 

  20. Katzman, R. (1993) Education and the prevalence of dementia and Alzheimer’s disease. Neurology 43, 13–20.

    Article  PubMed  CAS  Google Scholar 

  21. Snowdon, D. A., Kemper, S. J., Mortimer, J. A., Greiner, L. H., Wekstein, D. R., and Markesbery, W. R. (1996) Linguistic ability in early life and cognitive function and Alzheimer’s disease in late life. Findings from the Nun Study. [see comments]. JAMA 275, 528–532.

    Article  PubMed  CAS  Google Scholar 

  22. Morgan, D. G. (1992) Neurochemical changes with aging: predisposition towards age-related mental disorders, in: Handbook of Mental Health and Aging ( Birren, J. E., Sloane, R. B., and Cohen, G. D., eds.), Academic, San Diego, CA, pp. 175–200.

    Google Scholar 

  23. Hyman, B. T., West, H. L., Rebeck, G. W., Buldyrev, S. V., Mantegna, R. N., Ukleja, M., et al. (1995) Quantitative analysis of senile plaques in Alzheimer disease: observation of log-normal size distribution and molecular epidemiology of differences associated with apolipoprotein E genotype and trisomy 21 (Down syndrome). Proc. Natl. Acad. Sci. USA 92, 3586–3590.

    Article  CAS  Google Scholar 

  24. Dornan, W. A., Kang, D. E., McCampbell, A., and Kang, E. E. (1993) Bilateral injections of beta A(25–35) + IBO into the hippocampus disrupts acquisition of spatial learning in the rat. NeuroReport 5, 165–168.

    Article  PubMed  CAS  Google Scholar 

  25. Flood, J. F., Morley, J. E., and Roberts, E. (1991) Amnestic effects in mice of four synthetic peptides homologous to amyloid beta protein from patients with Alzheimer disease. Proc. Natl. Acad. Sci. USA 88, 3363–3366.

    Article  PubMed  CAS  Google Scholar 

  26. Maurice, T., Lockhart, B. P., and Privat, A. (1996) Amnesia induced in mice by centrally administered beta-amyloid peptides involves cholinergic dysfunction. Brain Res. 706, 181–193.

    Article  PubMed  CAS  Google Scholar 

  27. McDonald, M. P., Dahl, E. E., Overmier, J. B., Mantyh, P., and Cleary, J. (1994) Effects of an exogenous beta-amyloid peptide on retention for spatial learning. Behay. Neural. Biol. 62, 60–67.

    Article  CAS  Google Scholar 

  28. Nabeshima, T. and Nitta, A. (1994) Memory impairment and neuronal dysfunction induced by beta-amyloid protein in rats. Tohoku J. Exp. Med. 174, 241–249.

    Article  PubMed  CAS  Google Scholar 

  29. Yamada, K., Tanaka, T., Mamiya, T., Shiotani, T., Kameyama, T., and Nabeshima, T. (1999) Improvement by nefiracetam of beta-amyloid-(1–42)-induced learning and memory impairments in rats. Br. J. Pharmacol. 126, 235–244.

    Article  PubMed  CAS  Google Scholar 

  30. Sweeney, W. A., Luedtke, J., McDonald, M. P., and Overmier, J. B. (1997) Intrahippocampal injections of exogenous beta-amyloid induce postdelay errors in an eight-arm radial maze. Neurobiol. Learn. Mem. 68, 97–101.

    Article  PubMed  CAS  Google Scholar 

  31. Maurice, T., Su, T. P., and Privat, A. (1998) Sigmal (sigma 1) receptor agonists and neurosteroids attenuate B25–35-amyloid peptide-induced amnesia in mice through a common mechanism. Neuroscience 83, 413–428.

    Article  PubMed  CAS  Google Scholar 

  32. Alvarez, X. A., Miguel-Hidalgo, J. J., Fernandez-Novoa, L., and Cacabelos, R. (1997) Intrahippocampal injections of the beta-amyloid 1–28 fragment induces behavioral deficits in rats. Methods Find. Exp. Clin. Pharmacol. 19, 471–479.

    Google Scholar 

  33. Flood, J. F., Roberts, E., Sherman, M. A., Kaplan, B. E., and Morley, J. E. (1994) Topography of a binding site for small amnestic peptides deduced from structure-activity studies: relation to amnestic effect of amyloid beta protein. Proc. Natl. Acad. Sci. USA 91, 380–384.

    Article  PubMed  CAS  Google Scholar 

  34. Maurice, T., Lockhart, B. P., Su, T. P., and Privat, A. (1996) Reversion of beta 25–35amyloid peptide-induced amnesia by NMDA receptor-associated glycine site agonists. Brain Res. 731, 249–253.

    Article  PubMed  CAS  Google Scholar 

  35. Yamada, K., Tanaka, T., Zou, L. B., Senzaki, K., Yano, K., Osada, T., et al. (1999) Longterm deprivation of oestrogens by ovariectomy potentiates beta-amyloid-induced working memory deficits in rats. Br. J. Pharmacol. 128, 419–427.

    Article  PubMed  CAS  Google Scholar 

  36. Holcomb, L. A., Gordon, M. N., Benkovic, S. A., and Morgan, D. G. (2000) ß and perlecan in rat brain. Glial activation, gradual clearance and limited neurotoxicity. Mech. Ageing Dev. 112, 135–152.

    Article  PubMed  CAS  Google Scholar 

  37. Delobette, S., Privat, A., and Maurice, T. (1997) In vitro aggregation facilities beta-amyloid peptide-(25–35)-induced amnesia in the rat. Eur. J. Pharmacol. 319, 1–4.

    Article  PubMed  CAS  Google Scholar 

  38. Games, D., Adams, D., Alessandrini, R., Barbour, R., Berthelette, P., Blackwell, C., et al. (1995) Alzheimer-type neuropathology in transgenic mice overexpressing V717F betaamyloid precursor protein. Nature 373, 523–527.

    Article  PubMed  CAS  Google Scholar 

  39. Hsiao, K., Chapman, P., Nilsen, S., Eckman, C., Harigaya, Y., Younkin, S., et al. (1996) Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice. Science 274, 99–102.

    Article  PubMed  CAS  Google Scholar 

  40. Sturchler-Pierrat, C., Abramowski, D., Duke, M., Wiederhold, K. H., Mistl, C., Rothacher, S., et al. (1997) Two amyloid precursor protein transgenic mouse models with Alzheimer disease-like pathology. Proc. Natl. Acad. Sci. USA 94, 13287–13292.

    Article  PubMed  CAS  Google Scholar 

  41. Routtenberg, A. (1997) Measuring memory in a mouse model of Alzheimer’s disease. Science 277, 839–840.

    Article  PubMed  CAS  Google Scholar 

  42. Chapman, P. F., White, G. L., Jones, M. W., Cooper-Blacketer, D., Marshall, V. J., Irizarry, M., et al. (1999) Impaired synaptic plasticity and learning in aged amyloid precursor protein transgenic mice. Nat. Neurosci. 2, 271–276.

    Article  PubMed  CAS  Google Scholar 

  43. Dodart, J. C., Meziane, H., Mathis, C., Bales, K. R., Paul, S. M., and Ungerer, A. (1999) Behavioral disturbances in transgenic mice overexpressing the V717F beta-amyloid precursor protein. Behay. Neurosci. 113, 982–990.

    Article  CAS  Google Scholar 

  44. Justice, A. and Motter, R. (1997) Behavioral characterization of PDAPP transgenic Alzheimer mice. Neurosci. Abst. 23 (2), 1637.

    Google Scholar 

  45. Dodart, J. C., Mathis, C., Saura, J., Bales, K. R., Paul, S. M., and Ungerer, A. (2000) Neuroanatomical abnormalities in behaviorally characterized APP(V717F) transgenic mice. Neurobiol. Dis. 7, 71–85.

    Article  PubMed  CAS  Google Scholar 

  46. Chen, G., Chen, K. S., Knox, J., Inglis, J., Bernard, A., Martin, S. J., et al. (2000) A learning deficit related to age and beta-amyloid plaques in a mouse model of Alzheimer’ s disease. Nature 408, 975–979.

    Article  PubMed  CAS  Google Scholar 

  47. Duff, K., Eckman, C., Zehr, C., Yu, X., Prada, C. M., Perez-tur, J., et al. (1996) Increased amyloid-beta42(43) in brains of mice expressing mutant presenilin 1. Nature 383, 710–713.

    Article  PubMed  CAS  Google Scholar 

  48. Holcomb, L. A., Gordon, M. N., McGowan, E., Yu, X., Benkovic, S., Jantzen, P., et al. (1998) Accelerated Alzheimer-type phenotype in transgenic mice carrying both mutant amyloid precursor protein and presenilin 1 transgenes. Nat. Med. 4, 97–100.

    Article  PubMed  CAS  Google Scholar 

  49. Holcomb, L. A., Gordon, M. N., Jantzen, P., Hsiao, K., Duff, K., and Morgan, D. (1999) Behavioral changes in transgenic mice expressing both amyloid precursor protein and presenilin-1 mutations: lack of association with amyloid deposits. Behay. Gen. 29, 177–185.

    Article  CAS  Google Scholar 

  50. Arendash, G. W., King, D. L., Gordon, M. N., Morgan, D., Hatcher, J. M., Hope, C. E., et al. (2001) Progressive behavioral impariments in transgenic mice carrying both mutant APP and PSI transgenes. Brain Res. 891, 45–53.

    Article  Google Scholar 

  51. Holcomb, L. A., Gordon, M. N., Jantzen, P., Hsiao, K., Duff, K., and Morgan, D. (1999) Behavioral changes in transgenic mice expressing both amyloid precursor protein and presenilin-1 mutations: lack of association with amyloid deposits. Behay. Gen. 29, 177–185.

    Article  CAS  Google Scholar 

  52. Diamond, D. M., Park, C. R., Heman, K. L., and Rose, G. M. (1999) Exposing rats to a predator impairs spatial working memory in the radial arm water maze. Hippocampus 9, 542–551.

    Article  PubMed  CAS  Google Scholar 

  53. Morgan, D., Diamond, D. M., Gottschall, P. E., Ugen, K. E., Dickey, C., Hardy, J., et al. (2000) A beta peptide vaccination prevents memory loss in an animal model of Alzheimer’s disease. Nature 408, 982–985.

    Article  PubMed  CAS  Google Scholar 

  54. Gordon, M. N., King, D. L., Diamond, D. M., Jantzen, P. T., Boyett, K. L., et al. (2001) Correlation between cognitive deficits and Aß deposits in transgenic APP+PS 1 mice. Neurobiol. Aging 22, 377–385.

    Article  PubMed  CAS  Google Scholar 

  55. Schenk, D., Barbour, R., Dunn, W., Gordon, G., Grajeda, H., Guido, T., et al. (1999) Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400, 173–177.

    Article  PubMed  CAS  Google Scholar 

  56. Moran, P. M., Higgins, L. S., Cordell, B., and Moser, P. M. (1995) Age-related learning deficits in transgenic mice expressing human beta-APP751. Proc. Natl. Acad. Sci. USA 92, 5341–5345.

    Article  PubMed  CAS  Google Scholar 

  57. D’Hooge, R., Nagels, G., Westland, C. E., Mucke, L., and De Deyn, P. P. (1996) Spatial learning deficit in mice expressing human 751-amino acid beta-amyloid precursor protein. NeuroReport 7, 2807–2811.

    Google Scholar 

  58. Hsiao, K., Borchelt, D., Olson, K., Johansdottir, R., Kitt, C., Yunis, W., et al. (1995) Age-related CNS disorder and early death in transgenic FVB/N mice overexpressing Alzheimer amyloid precursor proteins. Neuron 15, 1203–1218.

    Article  PubMed  CAS  Google Scholar 

  59. Doyle, E., Bruce, M. T., Breen, K. C., Smith, D. C., Anderton, B., and Regan, C. M. (1990) Intraventricular infusions of antibodies to amyloid-beta-protein precursor impair the acquisition of a passive avoidance response in the rat. Neurosci. Lett. 115, 97–102.

    Article  PubMed  CAS  Google Scholar 

  60. Phinney, A. L., Deller, T., Stalder, M., Calhoun, M. E., Frotscher, M., Sommer, B., et al. (1999) Cerebral amyloid induces aberrant axonal sprouting and ectopic terminal formation in amyloid precursor protein transgenic mice. J. Neurosci. 19, 8552–8559.

    PubMed  CAS  Google Scholar 

  61. Roch, J. M., Masliah, E., Roch-Levecq, A. C., Sundsmo, M. P., Otero, D. A., Veinbergs, I., et al. (1994) Increase of synaptic density and memory retention by a peptide representing the trophic domain of the amyloid beta/A4 protein precursor. Proc. Natl. Acad. Sci. USA 91, 7450–7454.

    Article  PubMed  CAS  Google Scholar 

  62. Irizarry, M. C., McNamara, M., Fedorchak, K., Hsiao, K., and Hyman, B. T. (1997) APPSw transgenic mice develop age-related A beta deposits and neuropil abnormalities, but no neuronal loss in CA 1. J. Neuropathol. Exp. Neurol. 56, 965–973.

    Article  PubMed  CAS  Google Scholar 

  63. Irizarry, M. C., Soriano, F., McNamara, M., Page, K. J., Schenk, D., Games, D., et al. (1997b) Abeta deposition is associated with neuropil changes, but not with overt neuronal loss in the human amyloid precursor protein V717F (PDAPP) transgenic mouse. J. Neuro-sci. 17, 7053–7059.

    CAS  Google Scholar 

  64. Takeuchi, A., Irizarry, M. C., Duff, K., Saido, T. C., Hsiao, A. K., Hasegawa, M., et al. (2000) Age-related amyloid beta deposition in transgenic mice overexpressing both Alzheimer mutant presenilin 1 and amyloid beta precursor protein Swedish mutant is not associated with global neuronal loss. Am. J. Pathol. 157, 331–339.

    Article  PubMed  CAS  Google Scholar 

  65. Calhoun, M. E., Wiederhold, K. H., Abramowski, D., Phinney, A. L., Probst, A., SturchlerPierrat, C., et al. (1998) Neuron loss in APP transgenic mice. [letter]. Nature 395, 755–756.

    Article  PubMed  CAS  Google Scholar 

  66. Weldon, D. T., Rogers, S., Ghilardi, J. R., Finke, M. P., Cleary, J. P., O’Hare, E., et al. (1998) Fibrillar beta-amyloid induces microglial phagocytosis,expression of inducible nitric oxide synthase and loss of a select population of neurons in the rat CNS in vivo. J. Neurosci. 18, 2161–2173.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Morgan, D., Gordon, M.N. (2003). The Amyloid Hypothesis of Cognitive Dysfunction. In: Wood, P.L. (eds) Neuroinflammation. Contemporary Neuroscience. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-297-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-297-5_14

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9720-5

  • Online ISBN: 978-1-59259-297-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics