Skip to main content

Neuroinflammation as an Important Pathogenic Mechanism in Spinal Cord Injury

  • Chapter
Neuroinflammation

Part of the book series: Contemporary Neuroscience ((CNEURO))

  • 231 Accesses

Abstract

Acute traumatic spinal cord injury (SCI) is an unexpected, catastrophic event, the consequences of which often persist for the life of the patient and influence in diverse ways not only the patient but also family members and society at large. Only limited therapeutic measures are currently available for its treatment (1). SCI induced by trauma is a consequence of an initial physical insult followed by a progressive injury process that involves various pathochemical events that lead to tissue destruction (1,2). Although prevention programs have been initiated, there is no evidence that the incidence is declining. Therefore, during the acute phase, therapeutic intervention in SCI should be directed at reducing or alleviating this secondary process. Although the mechanisms involved in the secondary injury process are not fully understood, the activated leukocyte-induced vascular damage leading to neuroinflammation has been postulated to be one of the important pathomechanisms of acute spinal cord injury (3–6).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bracken, M. B., Shepard, M. J., Collins, W. F., Holord, T. R., Young, W., Baskin, D. S., et al. (1990) A randomized, controlled trial of methylprednisolone or naloxone in the treatment of acute spinal-cord injury. N. Engl. J. Med. 322, 1405–1411.

    PubMed  CAS  Google Scholar 

  2. Young, W. (1988) Secondary CNS injury. J. Neurotrauma 5, 219–221.

    PubMed  CAS  Google Scholar 

  3. Demopoulos, H. B., Yoder, M., Gutman, E. G., Seligman, M. L., Flamm, E. S., and Ransohoff, J. (1978) The fine structure of endothelial surfaces in the microcirculation of experimentally injured feline spinal cords. Scan. Electron Microsc. 2, 677–680.

    Google Scholar 

  4. Means, E. D. and Anderson, D. (1983) Neuronophagia by leukocytes in experimental spinal cord injury. J. Neuropathol. Exp. Neurol. 42, 707–719.

    PubMed  CAS  Google Scholar 

  5. Xu, J., Hsu, C. Y., Liu, T. H., Hogan, E. L., Perot, E., and Tai, H. (1990) Leukotriene B4 release and polymorphonuclear cell infiltration in spinal cord injury. J. Neurochem. 55, 907–912.

    PubMed  CAS  Google Scholar 

  6. Blight, A. R. (1985) Delayed demyelination and macrophage invasion: a candidate for secondary cell damage in spinal cord injury. Central Nervous Syst. Trauma 2, 299–315.

    CAS  Google Scholar 

  7. Allen, A. R. (1911) Surgery of experimental lesions of spinal cord equivalent to crush injury of fracture dislocation of spinal column. A preliminary report. JAMA 57, 878–880.

    Google Scholar 

  8. Allen, A. R. (1914) Remarks on the histopathological changes in the spinal cord due to impact. An experimental study. J. Nerv. Ment. Dis. 31, 141–147.

    Google Scholar 

  9. Tator, C. H. and Fehlings, M. G. (1991) Review of the secondary injury theory of acute spinal cord trauma with emphasis on vascular mechanisms. J. Neurosurg. 75, 15–26.

    PubMed  CAS  Google Scholar 

  10. Simpson, R. K., Hsu, C. Y., and Dimitrijevic, M. R. (1991) The experimental basis for early pharmacological intervention in spinal cord injury. Paraplegia 29, 364–372.

    PubMed  CAS  Google Scholar 

  11. Young, W. (1993) Secondary injury mechanisms in acute spinal cord injury. J. Emerg. Med. 11, 13–22.

    PubMed  Google Scholar 

  12. Zeidman, S. M., Ling, G. S., Ducker, T. B., and Ellenbogen, R. G. (1996) Clinical applications of pharmacologic therapies for spinal cord injury. J. Spinal Disord. 9, 367–380.

    PubMed  CAS  Google Scholar 

  13. Blight, A. R. (1983) Axonal physiology of chronic spinal cord injury in the cat: intracellular recording in vitro. Neuroscience 10, 1471–1486.

    PubMed  CAS  Google Scholar 

  14. Wallace, M. C., Tator, C. H., and Lewis, A. J. (1987) Chronic regenerative changes in the spinal cord after cord compression injury in rats. Surg. Neurol. 27, 209–219.

    PubMed  CAS  Google Scholar 

  15. Tator, C. H. and Rowed, D. W. (1979) Current concepts in the immediate management of acute spinal cord injuries. Can. Med. Assoc. J. 121, 1453–1464.

    PubMed  CAS  Google Scholar 

  16. Sandler, A. N. and Tator, C. H. (1976) Review of the effect of spinal cord trauma on the vessels and blood flow in the spinal cord. J. Neurosurg. 45, 638–646.

    PubMed  CAS  Google Scholar 

  17. Blight, A. R. and Young, W. (1989) Central axons in injured cat spinal cord recover electrophysiological function following remylination by Schwann cells. J. Neurol. Sci. 91, 15–34.

    PubMed  CAS  Google Scholar 

  18. Basso, D. M., Beattie, M. S., and Bresnahan, J. C. (1996) Graded histological and locomotor outcomes after spinal cord contusion using the NYU weight-drop device versus tran-section. Exp. Neurol. 139, 244–256.

    PubMed  CAS  Google Scholar 

  19. Carlos, T. M. and Harlan, J. M. (1994) Leukocyte—endothelial adhesion molecules. Blood 84, 2068–2101.

    PubMed  CAS  Google Scholar 

  20. Klebanoff, S. J., Vadas, M. A., and Harlan, J. M. (1986) Stimulation of neutrophils by tumor necrosis factor. J. Immunol. 136, 4220–4225.

    PubMed  CAS  Google Scholar 

  21. Harlan, J. M. (1987) Consequences of leukocytes-vessel wall interactions in inflammatory and immune reactions. Semin. Thromb. Hemost. 13, 425–433.

    Google Scholar 

  22. Campbell, E. J., Senior, R. M., McDonald, J. A., and Cox, D. L. (1982) Proteolysis by neutrophils. J. Clin. Invest. 70, 845–852.

    PubMed  CAS  Google Scholar 

  23. Kishimoto, T. K. and Rothlein, R. (1994) Integrins, ICAMs and selectins: role and regulation of adhesion molecules in neutrophil recruitment to inflammatory sites. Adv. Pharmacol. 25, 117–169.

    PubMed  CAS  Google Scholar 

  24. Suttop, N., Nolte, A., Wilke, A., and Drenckhalm, D. (1993) Human neutrophil elastase increases permeability of cultured pulmonary endothelial cell monolayer. Int. Microcirculation 13, 187–203.

    Google Scholar 

  25. Shasby, D. M., Yorec, M., and Shasby, S. S. (1988) Exogenous oxidants initiates hydrolysis of endothelial cell inositol phospholipids. Blood 72, 491–499.

    PubMed  CAS  Google Scholar 

  26. Taoka, Y., Okajima, K., Uchiba, M., Murakami, K., Harada, N., Johno, S., et al. (1998) Activated protein C reduces the severity of compression-induced spinal cord injury in rats by inhibiting activation of leukocytes. J. Neurosci. 18, 1393–1398.

    PubMed  CAS  Google Scholar 

  27. Wang, C. X., Nuttin, B., Heremans, H., and Gybels, R. (1996) Production of tumor necrosis factor in spinal cord following traumatic injury in rats. J. Neuroimmunol. 89, 151–156.

    Google Scholar 

  28. Yakovlev, A. G. and Faden, A. I. (1994) Sequential expression of c-fos protooncogene, TNF-a, and dynorphin genes in spinal cord following experimental traumatic injury. Mol. Chem. Neuropathol. 23, 179–190.

    PubMed  CAS  Google Scholar 

  29. Bartholdi, D. and Schwab, M. E. (1997) Expression of pro-inflammatory cytokine and chemokine mRNA upon experimental spinal cord injury in mouse: an in situ hybridization study. Eur. J. Neurosci. 9, 1422–1438.

    PubMed  CAS  Google Scholar 

  30. Liu, S., Adcock, I. M., Old, R. V., Barnes, P. J., and Evans, T. W. (1993) Lipopolysaccharide treatment in vivo induces wide-spread tissue expression of inducible nitric oxide syn-thase m-RNA. Biochem. Biophys. Res. Commun. 196, 1208–1213.

    PubMed  CAS  Google Scholar 

  31. Taoka, Y. and Okajima, K. (2000) Role of leukcoytes in spinal cord injury in rats. J. Neuro-trauma 17, 219–229.

    CAS  Google Scholar 

  32. Iwasa, K., Ikata, T., and Fukuzawa, K. (1989) Protective effect of vitamin E on spinal cord injury by compression and concurrent lipid peroxidation. Free Radical Biol. Med. 6, 599–606.

    CAS  Google Scholar 

  33. Nystrom, B. and Berglund, J.-E. (1988) Spinal cord restitution following compression injuries in rats. Acta Neurol. Scand. 78, 467–472.

    PubMed  CAS  Google Scholar 

  34. Schreck, R., Albermann, K., and Baeuerle, P. A. (1992) Nuclear factor kappa B: an oxidative stress-responsive transcription of eukaryotic cells. [review]. Free Radical Res. Commun. 12, 221–237.

    Google Scholar 

  35. Mulligan, M. S., Varani, J., and Dame, M. K. (1991) Role of endothelial-leukocyte adhesion molecule 1 (ELAM-1) in neutrophil-mediated lung injury in rats. J. Clin. Invest. 88, 1396–1406.

    PubMed  CAS  Google Scholar 

  36. Zheng, H., Crowley, J. J., and Chan, J. C. (1990) Attenuation of tumor necrosis factor-induced endothelial cell cytotoxicity and neutrophil chemiluminescence. Am. Rev. Respir. Dis. 142, 1073–1078.

    PubMed  CAS  Google Scholar 

  37. Hamada, Y., Ikata, T., Katoh, S., Nakauchi, K., Niwa, M., Kawai, Y., et al. (1996) Involvement of an intracellular adhesion molecule 1-dependent pathway in the pathogenesis of secondary changes after spinal cord injury in rats. J. Neurochem. 66, 1525–1531.

    PubMed  CAS  Google Scholar 

  38. Taoka, Y. and Okajima, K. (1998) Spinal cord injury in the rat. Prog. Neurobiol. 56, 341–358.

    PubMed  CAS  Google Scholar 

  39. Zimmerman, B. J. and Granger, D. N. (1990) Reperfusion-induced leukocyte infiltration: role of elastase. Am. J. Physiol. 259, H390 - H394.

    PubMed  CAS  Google Scholar 

  40. Taoka, Y., Okajima, K., Jono, M., and Naruo, M. (1998) Role of neutrophil elastase in compression-induced spinal cord injury in rats. Brain Res. 799, 264–269.

    PubMed  CAS  Google Scholar 

  41. Woodman, R. C., Reinhardt, P. H., Kanwa, S., Johnston, F. L., and Kubes, P. (1993) Effects of human neutrophil elastase (HNE) on neutrophil function in vitro and in inflamed microvessels. Blood 82, 2188–2195.

    PubMed  CAS  Google Scholar 

  42. Leroy, E. C., Ager, A., and Gordon, J. L. (1984) Effects of neutrophil elastase and other proteases on porcine aortic endothelial prostaglandin I2 production, adenine nucleotide release, and responses to vasoactive agents. J. Clin. Invest. 74, 1003–1010.

    PubMed  CAS  Google Scholar 

  43. Weksler, B. B., Jaffe, E. A., Brower, M. S., and Cole, O. F. (1989) Human leukocyte cathepsin G and elastase specifically suppress thrombin-induced prostacyclin production in human endothelial cells. Blood 74, 1627–1634.

    PubMed  CAS  Google Scholar 

  44. Harada, N., Okajima, K., and Murakami, K. (1997) Leukocyte depletion and ONO-5046, a specific inhibitor of granulocoyte elastase, prevent a stress-induced decrease in gastric prostaglandin I2 in rats. Biochem. Biophys. Res. Commun. 231, 52–55.

    PubMed  CAS  Google Scholar 

  45. Taoka, Y., Okajima, K., Uchiba, M., Murakami, K., Kushimoto, S., Johno, M., et al. (1997) Reduction of spinal cord injury by administration of iloprost, a stable prostacyclin analog. J. Neurosurg. 86, 1007–1011.

    PubMed  CAS  Google Scholar 

  46. Demopoulos, H. B., Flamm, E. S., Pietronigro, D. D., and Seligman, M. L. (1980) The free radical pathology and the microcirculation in the major central nervous system disorders. Acta Physiol. Scand. 492 (Suppl.), 91–119.

    CAS  Google Scholar 

  47. Nakauchi, K., Ikata, T., Katoh, S., Hamada, Y., Tsuchiya, K., and Fukuzawa, K. (1996) Effects of lecithinized superoxide dismutase on rat spinal cord injury. J. Neurotrauma 13, 573–582.

    PubMed  CAS  Google Scholar 

  48. Taoka, Y., Naruo, M., Koyanabi, E., Urakado, M., and Inoue, M. (1995) Superoxide radicals play important roles in the pathogenesis of spinal cord injury. Paraplegia 33, 450–453.

    PubMed  CAS  Google Scholar 

  49. Kusner, D. V. and King, C. H. (1989) Protease-modulation of neutrophil superoxide response. J. Immunol. 143, 1696–1702.

    PubMed  CAS  Google Scholar 

  50. Abe, H., Okajima, K., and Okabe, H. (1994) Granulocyte proteases and hydrogen peroxide synergistically inactivate thrombomodulin of endothelial cells in vitro. J. Lab. Clin. Med. 23, 874–881.

    Google Scholar 

  51. McCord, J. M. (1985) Oxygen-derived free radicals in post-ischemic tissue injury. N. Engl. J. Med. 312, 159–163.

    PubMed  CAS  Google Scholar 

  52. Xu, J., Beckman, J. S., Hogan, E. L., and Hsu, C. Y. (1991) Xanthine oxidase in experimental spinal cord injury. J. Neurotrauma 8, 11–18.

    PubMed  CAS  Google Scholar 

  53. Taoka, Y., Okajima, K., Uchiba, M., and Johno, M. (2001) Methylprednisolone reduces spinal cord injury in rats without affecting tumor necrosis factor-a production. J. Neuro-trauma 18, 533–543.

    CAS  Google Scholar 

  54. Taoka, Y., Okajima, K., Uchiba, M., Murakami, K., Kushimoto, S., Johno, M., et al. (1997) Role of neutrophils in spinal cord injury in the rat. Neuroscience 79, 1177–1182.

    PubMed  CAS  Google Scholar 

  55. Holtz, A., Nystrom, B., and Gerdin, B. (1990) Relation between spinal cord blood flow and functional recovery after blocking weight-induced spinal cord injury in rats. Neurosurgery 26, 952–957.

    PubMed  CAS  Google Scholar 

  56. Weyrich, A. S., McIntyre, T. M., Mcever, R. P., Prescott, S. N., and Zimmerman, G. A. (1995) Monocyte tethering by P-selectin regulates monocyte chemotactic protein-1 and tumor necrosis factor-a secretion. J. Clin. Invest. 95, 2297–2302.

    PubMed  CAS  Google Scholar 

  57. Stephens, K. E., Ishizaka, A., and Larrick, J. W. (1988) Tumor necrosis factor causes increased pulmonary permeability and edema. Am. Rev. Respir. Dis. 137, 1364–1370.

    PubMed  CAS  Google Scholar 

  58. Watson, M. L., Lewis, G. P., and Westwick, J. (1989) Increased vascular permeability and polymorphonuclear leukocyte accumulation in vivo in response to recombinant cytokine and supernatant from cultures of human synovial cells treated with interleukin 1. Br. J. Exp. Pathol. 70, 93–101.

    PubMed  CAS  Google Scholar 

  59. Taoka, Y., Okajima, K., Uchiba, M., Murakami, K., Kushimoto, S., Johno, M., et al. (1997) Gabexate mesilate, a synthetic protease inhibitor, prevents compression-induced spinal cord injury by inhibiting activated leukocytes. Crit. Care Med. 25, 874–879.

    PubMed  CAS  Google Scholar 

  60. Taoka, Y., Okajima, K., Uchiba, M., and Johno, M. (2000) Neuroprotection by recombinant human soluble thrombomodulin. Thromb. Haemost. 83, 462–468.

    PubMed  CAS  Google Scholar 

  61. Geisler, F. H., Dorsey, F. C., and Coleman, W. P. (1991) Recovery of motor function after spinal cord injury-a randomized, placebo-controlled trial with GM-1 ganglioside. N. Engl. J. Med. 324, 1829–1838.

    PubMed  CAS  Google Scholar 

  62. Xu, J., Qu, Z. X., Hogan, E. L., and Perot, P. L. Jr. (1992) Protective effect of methylprednisolone on vascular injury in rat spinal cord injury. J. Neurotrauma 9, 245–253.

    PubMed  CAS  Google Scholar 

  63. Tamura, K., Hirado, M., and Okamura, K. (1977) Synthetic inhibitors of trypsin, plasmin, kallikrein, thrombin, Clr, and Cl esterase. Biochim. Biophys. Acta 484, 417–422.

    PubMed  CAS  Google Scholar 

  64. Taenaka, N., Shimada, Y., and Hirata, T. (1983) Gabexate mesilate (FOY) therapy of disseminated intravascular coagulation due to sepsis. Crit. Care. Med. 9, 735–738.

    Google Scholar 

  65. Messori, A., Rampazzo, R., and Scroccaro, G. (1995) Effectiveness of gabexate mesilate in acute pancreatitis. Digest. Dis. Sci. 40, 734–738.

    PubMed  CAS  Google Scholar 

  66. Murakami, K., Okajima, K., and Uchiba, M. (1996) Gabexate mesilate, a synthetic protease inhibitor, attenuates endotoxin-induced pulmonary vascular injury by inhibiting activated leukocytes. Crit. Care Med. 24, 1047–1053.

    PubMed  CAS  Google Scholar 

  67. Nesheim, M. E., Kettner, C., Shaw, E., and Mann, K. G. (1981) Cofactor dependence of factor Xa incorporation into the prothrombinase complex. J. Biol. Chem. 256, 6537–6540.

    PubMed  CAS  Google Scholar 

  68. Harada, N, Okajima, K., and Kushimoto, S. (1999) Gabexate mesilate, a synthetic protease inhibitor, reduces ischemia/reperfusion injury of rat liver by inhibiting leukocyte activation. Crit. Care Med. 27, 1958–1964.

    PubMed  CAS  Google Scholar 

  69. Okamura, T., Niho, Y., Itoga, T., Chiba, S., Miyake, M., Kotsuru, M., et al. (1993) Treatment of disseminated intravascular coagulation and its prodromal stage with gabexate mesilate (FOY): a multicenter trial. Acta Haematol. (Basel) 90, 120–124.

    CAS  Google Scholar 

  70. Walker, F. J., Sexton, P. W., and Esmon, C. T. (1979) The inhibition of blood coagulation by activated protein C through the selective inactivation of activated factor V. Biochim. Biophys. Acta 571, 333–342.

    PubMed  CAS  Google Scholar 

  71. Esmon, C. T. (1992) The protein C anticoagulant pathway. Arterioscler. Thromb. 12, 135–145.

    PubMed  CAS  Google Scholar 

  72. Grey, S., Hau, H., Salem, H. H., and Hancock, W. W. (1993) Selective effects of protein C on activation of human monocytes by lipopolysaccharide, interferon-g, or PMA: modulation of effects on CDI lb and CD14 but not CD25 or CD54 induction. Transplant. Proc. 25, 2913–2914.

    PubMed  CAS  Google Scholar 

  73. Murakami, K., Okajima, K., Uchiba, M., Johno, M., Nakagaki, T., Okabe, H., et al. (1996) Activated protein C attenuates endotoxin-induced pulmonary vascular injury by inhibiting activated leukocytes in rats. Blood 87, 642–647.

    PubMed  CAS  Google Scholar 

  74. Murakami, K., Okajima, K., Uchiba, M., Johno, M., Nakagaki, T., Okabe, H., et al. (1997) Activated protein C prevents LPS-induced pulmonary vascular injury by inhibiting cytokine production. Am. J. Physiol. 272, L197 - L202.

    PubMed  CAS  Google Scholar 

  75. Hirose, K., Okajima, K., Taoka, Y., Uchiba, M., Takami, H., Nakano, K., et al. (2000) Activated protein C reduces the ischemia-induced spinal cord inury in rats by inhibiting neutrophil activation. Ann. Surg. 232, 272–280.

    PubMed  CAS  Google Scholar 

  76. Silver, J. R. (1974) Prophylactic use of anticoagulant therapy in prevention of pulmonary emboli in one hundred consecutive spinal injury patients. Paraplegia 12, 188–196.

    PubMed  CAS  Google Scholar 

  77. Frisbie, J. H. and Sharma, G. V. R. K. (1992) Circadian rhythm of pulmonary embolism in patients with acute spinal cord injury. Am. J. Cardiol. 70, 847–848.

    Google Scholar 

  78. Todd, J. W., Frisbie, J. H., and Rossier, A. B. (1976) Deep vein thrombosis in acute spinal injury: a comparison of 125I-fibrinogen scanning, impedance plethysmorgraphy, and venography. Paraplegia 14, 50–57.

    PubMed  CAS  Google Scholar 

  79. Myllynen, P., Kammonen, M., and Rokkanen, P. (1985) Deep venous thrombosis and pulmonary embolism in patients with acute spinal cord injury: a comparison with non-paralyzed patients immobilized due to spinal fracture. J. Trauma 25, 541–546.

    PubMed  CAS  Google Scholar 

  80. Moncada, S. and Vane, J. R. (1979) Arachidonic acid metabolites and their interactions between platelets and blood vessel walls. N. Engl. J. Med. 300, 1142–1147.

    PubMed  CAS  Google Scholar 

  81. Muller, B., Sturzebechr, S., and Krais, T. (1989) The experimental and clinical pharmacology of iloprost, in The Pathophysiology of Critical Limb Ischaemia and Pharmacological Intervention with a Stable Prostacyclin Analogue (Dormandy, J. A., ed.), Iloprost International Congress and Symposium Series No. 159. Royal Society of Medicine Services, London, pp. 33–50.

    Google Scholar 

  82. Eisenhut, T., Sinha, B., and Grottrup-Wolfers, E. (1993) Prostacyclin analog suppress the synthesis of tumor necrosis factor-a in LPS-stimulated human peripheral blood mononuclear cells. Immunopharmacology 26, 259–264.

    PubMed  CAS  Google Scholar 

  83. Maria-Riva, C., Morganroth, M. L., and Ljungman, A. G. (1990) Iloprost inhibits neutrophil-induced lung injury and neutrophil adherence to endothelial monocytes. Am. J. Respir. Cell Mol. Biol. 3, 301–309.

    Google Scholar 

  84. Simpson, P. J., Mickelson, J., and Fantone, J. (1987) Iloprost inhibits neutrophil function in vitro and in vivo and limits experimental infarct size in canine heart. Circ. Res. 60, 666–673.

    PubMed  CAS  Google Scholar 

  85. Okuyama, M., Kambayashi, J., Sakon, M., Kawasaki, T., and Monden, M. (1995) PGI2 analogue, sodium deraprost, suppresses superoxide generation in human neutrophils by inhibiting p47phox phosphorylation. Life Sci. 57, 1051–1059.

    PubMed  CAS  Google Scholar 

  86. Grant, S. M. and Goa, K. L. (1992) Iloprost, a review of its pharmacodynamie and pharmacokinetic properties, and therapeutic potential in peripheral vascular diseases, myocardial ischemia and extracorporeal circulation procedures. Drugs 43, 889–924.

    PubMed  CAS  Google Scholar 

  87. Hsu, C. Y. and Dimitrijevic, M. R. (1990) Methylprednisolone in spinal cord injury: the possible mechanism of action. J. Neurotruma 7, 115–119.

    CAS  Google Scholar 

  88. Hall, E. D., Yonkers, P. A., McCall, J. M., and Braughler, J. M. (1988) Effects of the 21aminosteroid U7400F, on experimental head injury in mice. J. Neurosurg. 68, 456–461.

    PubMed  CAS  Google Scholar 

  89. Espersen, G. T., Ernst, E., and Vestergaard, M. (1989) Changes in PMN leukocyte migration activity and complement C3d levels in RA patients with high disease activity during steroid treatment. Scand. J. Rheumatol. 18, 51–56.

    PubMed  CAS  Google Scholar 

  90. Becker, J. and Grasso, R. J. (1985) Suppression of phagocytosis by dexamethasone in macrophage culture: inability of arachidonic acid, indomethacin and nordihydroguaiaretic acid to reverse the inhibitory response mediated by a steroid-inducible factor. Int. J. Immunopharmacol. 7, 839–847.

    PubMed  CAS  Google Scholar 

  91. Schleimer, R. P., Freeland, H. S., and Peters, S. P. (1989) An assessment of the effects of glucocorticoids on degranulation, chemotaxis, binding to vascular endothelium and formation of leukotriene B4 by purified human neutrophils. J. Pharmacol. Exp. Ther. 250, 598–605.

    PubMed  CAS  Google Scholar 

  92. Hargreaves, K. M. and Costella, A. (1990) Glucocorticoids suppress levels of immunoreactive bradykinin in inflamed tissue as evaluated by micro dialysis probes. Clin. Pharmacol. Ther. 48, 168–178.

    PubMed  CAS  Google Scholar 

  93. Flowers, R. J. (1989) Glucocorticoids and inhibition of phospholipase A2, in Anti-inflammatory Steroid Action: Basic and Clinical Aspects ( Schleimer, R. P., Ford-Clamam, H. N., and Oronsky, A. L., eds.), Academic, New York, pp. 48–64.

    Google Scholar 

  94. Anderson, D. K., Hsu, C. Y., Michel, M. E., and Stokes, B. T. (1992) NIH workshop on experimental spinal cord injury: modeling and criteria. J. Neurotrauma 9, 113–186.

    Google Scholar 

  95. Behrmann, D. L., Bresnahan, J. C., and Beattie, M. S. (1994) Modeling of acute spinal cord injury in the rat: neuroprotection and enhanced recovery with methylprednisolone, U74006F and YM-14673. Exp. Neurol. 126, 1–16.

    Google Scholar 

  96. Young, W., DeCrescito, V., Flamm, E. S., Blight, A. R., and Gruner, J. A. (1990) Pharmacological therapy of acute spinal cord injury: studies of high dose methyprednisolone and naloxone. Clin. Neurosurg. 38, 657–697.

    Google Scholar 

  97. Braughler, J. M. and Hall, E. D. (1984) Effects of multidose methylprednisolone sodium succinate administration to an injured cat spinal cord neurofilament degradation and energy metabolism. J. Neurosurg. 61, 290–295.

    PubMed  CAS  Google Scholar 

  98. Braughler, J. M., Hall, E. D., Means, E. D., Waters, T. R., and Anderson, D. K. (1987) Evaluation of an intensive methylprednisolone sodium succinate dosing regimen in experimental spinal cord injury. J. Neurosurg. 67, 102–105.

    PubMed  CAS  Google Scholar 

  99. Young, W. (1985) Blood blow, metabolic and neurophysiological mechanisms in spinal cord injury, in Central Nervous System Trauma Status Report ( Becker, D. and Povlishock, J. T., eds.), National Institutes of Health, Rockville, MD, pp. 463–473.

    Google Scholar 

  100. Hall, E. D., Yonkers, P. A., Taylor, B. M., and Sun, F. F. (1995) Lack of effect of post-injury treatment with methylprednisolone or tirilazad mesylate on the increase in eicosanoid levels in the acutely injured cat spinal cord. J. Neurotrauma 3, 245–258.

    Google Scholar 

  101. Suttorp, N., Seeger, W., Zucker-Reimann, J., Roka, L., and Bhakdi, S. (1987) Mechanism of leukotriene generation in polymorphonuclear leukocytes by staphylococcal alpha-toxin. Infect. Immun. 55, 104–110.

    PubMed  CAS  Google Scholar 

  102. Katori, M., Oda, T., and Nagai, K. (1990) Asite action of dexamethasone on leukocyte extravasation in microcirculation. Agents Action 29 (1/2), 24–26.

    CAS  Google Scholar 

  103. Oda, T. and Katori, M. (1992) Inhibition site of dexamethasone on extravasation of polymorphonuclear leukocytes in the hamster cheek pouch microcirculation. J. Leukocyte Biol. 52, 337–342.

    PubMed  CAS  Google Scholar 

  104. Frankel, H. L., Hancock, D. O., and Hyslop, G. (1969) The value of postural reduction in the initial management of closed injuries to the spine with paraplegia and tetraplegia. Paraplegia 7, 179–192.

    PubMed  CAS  Google Scholar 

  105. American Spinal Injury Association (1984) Standards for Neurological Classification of Spinal Injury Patients, American Spinal Injury Association, Chicago.

    Google Scholar 

  106. Geisler, F. H. (1993) GM-1 ganglioside and motor recovery following human spinal cord injury. J. Emerg. Med. 1, 49–55.

    Google Scholar 

  107. Geisler, F. H., Dorsey, F. C., and Coleman, W. P. (1993) Past and current clinical studies with GM-1 ganglioside in acute spinal cord injury. Ann. Emerg. Med. 22, 1041–1047.

    PubMed  CAS  Google Scholar 

  108. Ledeen, R. W. (1978) Ganglioside structures and distribution: are they localized at the nerve ending? J. Supramol. Struct. 8, 1–17.

    PubMed  CAS  Google Scholar 

  109. Gorio, A., Di Giulio, A. M., Young, W., Gruner, J., Blight, A., De Crescito, V., et al. (1986) GM1 effects on chemical, traumatic and peripheral nerve induce lesions to the spinal cord, in Development and Platicity of the Mammalian Spinal Cord, Volume 3 ( Goldberger, M. E., Gorio, A., and Murray, M., eds.), Liviana Press, Padova, pp. 227–242.

    Google Scholar 

  110. Sabel, B. A., CelMastro, R., Dunbar, G. L., and Stein, D. G. (1987) Reduction of anterograde degeneration in brain damaged rats by GMlganglioside. Neurosci. Lett. 77, 360–366.

    PubMed  CAS  Google Scholar 

  111. Greene, K. A., Marciano, F. F., and Sonntag, V. K. H. (1996) Pharmacological management of spinal cord injury: current status of drugs designed to augment functional recovery of the injured human spinal cord. J. Spinal Disord. 9, 355–366.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Taoka, Y., Okajima, K. (2003). Neuroinflammation as an Important Pathogenic Mechanism in Spinal Cord Injury. In: Wood, P.L. (eds) Neuroinflammation. Contemporary Neuroscience. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-297-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-297-5_10

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9720-5

  • Online ISBN: 978-1-59259-297-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics