Skip to main content

Part of the book series: Contemporary Endocrinology ((COE))

  • 179 Accesses

Abstract

Abnormalities in circulating levels of calcium are commonly encountered by the internist and endocrinologist. Ninety-nine percent of the body’s calcium is found in bone, with the remaining fraction in either the extracellular or intracellular compartments of all other tissues. Approximately half of the circulating blood calcium is bound to serum proteins, but it is the nonbound fraction (or ionized calcium) that is tightly controlled by the calcium homeostatic hormones. The role of calcium in many cellular functions, including the excitation of nerves and muscle and the contraction of muscle (including the myocardium), directly relates to the symptoms of both its excess and insufficiency in the circulation. Because of the physiologic importance of maintaining the blood calcium concentration in a tight range, the feedback loop that controls calcium homeostasis is highly sensitive (Fig. 1). The two main calcium regulatory hormones are parathyroid hormone (PTH) and 1,25(OH)2 vitamin D. Calcitonin’s role in human physiology is less clear. Similarly, the role, if any, of PTH-related protein (the peptide responsible for humoral hypercalcemia of malignancy) in normal physiology has not yet been elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brown EM, Pollak M, Hebert SC. The extracellular calcium-sensing receptor: its role in health and disease. Annu Rev Med 1998; 49: 15–29.

    Article  PubMed  CAS  Google Scholar 

  2. Bringhurst FR, Demay MB, Kronenberg HM. Hormones and disorders of mineral metabolism. In: Wilson JD, Foster DW, Kronenberg HM, Larsen PR, eds. Williams Textbook of Endocrinology. W.B. Saunders Company, Philadelphia, 1998, pp. 1155–1210.

    Google Scholar 

  3. Uy HL, Guise TA, De La Mata J, et al. Effects of parathyroid hormone (PTH)-related protein and PTH on osteoclasts and osteoclast precursors in vivo. Endocrinology 1995; 136: 3207–3212.

    Article  PubMed  CAS  Google Scholar 

  4. McSheehy PM, Chambers TJ. Osteoblastic cells mediate osteoclastic responsiveness to parathyroid hormone. Endocrinology 1986; 118: 824–828.

    Article  PubMed  CAS  Google Scholar 

  5. Frolich A. Prevalence of hypercalcaemia in normal and in hospital populations. Dan Med Bull 1998; 45: 436–439.

    PubMed  CAS  Google Scholar 

  6. Walls J, Ratcliffe WA, Howell A, Bundred NJ. Parathyroid hormone and parathyroid hormone-related protein in the investigation of hypercalcaemia in two hospital populations [see comments]. Clin Endocrinol (Oxf) 1994; 41: 407–413.

    Article  CAS  Google Scholar 

  7. Wermers RA, Khosla S, Atkinson EJ, et al. The rise and fall of primary hyperparathyroidism: a population-based study in Rochester, Minnesota, 1965–1992. Ann Intern Med 1997; 126: 433–440.

    PubMed  CAS  Google Scholar 

  8. Salti GI, Fedorak I, Yashiro T, et al. Continuing evolution in the operative management of primary hyperparathyroidism. Arch Surg 1992; 127: 831–836.

    Article  PubMed  CAS  Google Scholar 

  9. Thompson NW, Eckhauser FE, Harness JK. The anatomy of primary hyperparathyroidism. Surgery 1982; 92, 814–821.

    PubMed  CAS  Google Scholar 

  10. Chan FK, Koberle LM, Thys-Jacobs S, Bilezikian JP. Differential diagnosis, causes, and management of hypercalcemia. Curr Probl Surg 1997; 34, 445–523.

    Article  PubMed  CAS  Google Scholar 

  11. Potts JT Jr. Hyperparathyroidism and other hypercalcemic disorders. Adv Intern Med 1996; 41: 165–212.

    PubMed  Google Scholar 

  12. Chandrasekharappa SC, Guru SC, Manickam P, et al. Positional cloning of the gene for multiple endocrine neoplasia-type 1. Science 1997; 276: 404–407.

    Article  PubMed  CAS  Google Scholar 

  13. Mulligan LM, Kwok JB, Healey CS, et al. Germ-line mutations of the RET proto-oncogene in multiple endocrine neoplasia type 2A. Nature 1993; 363: 458–460.

    Article  PubMed  CAS  Google Scholar 

  14. Rosenberg CL, Kim HG, Shows TB, Kronenberg HM, Arnold A. Rearrangement and overexpression of D11S287E, a candidate oncogene on chromosome 11g13 in benign parathyroid tumors. Oncogene 1991; 6: 449–453.

    PubMed  CAS  Google Scholar 

  15. Arnold A, Kim HG, Gaz RD, et al. Molecular cloning and chromosomal mapping of DNA rearranged with the parathyroid hormone gene in a parathyroid adenoma. J Clin Invest 1989; 83: 2034–2040.

    Article  PubMed  CAS  Google Scholar 

  16. Farnebo F, Teh BT, Kytola S, et al. Alterations of the MENI gene in sporadic parathyroid tumors [see comments]. J Clin Endocrinol Metab 1998; 83: 2627–2630.

    Article  PubMed  CAS  Google Scholar 

  17. Cryns VL, Rubio MP, Thor AD, Louis DN, Arnold A. p53 abnormalities in human parathyroid carcinoma. J Clin Endocrinol Metab 1994; 78: 1320–1324.

    Article  PubMed  CAS  Google Scholar 

  18. Anonymous. Proceedings of the NIH Consensus Development Conference on diagnosis and management of asymptomatic primary hyperparathyroidism. Bethesda, Maryland, October 29–31, 1990. J Bone Miner Res 1991; 6 (Suppl 2): S1–5166.

    Google Scholar 

  19. Broadus AE, Mangin M, Ikeda K, et al. Humoral hypercalcemia of cancer. Identification of a novel parathyroid hormone-like peptide. N Engl J Med 1988; 319: 556–563.

    Article  PubMed  CAS  Google Scholar 

  20. Seymour JF, Gagel RF. Calcitriol: the major humoral mediator of hypercalcemia in Hodgkin’ s disease and non-Hodgkin’s lymphomas. Blood 1993; 82: 1383–1394.

    PubMed  CAS  Google Scholar 

  21. Garrett IR, Durie BG, Nedwin GE, et al. Production of lymphotoxin, a bone-resorting cytokine, by cultured human myeloma cells. N Engl J Med 1987; 317: 526–532.

    Article  PubMed  CAS  Google Scholar 

  22. Mundy GR. Hyperacalcemia in hematologic malignancies and solid tumors associated with extensive localized bone destruction. In: Favus, M. J., ed. Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism. Lippincott-Raven, Philadelphia, 1996, pp. 203–206.

    Google Scholar 

  23. Guise TA, Yin JJ, Taylor SD, et al. Evidence for a causal role of parathyroid hormone-related protein in the pathogenesis of human breast cancer-mediated osteolysis. J Clin Invest 1996; 98: 1544–1549.

    Article  PubMed  CAS  Google Scholar 

  24. Legha SS, Powell K, Buzdar AU, Blumenschein GR. Tamoxifen-induced hypercalcemia in breast cancer. Cancer 1981; 47: 2803–2806.

    Article  PubMed  CAS  Google Scholar 

  25. Selby PL, Davies M, Marks JS, Mawer EB. Vitamin D intoxication causes hypercalcaemia by increased bone resorption which responds to pamidronate. Clin Endocrinol (Oxf) 1995; 43, 531–536.

    Article  CAS  Google Scholar 

  26. Pollak MR, Brown EM, Chou YH, et al. Mutations in the human Ca(2+)-sensing receptor gene cause familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism [see comments]. Cell 1993; 75: 1297–1303.

    Article  PubMed  CAS  Google Scholar 

  27. Beall DP, Scofield RH. Milk-alkali syndrome associated with calcium carbonate consumption. Report of 7 patients with parathyroid hormone levels and an estimate of prevalence among patients hospitalized with hypercalcemia. Medicine (Baltimore) 1995; 74: 89–96.

    Article  CAS  Google Scholar 

  28. Ratcliffe WA, Hutchesson AC, Bundred NJ, Ratcliffe JG. Role of assays for parathyroidhormone-related protein in investigation of hypercalcaemia [see comments]. Lancet 1992; 339: 164–167.

    Article  PubMed  CAS  Google Scholar 

  29. Endres DB, Villanueva R, Sharp CF Jr, Singer FR. Immunochemiluminometric and immunoradiometric determinations of intact and total immunoreactive parathyrin: performance in the differential diagnosis of hypercalcemia and hypoparathyroidism [see comments]. Clin Chem 1991; 37: 162–168.

    PubMed  CAS  Google Scholar 

  30. Nussbaum SR, Zahradnik RJ, Lavigne JR, et al. Highly sensitive two-site immunoradiometric assay of parathyrin, and its clinical utility in evaluating patients with hypercalcemia. Clin Chem 1987; 33: 1364–1367.

    PubMed  CAS  Google Scholar 

  31. Soffer D, Licht A, Yaar I, Abramsky O. Paroxysmal choreoathetosis as a presenting symptom in idiopathic hypoparathyroidism. J Neurol Neurosurg Psychiatry 1977; 40: 692–694.

    Article  PubMed  CAS  Google Scholar 

  32. Friedman JH, Chiucchini I, Tucci JR. Idiopathic hypoparathyroidism with extensive brain calcification and persistent neurologic dysfunction. Neurology 1987; 37: 307–309.

    Article  PubMed  CAS  Google Scholar 

  33. Lebowitz MR, Moses AM. Hypocalcemia. Semin Nephrol 1992; 12: 146–158.

    CAS  Google Scholar 

  34. Leshin M. Polyglandular autoimmune syndromes. Am J Med Sci 1985; 290: 77–88.

    Article  PubMed  CAS  Google Scholar 

  35. Rude RK, Oldham SB, Singer FR. Functional hypoparathyroidism and parathyroid hormone end-organ resistance in human magnesium deficiency. Clin Endocrinol (Oxf) 1976; 5: 209–224.

    Article  CAS  Google Scholar 

  36. Suh SM, Tashjian AH Jr, Matsuo N, Parkinson DK, Fraser D. Pathogenesis of hypocalcemia in primary hypomagnesemia: normal end-organ responsiveness to parathyroid hormone, impaired parathyroid gland function. J Clin Invest 1973; 52: 153–160.

    Article  PubMed  CAS  Google Scholar 

  37. Pollak MR, Brown EM, Estep HL, et al. Autosomal dominant hypocalcaemia caused by a Ca(2+)-sensing receptor gene mutation. Nat Genet 1994; 8: 303–307.

    Article  PubMed  CAS  Google Scholar 

  38. Baron J, Winer KK, Yanovski JA, et al. Mutations in the Ca(2+)-sensing receptor gene cause autosomal dominant and sporadic hypoparathyroidism. Hum Mol Genet 1996; 5: 601–606.

    Article  PubMed  CAS  Google Scholar 

  39. Albright F, Burnett CH. Psuedo-hypoparathyroidism: an example of “Seabright-Bantam syndrome”. Endocrinology 1942; 30: 922–932.

    CAS  Google Scholar 

  40. Carter A, Bardin C, Collins R, et al. Reduced expression of multiple forms of the alpha subunit of the stimulatory GTP-binding protein in pseudohypoparathyroidism type Ia. Proc Natl Acad Sci USA 1987; 84: 7266–7269.

    Article  PubMed  CAS  Google Scholar 

  41. Patten JL, Johns DR, Valle D, et al. Mutation in the gene encoding the stimulatory G protein of adenylate cyclase in Albright’ s hereditary osteodystrophy [see comments]. N Engl J Med 1990; 322: 1412–1419.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Leder, B.Z., Finkelstein, J.S. (2003). Hyper- and Hypocalcemia. In: Hall, J.E., Nieman, L.K. (eds) Handbook of Diagnostic Endocrinology. Contemporary Endocrinology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-293-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-293-7_12

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-172-1

  • Online ISBN: 978-1-59259-293-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics