Skip to main content

Opioids, Sedation, and Sleep

Different States, Similar Traits, and the Searchfor Common Mechanisms

  • Chapter
Sedation and Analgesia for Diagnostic and Therapeutic Procedures

Abstract

Sedation is an area of active research motivated by the clinical need for safe and reliable techniques. An understanding of the cellular and molecular physi-ology of sedation will contribute to the rational development of sedating drugs. These important goals are hampered, however, by the complexity of sedation as an altered State of arousal and by the diversity of sedating drugs. The purpose of this chapter is to selectively review data in support of a working hypothesis that conceptually unifies efforts to understand the neurochemical basis of sedation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lydic, R. and Baghdoyan, H. A. (eds). (1999) Handbook ofBehavioral State Control: Cellular and Molecular Mechanisms, CRC Press, Boca Raton, FL.

    Google Scholar 

  2. Gross, J. B., Bailey, P. L., Caplan, R. A., Connis, R. T., Cote, C. J., Davis, F. G., et al. (1996) Practice guidelines for sedation and analgesia by non-anesthesiologists. Anesthesiology 84, 459–471.

    Article  Google Scholar 

  3. Lydic, R. and Biebuyck, J. F. (1994) Sleep neurobiology: relevance for mechanistic studies of anesthesia. Br. J. Anaesth. 72, 506–508.

    Article  PubMed  CAS  Google Scholar 

  4. Lydic, R. (1996) Reticular modulation of breathing during sleep and anesthesia. Curr. Opin. Pulm. Med. 2, 474–481.

    PubMed  CAS  Google Scholar 

  5. Mortazavi, S., Thompson, J., Baghdoyan, H. A., and and Lydic, R. (1999) Fentanyl and morphine, but not remifentanil, inhibit acetylcholine release in pontine regions modulating arousal. Anesthesiology 90, 1070–1077.

    Article  PubMed  CAS  Google Scholar 

  6. Jastak, J. T. and Peskin, R. M. (1991) Major morbidity or mortality from office anesthetic procedures: A closed-claim analysis of 13 cases. Anesth. Prog. 38, 39–44.

    PubMed  CAS  Google Scholar 

  7. Kryger, M. H., Roth, T., and Dement, W. C. (eds). (1994) Principles and Practice of Sleep Medicine, 2nd ed., W. B. Saunders, Philadelphia, PA.

    Google Scholar 

  8. Steriade, M., and McCarley, R. W. (1990) Brainstem Control ofWakefulness and Sleep. Plenum Press, New York, NY.

    Google Scholar 

  9. Sanders, B. J. and Avery, D. R. (1997) The effect of sleep on conscious seda­tion: A follow-up study. J. Clin. Pediatr. Dent. 21, 131–134.

    PubMed  CAS  Google Scholar 

  10. Mahowald, M. W. and Schenck, C. H. (1992) Dissociated states of wakeful-ness and sleep. Neurology42, 44–52.

    PubMed  CAS  Google Scholar 

  11. Aldrich, M. S. (1999) Sleep Medicine, Oxford University Press, New York, NY.

    Google Scholar 

  12. Van Steveninck, A. L., Mandema, J. W., Tuk, B., Van Dijk, J. G., Schoemaker, H. C, Danhof, M., et al. (1993) A comparison of the concentration-effect relationships for midazolam for EEG-derived parameters and saccadic peak velocity. Br. J. Clin. Pharmacol. 36, 109–115.

    Article  PubMed  Google Scholar 

  13. Roelofse, J. A., Louw, L. R., and Roelofse, P. G. (1998) A double blind randomized comparison of oral trimeprazine-methadone and ketamine-midazolam for sedation of pediatric dental patients for oral surgical proce­dures. Anesth. Prog. 45, 3–11.

    PubMed  CAS  Google Scholar 

  14. Ramsay MAE, Savege, T. M., Simpson, B. R. J., and Goodwin, R. (1974) Controlled sedation with alphaxalone-alphadolone. Br. Med. J. 2, 656–659.

    Article  PubMed  CAS  Google Scholar 

  15. Fragen, R. J., Avram, M. J. (1992) Nonopioid intravenous anesthetics, in Clinical Anesthesia, 2nd ed. (Barash, P. G., Cullen, B. F., and Stoelting, R. K., eds.), J. B. Lippincott, Philadelphia, PA.

    Google Scholar 

  16. Jagoda, A. S., Campbell, M., Karas, S., Mariani, P. J., and Shepherd, S. M. (1998) Clinical policy for procedural sedation and analgesia in the emergency department. Ann. Emerg. Med. 31, 663–677.

    Article  Google Scholar 

  17. Novak, C. I. (1998) ASA Updates its position on monitored anesthesia care. Am. Soc. Anes. News 62, 22–23.

    Google Scholar 

  18. Cote, C. J. (1994) Sedation for the pediatric patient. Paediatr. Anaesth. 41, 31–53.

    CAS  Google Scholar 

  19. Holzman, R. S., Cullen, D. J., Eichhorn, J. H., and Philips, J. H. (1994) Guide­lines for sedation by nonanesthesiologists during diagnostic and therapeutic procedures. /. Clin. Anesth. 6, 265–275.

    Article  CAS  Google Scholar 

  20. Baghdoyan, H. A., Rodrigo-Angulo, M. L., McCarley, R. W., and Hobson, J. A. (1984) Site-specific enhancement and suppression of desynchronized sleep signs following cholinergic Stimulation of three brain stem regions. Brain Res. 306, 39–52.

    Article  PubMed  CAS  Google Scholar 

  21. Lydic, R. (1989) Central pattern-generating neurons and the search for gen-eral principles. FASEB J. 3, 2457–2478.

    PubMed  CAS  Google Scholar 

  22. Churchland, P. S. (1986) Neurophilosophy: Toward a Unified Science ofthe Mind-Brain. A Bradford Book, The MIT Press, Cambridge, MA.

    Google Scholar 

  23. Chokroverty, S. (ed). (1999) Sleep Disorders Medicine: Basic Science, Techni­cal Considerations, and Clinical Aspects. Butterworth-Heinmann, Boston, MA.

    Google Scholar 

  24. Folstein, M. F., Folstein, S. E., and McHugh, P. R. (1975) Mini-mental State. A practical method for grading the cognitive State of patients for the clini-cian. J. Psychiatr. Res. 12, 189–198.

    Article  PubMed  CAS  Google Scholar 

  25. Kraemer, H. C, Gullion, C. M., Rush, A. J., Frank, E., and Kupfer, D. J. (1994) Can State and trait variables be disentangled? A methodological frame-work for Psychiatric disorders. Psychiatry Res. 52, 55–69.

    Article  PubMed  CAS  Google Scholar 

  26. Avramov, M. N., Smith, L, and White, P. F. (1996) Interactions between midazolam and remifentanil during monitored anesthesia care. Anesthesiol-ogy 85, 1283–1289.

    Article  CAS  Google Scholar 

  27. Fung, S. J., Boxer, P., Morales, F. R., and Chase, M. (1982) Hyperpolarizing membrane responses induced in lumbar motoneurons by Stimulation of the nucleus reticularis pontis oralis during active sleep. Brain Res. 248,267–273.

    Article  PubMed  CAS  Google Scholar 

  28. Morales, F. R., Boxer, P., and Chase, M. H. (1987) Behavioral State-specific inhibitory postsynaptic potentials impinge on cat lumbar motoneurons during active sleep. Exp. Neurol. 98, 418–435.

    Article  PubMed  CAS  Google Scholar 

  29. Kay, D. C, Eisenstein, R. B., and Jasinski, D. R. (1969) Morphine effects on human REM State, waking State, and NREM sleep. Psychopharmacologia 14,404–416.

    Article  PubMed  CAS  Google Scholar 

  30. Krachman, S. L., D’ Alonzo, G. E., and Criner, G. J. (1995) Sleep in the inten­sive care unit. Chest 107, 1713–1720.

    Article  PubMed  CAS  Google Scholar 

  31. Lydic, R. and Biebuyck, J. F. (eds). (1988) The Clinical Physiology of Sleep. The American Physiological Society, Bethesda, MD.

    Google Scholar 

  32. Bruder, N., Raynal, M., Pellissier, D., Courtinat, C, and Francois, G. (1998) Influence of body temperature, with or without sedation, on energy expendi-ture in severe head-injured patients. Crit. Care Med. 26, 568–572.

    Article  PubMed  CAS  Google Scholar 

  33. Parikh, S. and Chung, F. (1995) Postoperative delirium in the elderly. Anesth. Anaig. 80, 1223–1232.

    CAS  Google Scholar 

  34. Wagner, B. K., O’Hara, D. A., and Hammond, J. S. (1997) Drugs for amnesia in the ICU. Am. J. Crit. Care 6, 192–201.

    PubMed  CAS  Google Scholar 

  35. Buffett-Jerrott, S. E., Stewart, S. H., Bird, S., and Teehan, M. D. (1998) An examination of differences in the time course of oxazepam’s effects on implicit vs explicit memory. J. Psychopharm. 12, 338–347.

    Article  CAS  Google Scholar 

  36. Buffett-Jerrott, S. E., Stewart, S. H., and Teehan, M. D. (1998) A further examination of the time-dependent effects of oxazepam and lorazepam on implicit and explicit memory. Psychopharmacologia 138, 344–353.

    Article  CAS  Google Scholar 

  37. Papper, E. M. (1987) The State of consciousness: some humanistic consider-ations, in Consciousness, Awareness and Pain in General Anaesthesia. (Rosen, M., and Lunn, J. N., eds.), Butterworths, London, pp. 10–11.

    Google Scholar 

  38. Andrade, J. (1996) Investigations of hypesthesia: using anesthetics to explore relationships between consciousness, learning, and memory. Conscious Cogn. 54, 562–580.

    Article  Google Scholar 

  39. Bloch, V., Hennevin, E., Leconte P. (1979) Relationship between paradoxi-cal sleep and memory processes, in Brain Mechanisms in Memory and Learn­ing: From the Single Neuron to Man, (Brazier, M. A. B., ed.), Raven Press, New York, NY, pp. 329–343.

    Google Scholar 

  40. Hennevin, E., Hars, B., and Bloch, E. (1989) Improvement of learning by mesencephalic reticular Stimulation during postlearning paradoxical sleep. Behav. Neural. Biol. 51, 291–306.

    Article  PubMed  CAS  Google Scholar 

  41. Smith, C. (1996) Sleep states, memory processes and synaptic plasticity. Behav. Brain Res. 78, 49–56.

    Article  PubMed  CAS  Google Scholar 

  42. Steriade, M. (1996) Awakening the brain. Nature 383, 24–25.

    Article  PubMed  CAS  Google Scholar 

  43. Sejnowski, T. J. (1995) Sleep and memory. Curr. Biol. 5, 832–834.

    Article  PubMed  CAS  Google Scholar 

  44. Castro-Alamancos, M. A. and Connors, B. W. (1996) Short-term plasticity of a thalamocortical pathway dynamically modulated by behavioral State. Sci­ence 272, 274–276.

    Article  CAS  Google Scholar 

  45. Kudrimoti, H. S., Barnes, C. A., and McNaughton, B. L. (1999) Reactivation of hippocampal cell assemblies: Effects of behavioral State, experience, and EEG dynamics. /. Neurosci. 19, 4090–4101.

    CAS  Google Scholar 

  46. Engelhardt, W., Friess, K., Härtung, E., Sold, M., and Dierks, T. (1992) EEG and auditory evoked potential P300 compared with psychometric tests in assessing vigilance after benzodiazepine sedation and antagonism. Br. J. Anaesth. 69, 75–80.

    Article  PubMed  CAS  Google Scholar 

  47. Veselis, R. A., Reinse, R. A., Wronski, M., Marino, P., Tong, W. P., and Bedford, R. F. (1992) EEG and memory effects of low-dose infusions of propofol. Br. J. Anaesth. 69, 246–254.

    Article  PubMed  CAS  Google Scholar 

  48. Seifert, H. A., Blouin, R. T., Conrad, P. F., and Gross, J. B. (1993) Sedative doses of propofol increase beta activity in the processed electroencephalo-gram. Anesth. Anaig. 76, 976–978.

    CAS  Google Scholar 

  49. Kishimoto, T., Kadoya, C, Sneyd, R., Samra, S. K., and Domino, E. F. (1995) Topographie electroencephalogram of propofol-induced conscious sedation. Clin. Pharmacol. Ther. 58, 666–774.

    Article  PubMed  CAS  Google Scholar 

  50. Dowlatshahi, P. and Yaksh, T. L. (1997) Differential effects of two intraven-tricularly injected alpha 2 agonists ST-91 and dexmedetomidine on electro-encephalogram, feeding and electromyogram. Anesth. Anaig. 84, 133–138.

    CAS  Google Scholar 

  51. Feshchenko, V. A., Veselis, R. A., and Reinsei, R. A. (1997) Comparison of the EEG effects of midazolam, thiopental, and propofol: the role of underly-ing oscillatory Systems. Neuropsychobiology 35, 211–220.

    Article  PubMed  CAS  Google Scholar 

  52. Rampil, I. J. (1998) A primer for EEG signal processing in anesthesia. Anes-thesiology 89, 980–1002.

    CAS  Google Scholar 

  53. Vernon, J. M., Long, E., Sebel, P. S., and Manberg, P. (1995) Prediction of movement using bispectral electroencephalographic analysis during propofol/ alfentanil or isoflurane/alfentanil anesthesia. Anesth. Anaig. 80, 780–785.

    CAS  Google Scholar 

  54. Sigl, J. C. and Chamoun, N. C. (1994) An introduction to bispectral analysis for the electroencephalogram. J. Clin. Monit. 10, 392–404.

    Article  PubMed  CAS  Google Scholar 

  55. Sleigh, J. W., Andrzejowski, J., Steyn-Ross, A., and Steyn-Ross, M. (1999) The bispectral index: A measure of depth of sleep? Anesth. Anaig. 88,659–661.

    CAS  Google Scholar 

  56. Leslie, K., Sessler, D. I., Smith, W. D., Larson, M. D., Ozaki, M., Blanchard, D., and Crankshaw, D. P. (1996) Prediction of movement during propofol/ nitrous oxide anesthesia. Anesthesiology 84, 52–63.

    Article  PubMed  CAS  Google Scholar 

  57. De Deyne, C., Struys, M., Decruyenaere, J., Creupelandt, J., Hoste, E., and Colardyne, F. (1998) Use of continuous bispectral EEG monitoring to assess depth of sedation in ICU patients. Intensive Care Med. 24, 1294–1298.

    Article  PubMed  Google Scholar 

  58. Leslie, K., Sessler, D. L, Schroeder, M., and Walters, K. (1995) Propofol blood concentration and the bispectral index predict suppression of learning dur­ing propofol/epidural anesthesia in volunteers. Anesth. Anaig. 81, 1269–1274.

    CAS  Google Scholar 

  59. Kearse, L. A., Rosow, C., Zaslavsky, A., Connors, P., Dershwitz, M., and Denman, W. (1998) Bispectral analysis of the electroencephalogram predicts conscious processing of Information during propofol sedation and hypnosis. Anesthesiology 88, 25–34.

    Article  PubMed  CAS  Google Scholar 

  60. Glass, P. S., Bloom, M., Kearse, L., Roscow, C., Sebel, P., and Manberg, P. (1997) Bispectral analysis measures sedation and memory effects of propofol, midazolam, isoflorane and alfentanil in healthy volunteers. Anesthesiology 86, 836–847.

    Article  PubMed  CAS  Google Scholar 

  61. Singh, H. (1999) Bispectral index (BIS) monitoring during propofol-induced sedation and anaesthesia. Eur. J. Anaesthesiol. 16, 31–36.

    PubMed  CAS  Google Scholar 

  62. Ghoneim, M. M. and Block, R. I. (1992) Learning and consciousness during general anesthesia. Anesthesiology 76, 279–305.

    Article  PubMed  CAS  Google Scholar 

  63. Ghoneim, M. M. and Block, R. I. (1997) Learning and memory during gen­eral anesthesia: an update. Anesthesiology 87, 387–410.

    Article  PubMed  CAS  Google Scholar 

  64. McLeskey, C. H. (1999) Awareness during anaesthesia. Can. J. Anaesth. 46, R80-R83.

    Article  PubMed  CAS  Google Scholar 

  65. Schwender, D., Daunderer, M., Schnatmann, N., Klasing, S., Finister, IL, and Peter, K. (1997) Midlatency auditory evoked potentials and motor signs of wakefulness during anaesthesia and midazolam. Er. J. Anaesth. 79,53–58.

    Article  CAS  Google Scholar 

  66. Tooley, M. A., Greenslade, G. L., and Prys-Roberts, C. (1996) Concentra-tion-related effects of propofol on the auditory evoked response. Br. J. Anaesth. 11 , 720–726.

    Article  Google Scholar 

  67. Doi, M, Gajraj, R. J., Mantzardis, H., and Kenny, G. N. (1997) Relationship between calculated blood concentrations of propofol and electrophysiologi-cal variables during emergence from anaesthesia: comparison of bispectral index, spectral edge frequency, median frequency and auditory evoked poten-tial index. Br. J. Anaesth. 78, 180–184.

    Article  PubMed  CAS  Google Scholar 

  68. Gajraj, R. J., Doi, M., Mantzardis, H., and Kenny, G. N. (1998) Analysis of the EEG bispectrum, auditory evoked potentials and the EEG power spec-trum during repeated transitions from consciousness to unconsciousness. Br. J. Anaesth. 80, 46–52.

    Article  PubMed  CAS  Google Scholar 

  69. Schraag, S., Bothner, IL, Gajraj, R., Kenny, G., and Georgieff, M. (1999) The Performance of electroencephalogram bispectral index and auditory evoked potential index to predict loss of consciousness during propofol infu-sion. Anesth. Anaig. 89, 1311–1315.

    Article  CAS  Google Scholar 

  70. Rampil, I. J., Kim, L, Lenhard, T., Neigishi, C., and Sessler, D. I. (1998) Bispectral EEG index during nitrous oxide administration. Anesthesiology 89,671–677.

    Article  PubMed  CAS  Google Scholar 

  71. Wescoe, W. C., Green, R. E., McNamara, B. P., and Krop, S. (1948) The influence of atropine and scopolamine on the central effects of DFP. J. Pharmacol. Exp. Ther. 92, 63–72.

    PubMed  CAS  Google Scholar 

  72. Moruzzi, G. and Magoun, H. W. (1949) Brain stem reticular formation and activation of the EEG. Electroencephalogr. Clin. Neurophysiol. 1, 455–473.

    PubMed  CAS  Google Scholar 

  73. Aserinsky, E. and Kleitman, N. (1953) Regularly occurring periods of eye motility, and concomitant phenomena, during sleep. Science 118, 213–21A.

    Article  Google Scholar 

  74. Jouvet, M. (1972) The role of monoamines and acetylcholine containing neu-rons in the regulation of the sleep waking cycle. Er geb. Physiol. 64,116–307.

    Google Scholar 

  75. Steriade, M., Contreras, D., Curro’ Dossi, R., and Nunez, A. (1993) The slow (<1 Hz) oscillation in reticular thalamic and thalamocortical neurons: sce-nario of sleep rhythm generation in interacting thalamic and neocortical net-works. J. Neurosci. 13, 3284–3299.

    PubMed  CAS  Google Scholar 

  76. Steriade, M. (1993) Cholinergic blockage of network- and intrinsically-generated slow oscillations promotes waking and REM sleep activity pat-terns in thalamic and cortical neurons. Prog Brain Res. 98, 345–355.

    Article  CAS  Google Scholar 

  77. Baghdoyan, H. A. and Lydic, R. (1999) M2 muscarinic receptor subtype in the feline medial pontine reticular formation modulates the amount of rapid eye movement sleep. Sleep 22, 835–847.

    PubMed  CAS  Google Scholar 

  78. Hustveit, O. (1994) Binding of fentanyl and pethidine to muscarinic recep-tors in rat brain. Jpn. J. Pharmacol. 64, 57–59.

    Article  PubMed  CAS  Google Scholar 

  79. Shiromani, P. L, Armstrong, D. M., and Gillin, J. C. (1988) Cholinergic neu­rons from the dorsolateral pons project to the medial pons: a WGA-HRP and choline acetyltransferase immunohistochemical study. Neurosci. Lett. 95,19–23.

    Article  PubMed  CAS  Google Scholar 

  80. Mitani, A., Ito, K., Hallanger, A. H., Wainer, B. H., Kataoka, K., and McCarley, R. W. (1988) Cholinergic projections from the laterodorsal and pedunculopontine tegmental nuclei to the pontine gigantocellular tegmental field in the cat. Brain Res. 451, 397–402.

    Article  PubMed  CAS  Google Scholar 

  81. Honda, T. and Semba, K. (1995) An ultrastructural study of cholinergic and non-cholinergic neurons in the laterodorsal and pedunculopontine nuclei in the rat. Neuroscience 68, 837–853.

    Article  PubMed  CAS  Google Scholar 

  82. Semba, K., Reiner, P. B., and Fibiger, H. C. (1990) Single cholinergic mesopontine tegmental neurons project to both the pontine reticular forma-tion and the thalamus in the rat. Neuroscience 38, 643–654.

    Article  PubMed  CAS  Google Scholar 

  83. El Mansari, M., Sakai, K., and Jouvet, M. (1989) Unitary characteristics of presumptive cholinergic tegmental neurons during the sleep-waking cycle in freely moving cats. Exp. Brain Res. 76, 519–529.

    Article  PubMed  CAS  Google Scholar 

  84. El Mansari, M., Sakai, K., and Jouvet, M. (1990) Responses of presumed cholinergic mesopontine tegmental neurons to carbachol microinjections in freely moving cats. Exp. Brain Res. 83, 115–123.

    Article  PubMed  CAS  Google Scholar 

  85. Lydic, R. and Baghdoyan, H. A. (1993) Pedunculopontine Stimulation alters respiration and increases ACh release in the pontine reticular formation. Am. J. Physiol. 264, R544-R554.

    PubMed  CAS  Google Scholar 

  86. Baghdoyan, H. A. (1997) Cholinergic mechanisms regulating REM sleep, in Sleep Science: Integrating Basic Research and Clinical Practice Monographs in Clini-cal Neuroscience, Vol. 15. (Schwartz, W. J., ed.), Karger, Basel, pp. 88–116.

    Chapter  Google Scholar 

  87. Baghdoyan, H. A., Monaco, A. P., Rodrigo-Angulo, M. L., Assens, F., McCarley, R. W., and Hobson, J. A. (1984) Microinjection of neostigmine into the pontine reticular formation of cats enhances desynchronized sleep signs. J. Pharmacol. Exp. Ther. 231, 173–180.

    PubMed  CAS  Google Scholar 

  88. Sitaram, N., Wyatt, R. J., Dawson, S., and Gillin, J. C. (1976) REM sleep induction by physostigmine infusion during sleep. Science 191, 1281–1283.

    Article  PubMed  CAS  Google Scholar 

  89. Meuret, P., Backman, S. B., Bonhomme, V., Plourde, G., and Fiset, P. (2000) Physostigmine reverses propofol-induced unconsciousness and attenuation of the auditory steady State response in bispectral index in human volunteers. Anesthesiology 93, 708–717.

    Article  PubMed  CAS  Google Scholar 

  90. Thakkar, M., Portas, C, and McCarley, R. W. (1996) Chronic low-amplitude electrical Stimulation of the laterodorsal tegmental nucleus of freely moving cats increases REM sleep. Brain Res. 723, 223–227.

    Article  PubMed  CAS  Google Scholar 

  91. Williams, J. A., Comisarow, J., Day, J., Fibiger, H. C, and Reiner, P. B. (1994) State-dependent release of acetylcholine in rat thalamus measured by in vivo microdialysis. J. Neurosci. 14, 5236–5242.

    PubMed  CAS  Google Scholar 

  92. Keifer, J. C, Baghdoyan, H. A., and Lydic, R. (1996) Pontine cholinergic mechanisms modulate the cortical EEG spindles of halothane anesthesia. Anesthesiology 84, 945–954.

    Article  PubMed  CAS  Google Scholar 

  93. Lydic, R., Keifer, J. C, Baghdoyan, H. A., and Becker, L. (1993) Micro­dialysis of the pontine reticular formation reveals inhibition of acetylcholine release by morphine. Anesthesiology 79, 1003–1012.

    Article  PubMed  CAS  Google Scholar 

  94. Vazquez, J. and Baghdoyan, H. A. (2001) Basal forebrain acetylcholine release during REM sleep is significantly greater than during waking. Am. J. Physiol. 280, R598-R601.

    CAS  Google Scholar 

  95. Douglas, C. L., Baghdoyan, H. A., and Lydic, R. (2001) Muscarinic autoreceptors modulate release of ACh in frontal association cortex of C57BL/6J mouse. J. Pharmacol. Exp. Ther. 299, 960–966.

    PubMed  CAS  Google Scholar 

  96. Lancel, M. (1999) Role of GABAA receptors in the regulation of sleep: Ini­tial sleep responses to peripherally administered modulators and agonists. Sleep 22, 33–42.

    PubMed  CAS  Google Scholar 

  97. Marti-Bonmati, L., Ronchera-Oms, C. L., Casillas, C, Poyatos, C, Torrijo, C, and Jimenez, N. V. (1995) Randomized double-blind clinical trial ofinter-mediate versus high dose chloral hydrate for neuroimaging of children. Neuroradiology 37, 687–691.

    Article  PubMed  CAS  Google Scholar 

  98. Needleman, H. L., Joshi, A., and Griffith, D. G. (1995) Conscious sedation of pediatric dental patients using chloral hydrate, hydroxyzine, and nitrous oxide—a retrospective study of 382 sedations. Pediatr. Dent. 17, 424–431.

    PubMed  CAS  Google Scholar 

  99. Lovinger, D. M., Zimmerman, S. A., Levitin, M., Jones, M. V., and Harrison, N. L. (1993) Trichloroentanol potentiates synaptic transmission mediated by gamma-aminobutyric acid A receptors in hippocampal neurons. J. Pharmacol Exp. Ther. 264, 1097–1103.

    PubMed  CAS  Google Scholar 

  100. Ronchera-Oms, C. L., Casillas, C, Marti-Bonmati, L., Poyatos, C, Tomas, J., Sobejano, A., and et al. (1994) Oral chloral hydrate provides effective and safe sedation in paediatric magnetic resonance imaging. J. Clin. Pharm. Ther. 19, 239–243.

    Article  PubMed  CAS  Google Scholar 

  101. Mayers, D. J., Hindmarsh, K. W., Sankaran, K., Gorecki, D. K., and Kasian, G. F. (1991) Chloral hydrate disposition following single-single dose adminis-tration to critically ill neonates and children. Dev. Pharmacol. Ther. 16,71–77.

    PubMed  CAS  Google Scholar 

  102. Salmon, A. G., Kizer, K. W., Zwise, L., Jackson, R. J., and Smith, M. T. (1995) Potential carcinogenicity of chloral hydrate - a review. J. Toxicol. Clin. Toxicol. 33, 115–121.

    Article  PubMed  CAS  Google Scholar 

  103. Mendelson, W. B. Cain, M., Cook, J. M., Paul, S. M., and Skolnick, P. (1983) A benzodiazepine receptor antagonist decreases sleep and reverses the hyp-notic actions of flurazepam. Science 219, 414–416.

    Article  PubMed  Google Scholar 

  104. Mendelson, W. B. and Martin, J. V. (1992) Characterization of the hypnotic effects of triazolam microinjections into the medial preoptic area. Life Sei. 50,1117–1128.

    Article  CAS  Google Scholar 

  105. Reves, J. G., Fragen, R. J., Vinik, H. R., and Greenblatt, D. J. (1985) Midazolam: pharmacology and uses. Anesthesiology 63, 310–324.

    Article  Google Scholar 

  106. Malinovsky, J. M., Populaire, C, Cozian, A., Lepage, J. Y., Lejus, C, and Pinard, M. (1995) Premedication with midazolam in children effects of intra­nasal, rectal and oral routes on plasma midazolam concentrations. Anaesthe-«fl 50, 351–354.

    Article  CAS  Google Scholar 

  107. Doyle, W. L. and Perrin, L. (1994) Emergence delirium in a child given oral midazolam for conscious sedation. Ann. Emerg. Med. 24, 1173–1175.

    Article  PubMed  CAS  Google Scholar 

  108. Comacho-Arroyo, L, Alvarado, R., Manjarrez, J., and Tapia, R. (1991) Micro­injections of museimol and bicuculline into the pontine reticular formation modify the sleep-waking cycle in the rat. Neurosci. Lett. 129, 95–97.

    Article  Google Scholar 

  109. Xi M-C, Morales, F. R., and Chase, M. H. (1999) Evidence that wakefulness and REM sleep are controlled by a GABAergic pontine mechanism. J. Neurophysiol.82, 2015–2019.

    PubMed  CAS  Google Scholar 

  110. Sastre, J. P., Buda, C, Kitahama, K., and Jouvet, M. (1996) Importance of the ventrolateral region of the periaqueductal gray and adjacent tegmentum in the control of paradoxical sleep as studied by museimol microinjections in the cat. Neuroscience 74, 415–426.

    Article  PubMed  CAS  Google Scholar 

  111. Fang, F., Guo, T. Z., Davies, M. F., and Maze, M. (1997) Opiate receptors in the periaqueductal gray mediate the analgesic effect of nitrous oxide in rats. Eur. J. Pharmacol. 336, 137–141.

    Article  PubMed  CAS  Google Scholar 

  112. Nitz, D. and Siegel, J. (1997) GABA release in the dorsal raphe nucleus: role in the control of REM sleep. Am. J. Physiol 273, R451-R455.

    PubMed  CAS  Google Scholar 

  113. Nitz, D. and Siegel, J. (1997) GABA release in the locus coeruleus as a func-tion of sleep/wake State. Neuroscience78, 795–801.

    Article  PubMed  CAS  Google Scholar 

  114. Kaur, S., Saxena, R. N., and Mallick, B. N. (1997) GABA in locus coeruleus regulates spontaneous rapid eye movement sleep by acting on GABAA re­ceptors in freely moving rat. Neuro sei. Lett. 223, 105–108.

    Article  CAS  Google Scholar 

  115. Gervasoni, D., Darracq, L., Fort, P., Souliere, F., Chouvet, G., and Luppi, P. H. (1998) Electrophysiological evidence that noradrenergic neurons of the rat locus coeruleus are tonically inhibited by GABA during sleep. Eur. J. Neurosci. 10, 964–970.

    Article  PubMed  CAS  Google Scholar 

  116. Nitz, D. and Siegel, J. M. (1996) GABA release in posterior hypothalamus across the sleep-wake cycle. Am. J. Physiol. 271, R1707-R1712.

    PubMed  CAS  Google Scholar 

  117. Garzon, M., Tejero, S., Beneitez, A. M, and de Andres, I. (1995) Opiate microinjeetions in the locus coeruleus area of the cat enhance slow wave sleep. Neuropeptides 29, 229–239.

    Article  PubMed  CAS  Google Scholar 

  118. Baghdoyan, H. A. and Lydic R. (2002) Neurotransmitters and neuromodu-lators regulating sleep, in Sleep and Epilepsy: The Clinical Spectrum. (Bazil, C., Malow, B., and Sammaritano, M., eds.), Elsevier Science, New York, NY, pp. 17–44.

    Google Scholar 

  119. Knill, R. L. and Gelb, A. W. (1978) Ventilatory responses to hypoxia and hypercapnia during halothane sedation in man. Anesthesiology49, 244–251.

    Article  PubMed  CAS  Google Scholar 

  120. Soellevi, A. and Lindahl, S. G. (1995) Hypoxie and hypercapnic ventilatory responses during isoflurane sedation and anaesthesia in women. Acta Anaesthesiol. Scand. 39, 931–938.

    Article  Google Scholar 

  121. van der Elsen, M., Sarton, E., Teppema, L., Berkenbosch, A., and Dahan, A. (1998) Influence of 0.1 minimum alveolar concentration of sevoflurane, desflurane, and isoflurane on dynamic ventilatory response to hypercapnia in humans. Er. J. Anaesth. 80, 174–182.

    Article  Google Scholar 

  122. Northwood, D., Sapsford, D. J., Jones, J. G., Griffiths, D., and Wilkins, C. (1991) Nitrous oxide sedation causes post-hyperventilation apnoea. Br. J. Anaesth. 67, 7–12.

    Article  PubMed  CAS  Google Scholar 

  123. Bailey, P. L., Pace, N. L., Ashburn, M. A., Moll, J. W., East, K. A., and Stanley, T. H. (1990) Frequent hypoxemia and apnea after sedation with midazolam and fentanyl. Anesthesiology 73, 826–830.

    Article  PubMed  CAS  Google Scholar 

  124. Bailey, P. L., Rhondeau, S., Schafer, P. G., Lu, J. K., Timmins, B. S., Foster, W., et al. (1993) Dose-response pharmacology of intrathecal morphine in human volunteers. Anesthesiology 79, 49–59.

    Article  PubMed  CAS  Google Scholar 

  125. Lu, J. K., Schafer, P. G., Gardner TL, Pace, N. L., Zhang, J., Niu, S., et al. (1997) The dose-response pharmacology of intrathecal sufentanil in female volunteers. Anesth. Anaig. 85, 372–379.

    CAS  Google Scholar 

  126. Blouin, R. T., Seifert, H. A., Babenco, H. D., Conrad, P. F., and Gross, J. B. (1993) Propofol depresses the hypoxic ventilatory response during conscious sedation and isohypercapnia. Anesthesiology 79, 1177–1182.

    Article  PubMed  CAS  Google Scholar 

  127. Lydic, R. (1997) Respiratory modulation by nonrespiratory neurons, in Sleep Science: Integrating Basic Research and Clinical Practice, Vol. 15. (Schwartz, W. J., ed.), Karger, Basel, pp. 117–142.

    Chapter  Google Scholar 

  128. Lydic, R. (1987) State-dependent aspects of regulatory physiology. FASEB J. 1,6–15.

    PubMed  CAS  Google Scholar 

  129. Kubin, L., Tojima, H., Davies, R. O., and Pack, A. I. (1992) Serotoninergic excitatory drive to hypoglossal motoneurons in the decerebrate cat. Neurosci. Leu. 139, 243–248.

    Article  CAS  Google Scholar 

  130. Kubin, L., Reignier, C, Tojima, H., Taguchi, O., Pack, A. I., and Davies, R. O. (1994) Changes in Serotonin level in the hypoglossal nucleus region dur­ing carbachol-induced atonia. Brain Res. 645, 291–302.

    Article  PubMed  CAS  Google Scholar 

  131. Hershenson, M., Brouillette, R. T., Olsen, E., and Hunt, C. E. (1984) The effect of chloral hydrate on genioglossus and diaphragmatic activity. Pediatr. Res.18,516–519.

    Article  PubMed  CAS  Google Scholar 

  132. Nicoll, R. A. and Madison, D. V. (1982) General anesthetics hyperpolarize neurons in the vertebrate central nervous System. Science 217, 1055–1057.

    Article  PubMed  CAS  Google Scholar 

  133. Lydic, R., Fleegal, M. A., Burak, C., and Mortazavi, S. (1998) NMDA Chan­nel blockers applied to the medial pontine reticular formation decrease ace-tylcholine release, inhibit REM sleep, and depress respiratory rate. Soc. Neurosci. Abstr. 24, A823.

    Google Scholar 

  134. Shyr, M. H., Tsai, T. H., Yang, C. H., Chen, H. M., Ng, H. F., and Tan, P. P. (1997) Propofol anesthesia increases dopamine and Serotonin activities at the somatosensory cortex in rats: a microdialysis study. Anesth. Anaig. 84, 1344–1348.

    CAS  Google Scholar 

  135. Flood, P., Ramirez-Latorre, J., and Role, L. (1997) Alpha 4 beta 2 neuronal nicotinic acetylcholine receptors in the central nervous System are inhibited by isoflurane and propofol but alpha 7-type nicotinic acetylcholine receptors are unaffected. Anesthesiology 86, 859–865.

    Article  PubMed  CAS  Google Scholar 

  136. Haies, T. G. and Lambert, J. J. (1991) The actions of propofol on inhibitory amino acid receptors of bovine adrenomedullary chromaffin cells and rodent central neurons. Br. J. Pharmacol. 104, 619–628.

    Article  Google Scholar 

  137. Kshatri, A. M., Baghdoyan, H. A., and Lydic, R. (1998) Increased tail flick latency evoked by cholinomimetics, but not morphine, from pontine reticular regions regulating rapid eye movement sleep. Sleep 21, 677–685.

    PubMed  CAS  Google Scholar 

  138. Kikuchi, T., Wang, Y., Sato, K., and Okumura, F. (1998) In vivo effects of propofol on acetylcholine release from the frontal cortex, hippocampus and striatum studied by intracerebral microdialysis in freely moving rats. Br. J. Anaesth. 80, 644–648.

    Article  PubMed  CAS  Google Scholar 

  139. Smith, J. C., Ellenberger, H. H., Ballanyi, K., Richter, D. W., and Feldman, J. L. (1991) Pre-Botzinger complex: a brain stem region that may generate res­piratory rhythm in mammals. Science 254, 726–729.

    Article  PubMed  CAS  Google Scholar 

  140. St. John, W. M. (1996) Medullary regions for neurogenesis of gasping: noeud vital or noeuds vitals? /. Appl. Physiol. 81, 1865–1877.

    Google Scholar 

  141. Reinoso-Barbero, F., and de Andres, I. (1995) Effects of Opioid microinjec-tions in the nucleus of the solitary tract on the sleep-wakefulness cycle in cats. Anesthesiology 82, 144–152.

    Article  PubMed  CAS  Google Scholar 

  142. Dampney, R. A. L. (1994) Functional Organization of central pathways regu-lating the cardiovascular System. Physiol. Rev. 74, 323–362.

    Article  PubMed  CAS  Google Scholar 

  143. Yang, C.-Y., Luk, H.-N., Chen, S.-Y., Wu, W.-C, and Chai, C.-Y. (1997) Propofol inhibits medullary pressor mechanisms in cats. Can. J. Anaesth. 44, 775–781.

    Article  PubMed  CAS  Google Scholar 

  144. Ernsberger, P., Arango, V., and Reis, D. J. (1988) A high density of muscar-inic receptors in the rostral ventrolateral medulla of the rat is revealed by correction for autoradiographic efficiency. Neurosci. Lett. 85, 179–186.

    Article  PubMed  CAS  Google Scholar 

  145. Snir-Mor, I., Weinstock, M., Davidson, J. T., and Bahar, M. (1983) Physos-tigmine antagonizes morphine-induced respiratory depression in human sub-jects. Anesthesiology 59, 6–9.

    Article  PubMed  CAS  Google Scholar 

  146. Guo, T. Z., Jiang, J. Y., Buttermann, A. E., and Maze, M. (1996) Dexmedeto-midine injection into the locus coeruleus produces antinociception. Anesthe­siology 84,873–881.

    Article  CAS  Google Scholar 

  147. Rabin, B. C, Guo, T. Z., Gregg, K., and Maze, M. (1996) Role of serotoner-gic neurotransmission in the hypnotic response to dexmedetomidine, an alpha 2-adrenoceptor agonist. Eur. J. PharmacoL 306, 51–59.

    Article  PubMed  CAS  Google Scholar 

  148. Buttermann, A. E., Reid, K., and Maze, M. (1998) Are cholinergic pathways involved in the anesthetic response to alpha2 agonists? Toxicol. Lett. 100–101, 17–22.

    Article  PubMed  CAS  Google Scholar 

  149. Burton, M. D., Johnson, D. C., and Kazemi, H. (1990) Adrenergic and cholin­ergic interaction in central ventilatory control. /. Appl. Physiol. 68,2092–2099.

    CAS  Google Scholar 

  150. Champagnat, J., Denavit-Saubie, M., Henry, J. L., and Leviel, V. (1979) Cat-echolaminergic depressant effects on bulbar respiratory mechanisms. Brain Res. 160, 57–68.

    Article  PubMed  CAS  Google Scholar 

  151. Benhamou, D., Veillette, Y., Narchi, P., and Ecoffey, C. (1991) Ventilatory effects of premedication with Clonidine. Anesth. Anaig. 73, 799–803.

    CAS  Google Scholar 

  152. Penon, C., Ecoffey, C, and Cohen, C. E. (1991) Ventilatory response to car-bon dioxide after epidural Clonidine injection. Anesth. Anaig. 72, 761–764.

    CAS  Google Scholar 

  153. Sauerland, S. K., and Harper, R. M. (1976) The human tongue during sleep: elec-tromyographic activity of the genioglossus muscle. Exp. Neurol. 51,160–170.

    Article  PubMed  CAS  Google Scholar 

  154. Parkis, M. A. and Berger, A. J. (1997) Clonidine reduces hyperpolarization-activated inward current in rat hypoglossal motoneurons. Brain Res. 769, 108–118.

    Article  PubMed  CAS  Google Scholar 

  155. O’Halloran, K. D., Herman, J. K., and Bisgard, G. E. (1999) Differential effects of Clonidine on upper airway abductor and adductor muscle activity in awake goats. J. Appl. Physiol. 87, 590–597.

    PubMed  Google Scholar 

  156. O’Halloran, K. D., Herman, J. K., and Bisgard, G. E. (1999) Nonvagal tac-hypnea following alpha-2 adrenoceptor Stimulation in awake goats. Respir. Physiol. 118, 15–24.

    Article  PubMed  Google Scholar 

  157. Kohn, L. T., Corrigan, J. M., and Donaldson, M. S. (eds). (1999) To Err is Human. Building a Safer Health System. Washington, DC: Institute of Medi-cine, National Academy Press.

    Google Scholar 

  158. Beecher, H. K. and Todd, D. P. (1954) A study of the deaths associated with anesthesia and surgery. Ann. Surg. 140, 2–35.

    Article  PubMed  CAS  Google Scholar 

  159. Morell, R. C. and Eichhorn, J. H. (eds). (1997) Patient Safety in Anesthetic Practice. Churchill Livingstone, New York, NY.

    Google Scholar 

  160. Quine, M. A., Bell, G. D., McCloy, R. F., Charlton, J. E., Devlin, H. B., and Hopkins, A. (1995) Prospective audit of upper gastrointestinal endoscopy in two regions of England: safety, staffing, and sedation methods. Gut 36,462–467.

    Article  PubMed  CAS  Google Scholar 

  161. Joas, T. A. (1998) Sedation and anesthesia in the office setting. Aesthetic Surg.J.18,300–301.

    Article  CAS  Google Scholar 

  162. Allen, M. Albany study finds perils in surgery in doctors’ Offices. The New York Times 1999;March 8, B6.

    Google Scholar 

  163. Cote, C. J., Notterman, D. A., Karl, H. W., Weinberg, J. A., and McCloskey, C. (2000) Adverse sedation events in pediatrics: a critical incident analysis of contributing factors. Pediatrics 105, 805–814.

    Article  PubMed  CAS  Google Scholar 

  164. Grazer, F. M. and de Jong, R. H. (1999) Fatal outcomes from liposuction: census survey of cosmetic surgeons. Pias. Reconstr. Surg. 105, 436–446.

    Article  Google Scholar 

  165. MacKenzie, R. A. (2000) Office-based surgery and anesthesia: A continuing challenge. Am. Soc. Anes. News 64, 2.

    Google Scholar 

  166. Voelker, R. (1995) Anesthesia-related risks have plummeted. J. Am. Med. Assn. 273,445–446.

    Article  CAS  Google Scholar 

  167. Keifer, J. C., Baghdoyan, H. A., and Lydic, R. (1992) Sleep disruption and increased apneas after pontine microinjection of morphine. Anesthesiology 11, 973–982.

    Article  Google Scholar 

  168. Lydic, R. Baghdoyan, H. A., and Zwillich, C. W. (1989) State-dependent hypotonia in posterior cricoarytenoid muscles of the larynx caused by cholin-ergic reticular mechanisms. FASEB J. 3, 1625–1631.

    PubMed  Google Scholar 

  169. Lydic, R. and Baghdoyan, H. A. (1989) Cholinoceptive pontine reticular mechanisms cause state-dependent changes in respiration. Neurosci. Lett. 102,211–216.

    Article  PubMed  CAS  Google Scholar 

  170. Lydic, R., Baghdoyan, H. A., Wertz, R., and White, D. P. (1991) Cholinergic reticular mechanisms inrluence state-dependent ventilatory response to hy-percapnia. Am. J. Physiol. 261, R738-R746.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lydic, R., Baghdoyan, H.A., McGinley, J. (2003). Opioids, Sedation, and Sleep. In: Malviya, S., Naughton, N.N., Tremper, K.K. (eds) Sedation and Analgesia for Diagnostic and Therapeutic Procedures. Contemporary Clinical Neuroscience. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-295-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-295-1_1

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-228-5

  • Online ISBN: 978-1-59259-295-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics