Skip to main content

Part of the book series: Contemporary Endocrinology ((COE))

  • 176 Accesses

Abstract

Over the past 30 years, immunoassays have become a valuable and widely available tool among the repertoire of clinical methods to assess hormonal function (1,2). The majority of hormonal proteins and steroids are bioactive at extremely low concentrations in the peripheral circulation, and hormone metabolites often play a significant physiological role at target tissue sites. Therefore, evaluation of a patient’s endocrine status with a given immunoassay is dependent upon both the sensitivity and specificity of that assay. Hormone levels outside a given reference range can indicate a pathologic disease process. When clinical decisions regarding a patient’s hormonal status or their response to a therapeutic intervention are based on hormone testing, it is important that due consideration be given to issues relating to the validity and utility of the assay.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gosling JP. A decade of development in immunoassay methodology. Clin Chem 1990; 36: 1408–1427.

    PubMed  CAS  Google Scholar 

  2. Ekins RP. Ligand assays: from electrophoresis to miniaturized microarrays. Clin Chem 1998; 44: 2015–2030.

    PubMed  CAS  Google Scholar 

  3. Van Vunakis H. Radioimmunoassays: an overview. Methods Enzymol 1980; 70: 201–209.

    Article  PubMed  Google Scholar 

  4. Jaffe BM, Behram HR. Methods of Hormone Radioimmunoassay, 2nd ed. Academic Press, New York, 1978.

    Google Scholar 

  5. Yalow RS. Radioimmunoassay: a probe for the fine structure of biologic systems. Science 1978; 200: 1236.

    Article  PubMed  CAS  Google Scholar 

  6. Parker CW. Radioimmunoassay of Biologically Active Compounds. Prentice-Hall, Englewood Cliffs, NJ, 1976.

    Google Scholar 

  7. Midgley AR, Rebar RW, Niswender GD. Radioimmunoassays employing double antibody techniques. In 1st Karolinska Symposium on Research Methods in Reproductive Endocrinology: Immunoassay of gonadotropins. In: E. Diczfalusy, ed. Anonymous. 1969, p. 247.

    Google Scholar 

  8. Pilcher JB, Tsang VCW, Zhou W, Black CM, Sidman C. Optimization of binding capacity and specificity of protein G on various solid matrices for immunoglobulins. J Immunol Methods 1991;136:279–286,.

    Google Scholar 

  9. Parsons GH. Antibody-coated plastic tubes in radioimmunoassay. Methods Enzymol 1981; 73: 224–239.

    Article  Google Scholar 

  10. Nye L, Forrest GC, Greenwood H. Solid-phase magnetic particle radioimmunoassay. Clin Chem Acta 1976; 69: 387–392.

    Article  CAS  Google Scholar 

  11. Van Vunakis H, Langone JJ. Immunochemical Methods. Methods Enzymol 1980; 70: 1–525.

    Google Scholar 

  12. Price CP, Newman DJ. Principles and Practice of Immunoassay. Stockton Press, New York, 1991.

    Google Scholar 

  13. Diamandis EP. Detection techniques for immunoassay and DNA probing applications. Clin Biochem 1990; 23: 443.

    Article  Google Scholar 

  14. Dudley RF. Chemiluminescence Immunoassay: an alternative to RIA. Lab Med 1990; 216–222.

    Google Scholar 

  15. Kricka L, Stanely P. Bioluminescence and Chemiluminescence: Fundamentals and Applied Aspects. John Wiley & Sons, Chichester;1997.

    Google Scholar 

  16. Costagliola S, Niccoli P, Florentino M, Carayon P. European collaborative study of luteinizing hormone assay: 1. Epitope specificity of luteinizing hormone monoclonal antibodies and surface mapping of pituitary and urinary luteinizing hormone. J Endocrinol Invest 1994; 17: 397–406.

    PubMed  CAS  Google Scholar 

  17. Cole LA, Shahabi S, Butler SA, et al. Utility of commonly used commercial human chorionic gonadotropin immunoassays in the diagnosis and management of trophoblastic diseases. Clin Chem 2001; 47: 308–315.

    PubMed  CAS  Google Scholar 

  18. Costagliola S, Niccoli P, Florentino M, Carayon P. European collaborative study on luteinizing hormone assay: 2. Discrepancy among assay kits is related to variation both in standard curve calibration and epitope specificity of kit monoclonal antibodies. J Endocrinol Invest 1994; 17: 407–416.

    PubMed  CAS  Google Scholar 

  19. Spratt DI, O’Dea LS, Schoenfeld DA, Butler J, Rao PN, Crowley WF Jr. Neuroendocrinegonadol axis in men: frequent sampling of LH, FSH and testosterone. Am J Physiol 1988; 254: E658 - E666.

    PubMed  CAS  Google Scholar 

  20. Santoro N, Butler JP, Filicori M, Crowley WF Jr. Alterations of the hypothalamic GnRH interpulse interval sequence over the normal menstrual cycle. Am J Physiol 1988; 255: E696–701.

    PubMed  CAS  Google Scholar 

  21. Veldhuis JD, Beitins IZ, Johnson ML, Serabian MA, Dufau ML. Biologically active luteinizing hormone is secreted in episodic pulsations that vary in relation to stage of the menstrual cycle. J Clin Endocrinol Metab 1984; 58: 1050–1058.

    Article  PubMed  CAS  Google Scholar 

  22. Filicori M, Butler JP, Crowley WF Jr. Hypothalamic control of goandotropin secretion in the human menstrual cycle. Proc Clin Biol Res 1986; 225: 55–74.

    CAS  Google Scholar 

  23. Filicori M, Butler JP, Crowley WF, Jr. Neuroendocrine regulation of the corpus luteum in the human. Evidence for pulsitile progesterone secretion. J Clin Invest 1984; 73: 1638–1647.

    Article  PubMed  CAS  Google Scholar 

  24. Bremner WJ, Vitiello MV, Prinz PN. Loss of circadian rhythmicity in blood testosterone levels with aging in normal men. J Clin Endocrinol Metab 1983; 56: 1278–1281.

    Article  PubMed  CAS  Google Scholar 

  25. Hall JE, Schoenfeld DA, Martin KA, Crowley WF Jr. Hypothalamic gonadotropin-releasing hormone secretion and follicle-stimulating hormone dynamics during the luteal-follicular transition. J Clin Endocrinol Metab 1992; 74: 600–607.

    Article  PubMed  CAS  Google Scholar 

  26. Ross GT, Cargille CM, Lipsett MB, et al. Pituitary and gonadal hormones during spontaneous and induced menstrual cycles. Recent Prog Horm Res 1970; 26: 1–62.

    PubMed  CAS  Google Scholar 

  27. Sherman BM, Korenman SG. Hormonal characteristics of the human menstrual cycle throughout reproductive life. J Clin Invest 1975; 55: 699–706.

    Article  PubMed  CAS  Google Scholar 

  28. Groome NP, Illingworth PJ, O’Brien M, et al. Detection of dimeric inhibin throughout the human menstrual cycle by two-site enzyme immunoassay. Clin Endocr 1994; 40: 717–723.

    Article  PubMed  CAS  Google Scholar 

  29. Hall JE, Martin KA, Taylor AE, et al. Reciprocal changes in inhibin B and inhibin A during the normal menstrual cycle. Annual Meeting Endocrine Society. 1996.

    Google Scholar 

  30. Treloar AE, Boynton RE, Behn BG, Brown BW. Variation of the human menstrual cycle through reproductive life. Int J Fertil 1970; 12: 77–126.

    Google Scholar 

  31. Hall JE, Lavoie H, Marsh EE, Martin KA. Decrease in gonadotropin-releasing hormone pulse frequency with aging in postmenopausal women. J Clin Endocrinol Metab 2000; 85: 1794–1800.

    Article  PubMed  CAS  Google Scholar 

  32. Sharpless J, Supko JG, Martin, KA, Hall JE. Disappearance of endogenous luteinizing hormone is prolonged in postmenopausal women. J Clin Endocrinol Metab 1999; 84: 688–698.

    Article  PubMed  CAS  Google Scholar 

  33. Welt CK, McNicholl DJ, Taylor AE, Hall JE. Female reproductive aging is marked by decreased secretion of dimeric inhibin. J Clin Endocrinol Metab 1999; 84: 105–111.

    Article  PubMed  CAS  Google Scholar 

  34. Gray A, Feldman HA, McKinlay JB, Longcope C. Age, disease, and changing sex hormone levels in middle-aged men: result of the Massachusetts Male Aging Study. J Clin Endocrinol Metab 1999; 73: 1016–1025.

    Article  Google Scholar 

  35. Masters AM, Hahnel R. Investigation of sex-hormone binding globulin interference in direct radioimmunoassays for testosterone and estradiol. Clin Chem 1989; 35: 979–3984.

    PubMed  CAS  Google Scholar 

  36. Rodbard D. Statistical quality control and routine data processing for radioimmunoassays and immunoradiometric assays. Clin Chem 1974; 20: 1255–1270.

    PubMed  CAS  Google Scholar 

  37. Dudley RA. Guidelines for immunoassay data processing. Clin Chem 1985; 31: 1271.

    Google Scholar 

  38. Chan DW, Peristein MT. Immunoassay: A Practical Guide. Academic Press, New York, 1987.

    Google Scholar 

  39. Ekins RP, Edwards P. Point on the meaning of sensitivity. Clin Chem 1997; 43: 1824–1831.

    PubMed  CAS  Google Scholar 

  40. Fraser CG, Petersen PH. Desirable standards for laboratory tests if they are to fulfill medical needs. Clinical Chemistry 39: 1447–1455, 1993.

    PubMed  CAS  Google Scholar 

  41. Spencer CA, Takeuchi M, Kazarosyan M. Current status and performance goals for serum thyrotropin [TSH] assays. Clin Chem 1996; 42: 140–145.

    PubMed  CAS  Google Scholar 

  42. De los Santos ET, Starich GH, Mazzaferri EL. Sensitivity, specificity, and cost-effectiveness of the sensitive thyrotropin assay in the diagnosis of thyroid disease in ambulatory patients. Arch Int Med 1989; 149: 526–532.

    Article  Google Scholar 

  43. Squire CR, Fraser WD. Thyroid stimulating hormone measurement using a third generation immunometric assay. Ann Clin Biochem 1995; 32: 307–313.

    PubMed  CAS  Google Scholar 

  44. Ferrand V, Niccoli P, Roux F, Carayon P. Accuracy of luteinizing hormone immunoassay is improved by changing epitope specificity of the labeled monoclonal antibody. Clin Chem 1995; 41: 953–955.

    PubMed  CAS  Google Scholar 

  45. Pettersson K, Ding YQ, Huhtaniemi I. Monoclonal antibody-based discrepancies between two-site immunometric tests for lutropin. Clin Chem 1991; 37: 1745–1748.

    PubMed  CAS  Google Scholar 

  46. Pettersson K, Ding YQ, Huhtaniemi I. An immunologically anomalous luteinizing hormone variant in a healthy woman. J Clin Endocrinol Metab 1992; 74: 164–171.

    Article  PubMed  CAS  Google Scholar 

  47. Westgard JO, Carey RN, Wold S. Criteria for judging precision and accuracty in method development and evaluation. Clin Chem 1974; 20: 825–833.

    PubMed  CAS  Google Scholar 

  48. Westgard JO, Bawa N, Ross JW, Lawson NS. Laboratory precision performance: state of the art vs operating specifications that assure the analytical quality required by clinical laboratory improvement amendments proficiency testing. Arch Pathol Lab Med 1996; 120: 621–625.

    PubMed  CAS  Google Scholar 

  49. Westgard JO, Falk H, Groth T. Influence of a between-run component of variation, choice of control limits, and shape of error distribution on the performance characteriztics of rules for internal quality control. Clin Chem 1979; 25: 394–400.

    PubMed  CAS  Google Scholar 

  50. Kricka LJ, Schmerfeld-Pruss D, Senior M, Goodman DBP, Kaladas P. Interference by human anti-mouse antibody in two-site immunoassays. Clin Chem 1990; 36: 892–894.

    PubMed  CAS  Google Scholar 

  51. Baxter RC. Methods of measuring confidence limits in radioimmunoassay. Methods Enzymol 1983; 92: 601–610.

    Article  PubMed  CAS  Google Scholar 

  52. Zweig MH. High-dose hook efffect in a two-site IRMA for measuring thyrotropin. Ann Clin Biochem 1990; 27: 495.

    Google Scholar 

  53. Levavi H, Neri A, Bar J, Nordenberg J, Ocadia J. “Hook effect” in complete hydatidiform molar pregnancy: a falsely low level of beta-hCG. Obstet Gynecol 1993; 82: 720–721.

    PubMed  CAS  Google Scholar 

  54. Valdya HC, Wolf BA, Garrett N, Catalona WJ, Clayman RV, Nahm MH. Extremely high values of prostate-specific antigen in patients with adenocarcinoma of the prostate;demonstration of the “hook effect”. Clin Chem 1988; 34: 2175–2177.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gill, S., Hayes, F.J., Sluss, P.M. (2003). Issues in Endocrine Immunoassay. In: Hall, J.E., Nieman, L.K. (eds) Handbook of Diagnostic Endocrinology. Contemporary Endocrinology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-293-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-293-7_1

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-172-1

  • Online ISBN: 978-1-59259-293-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics