Skip to main content

Diagnosis and Management of Diabetes

  • Chapter
  • 177 Accesses

Part of the book series: Contemporary Endocrinology ((COE))

Abstract

Diabetes mellitus represents a heterogeneous group of metabolic disorders characterized by decreased insulin secretion, insulin action, or both (Table 1). Diabetes affects over 16 million Americans, such that about 10% of the U. S. population above the age of 60 yr has diabetes, including a disproportionate number of nonwhites (1). Type 1 diabetes is characterized by autoimmune destruction of the insulin secreting pancreatic β-cells and represents <10% of all diabetes. Type 2 diabetes is the predominant disorder and is characterized by insulin resistance and a relative reduction in insulin production. It is estimated that fully half of the population with diabetes remains undiagnosed. Diabetes mellitus is associated with significant morbidity and mortality from acute complications of hypoglycemia and chronic complications including the microvascular diseases of retinopathy and nephropathy, macrovascular manifestations of coronary artery disease, myocardial infarction, and stroke, and neuropathies. As safe and effective medical therapies are available to improve metabolic control and large-scale clinical trials have demonstrated reduced complications with treatments for both types 1 and 2 diabetes, diagnostic procedures are very important.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Diabetes in America/National Diabetes Data Group. Bethesda, MD, National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, 1995.

    Google Scholar 

  2. ADA Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Clinical practice recommendations 2000. Diabetes Care 23 Sup 1: S4–19.

    Google Scholar 

  3. World Health Organization. Diabetes mellitus: report of a WHO study group. World Health Organization. Tech. Rep. Ser. 77. 1985. Geneva.

    Google Scholar 

  4. McCance DR, Hanson RL, Charles MA, et al. Comparison of testes for glycated haemoglobin and fasting and two hour plasma glucose concentration as diagnositc as diagnostics. BMJ 1994; 308: 1323–1328.

    Article  PubMed  CAS  Google Scholar 

  5. Fuller JH, Shipley MJ, Rose G, Jarrett RJ, Keen H. Coronary-heart-disease risk and impaired glucose tolerance. The Whitehall study. Lancet 1980; 1: 1373–1376.

    Article  PubMed  CAS  Google Scholar 

  6. Engelgau MM, Herman WH, Smith PJ, German RR, Aubert RE. The epidemiology of diabetes and pregnancy in the U.S. Diabetes Care 1995; 18: 1029–1033.

    Article  PubMed  CAS  Google Scholar 

  7. Berkus MD, Langer O. Glucose tolerance test: degree of glucose abnormality correlates with neonatal outcome. Obstet Gynecol 1993; 81: 344–348.

    PubMed  CAS  Google Scholar 

  8. Sermer M, Naylor CD, Farine D, et al. The Toronto Tri-Hospital Gestational Diabetes Project. A preliminary review. Diabetes Care 1998; 21 (Suppl 2): B33 - B42.

    PubMed  Google Scholar 

  9. Moses RG, Calvert D. Pregnancy outcomes in women without gestational diabetes mellitus related to the maternal glucose level. Is there a continuum of risk? Diabetes Care 1995; 18: 1527–1533.

    Article  PubMed  CAS  Google Scholar 

  10. Ilonen J, Reijonen H, Herva E, et al. Rapid HLA-DQB1 genotyping for four alleles in the assessment of risk for IDDM in the Finnish population. The Childhood Diabetes in Finland (DiMe) Study Group. Diabetes Care 1996; 19: 795–800.

    Article  PubMed  CAS  Google Scholar 

  11. Landin-Olsson M: Precision of the islet-cell antibody assay depends on the pancreas. J.Clin.Lab Anal. 4: 289–294, 1990

    Article  PubMed  CAS  Google Scholar 

  12. Verge CF, Gianani R, Kawasaki E, et al. Prediction of Type I diabetes in first-degree relatives using a combination of insulin, GAD, and ICA512bdc/IA-2 autoantibodies. Diabetes 1996; 45: 926–933.

    Article  PubMed  CAS  Google Scholar 

  13. Bingley PJ, Bonifacio E, Williams Ai, Genovese S, Bottazzo GF, Gale EA. Prediction of IDDM in the general population: strategies based on combinations of autoantibody markers. Diabetes 1997; 46: 1701–1710.

    Article  PubMed  CAS  Google Scholar 

  14. DCCT Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 1993; 329: 977–986.

    Google Scholar 

  15. DCCT Research Group. Epidemiology of severe hypoglycemia in the diabetes control and complications trial. Am J Med 1991; 90: 450–459.

    Google Scholar 

  16. UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998; 352: 837–853.

    Article  Google Scholar 

  17. Schiffrin A, Belmonte M. Multiple daily self-glucose monitoring: its essential role in longterm glucose control in insulin-dependent diabetic patients treated with pump and multiple subcutaneous injections. Diabetes Care 1982; 5: 479–484.

    Article  PubMed  CAS  Google Scholar 

  18. Wilson GS, Aussedat B, Reach G, Klein JC, Ward WK. Minimally-invasive real time glucose measurements [abstract]. Endocrine Society 82nd Annual Meeting June, Toronto, Canada55, 2000.

    Google Scholar 

  19. Cahill GF Jr, Herrera MG, Morgan AP, et al. Hormone-fuel interrelationships during fasting. J Clin Invest 1966; 45: 1751–1769.

    Article  PubMed  CAS  Google Scholar 

  20. Little RR, Wiedmeyer HM, England JD, Naito HK, Goldstein DE. Interlaboratory comparison of glycohemoglobin results: College of American Pathologists Survey data. Clin Chem 1991; 37: 1725–1729.

    PubMed  CAS  Google Scholar 

  21. Weykamp CW, Penders TJ, Muskiet FA, van der Slik SW. Influence of hemoglobin variants and derivatives on glycohemoglobin determinations, as investigated by 102 laboratories using 16 methods. Clin Chem 1993; 39: 1717–1723.

    PubMed  CAS  Google Scholar 

  22. Vogt BW: Development of an improved fructosamine test. In Workshop Report, Fructosamine. Boehringer Mannheim GmbH, Mannheim, Germany, 1989, p. 21

    Google Scholar 

  23. Cefalu WT, Bell-Farrow AD, Petty M, Izlar C, Smith JA. Clinical validation of a second-generation fructosamine assay. Clin Chem 1991; 37: 1252–1256.

    PubMed  CAS  Google Scholar 

  24. Klein R, Klein BE, Moss SE, Davis MD, DeMets DL. The Wisconsin epidemiologic study of diabetic retinopathy. II. Prevalence and risk of diabetic retinopathy when age at diagnosis is less than 30 years. Arch Ophthalmol 1984; 102: 520–526.

    Article  PubMed  CAS  Google Scholar 

  25. The Diabetic Retinopathy Study Research Group. Four risk factors for severe visual loss in diabetic retinopathy. The third report from the Diabetic Retinopathy Study. Arch Ophthalmol 1979; 97: 654–655.

    Article  Google Scholar 

  26. The Diabetic Retinopathy Study Research Group. Preliminary report on effects of photocoagulation therapy. Am J Ophthalmol 1976; 81: 383–396.

    Google Scholar 

  27. Dahl-Jorgensen K, Brinchmann-Hansen O, Hanssen KF, et al. Effect of near normoglycaemia for two years on progression of early diabetic retinopathy, nephropathy, and neuropathy: The Oslo study. Br Med J 1986; 293: 1195–1199.

    Article  CAS  Google Scholar 

  28. Castellino P, Tuttle KR, DeFronzo RA. Diabetic neuropathy. Curr Ther Endocrinol Metab 1994; 5: 426–436.

    PubMed  CAS  Google Scholar 

  29. Giampietro O, Miccoli R, Clerico A, et al. Urinary albumin excretion in normal subjects and in diabetic patients measured by a radioimmunoassay: methodological and clinical aspects. Clin Biochem 1988; 21: 63–68.

    Article  PubMed  CAS  Google Scholar 

  30. Parving HH, Oxenboll B, Svendsen PA, Christiansen JS, Andersen AR. Early detection of patients at risk of developing diabetic nephropathy. A longitudinal study of urinary albumin excretion. Acta Endocrinol (Copenh) 1982; 100: 550–555.

    CAS  Google Scholar 

  31. Mogensen CE. Microalbuminuria predicts clinical proteinuria and early mortality in maturity-onset diabetes. N Engl J Med. 1984; 310: 356–360.

    Article  PubMed  CAS  Google Scholar 

  32. Hishiki S, Tochikubo O, Miyajima E, Ishii M. Circadian variation of urinary microalbumin excretion and ambulatory blood pressure in patients with essential hypertension. J Hypertens 1998; 16: 2101–2108.

    Article  PubMed  CAS  Google Scholar 

  33. Mogensen CE, Christensen CK: Predicting diabetic nephropathy in insulin-dependent patients. N Engl J Med 1984; 311: 89–93.

    Article  PubMed  CAS  Google Scholar 

  34. Schmitz A, Vaeth M: Microalbuminuria: a major risk factor in non-insulin-dependent diabetes. A 10-year follow-up study of 503 patients. Diabet Med 1988; 5: 126–134.

    Article  PubMed  CAS  Google Scholar 

  35. Pirart J, Lauvaux JP, Rey W. Blood sugar and diabetic complications. N Engl J Med 1978; 298: 1149.

    PubMed  CAS  Google Scholar 

  36. Mayfield JA, Reiber GE, Sanders LJ, Janisse D, Pogach LM: Preventive foot care in people with diabetes. Diabetes Care 1998; 21: 2161–2177.

    Article  PubMed  CAS  Google Scholar 

  37. Pagani M, Malfatto G, Pierini S, et al. Spectral analysis of heart rate variability in the assessment of autonomic diabetic neuropathy. J Auton Nery Syst 1988; 23: 143–153.

    Article  CAS  Google Scholar 

  38. Report and recommendations of the San Antonio conference on diabetic neuropathy. Consensus statement. Diabetes 1988; 37: 1000–1004.

    Google Scholar 

  39. National Diabetes Data Group. Diabetes in America Nat Inst Health 1985;85:1468:

    Google Scholar 

  40. Haffner SM, Lehto S, Ronnemaa T, Pyorala K, Laakso M: Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Eng J Med 1998; 339: 229–234.

    Article  CAS  Google Scholar 

  41. Hu FB, Stampfer MJ, Solomon C, Willett WC, Manson JE. Diabetes mellitus and mortality from all-causes and coronary heart disease in women: 20 years of follow-up [abstract]. Diabetes 2000; 49: E20.

    Article  Google Scholar 

  42. Gibboms RJ, Balady GJ, Beasley JW, et al. ACC/AHA Guidelines for Exercise Testing. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on Exercise Testing). J Am Coll Cardiol 1997; 30: 260–311.

    Article  Google Scholar 

  43. Heart Outcomes Prevention Evaluation Study Investigators. Effects of ramipril on cardiovascular and microvascular outcomes in people with diabetes mellitus: Results of the HOPE sustudy. Lancet 2000; 355: 253–259.

    Article  Google Scholar 

  44. Johnstone MT, Creager SJ, Scales KM, Cusco JA, Lee BK, Creager MA: Impaired endothelium-dependent vasodilation in patients with insulin-dependent diabetes mellitus. Circulation 1993; 88: 2510–2516.

    Article  PubMed  CAS  Google Scholar 

  45. Calver A, Collier J, Vallance P: Inhibition and stimulation of nitric oxide synthesis in the human forearm arterial bed of patients with insulin-dependent diabetes. J Clin Invest 1992; 90: 2548–2554.

    Article  PubMed  CAS  Google Scholar 

  46. Elliott TG, Cockcroft JR, Groop PH, Viberti GC, Ritter JM: Inhibition of nitric oxide synthesis in forearm vasculature of insulin-dependent diabetic patients: blunted vasoconstriction in patients with microalbuminuria. Clin Sci (Colch) 1993; 85: 687–693.

    CAS  Google Scholar 

  47. Williams SB, Cusco JA, Roddy MA, Johnstone MT, Creager MA. Impaired nitric oxide-mediated vasodilation in patients with non-insulin-dependent diabetes mellitus. J Am Coll Cardiol 1996; 27: 567–574.

    Article  PubMed  CAS  Google Scholar 

  48. McVeigh GE, Brennan GM, Johnston GD, et al. Impaired endothelium-dependent and independent vasodilation in patients with type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia 1992; 35: 771–776.

    PubMed  CAS  Google Scholar 

  49. Anderson Ti, Gerhard MD, Meredith IT, et al. Systemic nature of endothelial dysfunction in atherosclerosis. Am J Cardiol 1995; 75: 71B - 74B.

    Article  PubMed  CAS  Google Scholar 

  50. Anderson TJ, Uehata A, Gerhard MD, et al. Close relation of endothelial function in the human coronary and peripheral circulations. J Am Coll Cardiol 1995; 26: 1235–1241.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Goldfine, A.B. (2003). Diagnosis and Management of Diabetes. In: Hall, J.E., Nieman, L.K. (eds) Handbook of Diagnostic Endocrinology. Contemporary Endocrinology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-293-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-293-7_8

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-172-1

  • Online ISBN: 978-1-59259-293-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics