Skip to main content

Interaction of Copper-Binding Proteins from Enterococcus hirae

  • Chapter
Handbook of Copper Pharmacology and Toxicology

Abstract

Copper is imported into prokaryotic cells by CPx-type ATPases. CPx-type ATPases have the transmembrane characteristics typical of P-type ATPases involved in the translocation of many ions. A conserved Cys-Pro-X (X = C or H) sequence within the transmembrane channel and a variable number of distinct amino-terminal domains define the CPx classification (1). The cytoplasmic subdomains of the CPx-ATPases have a MxCxxC or M/HxxMDHS/GxM metal-binding site (x = any amino acid). Intracellular copper is utilized in the activation of enzymes, such as cytochrome-c oxidase, superoxide dismutase, and lysyl oxidase. Copper also has the potential to cause cellular damage because of its redox properties. To overcome this dichotomy, the cell regulates copper levels and prevents toxicity with overlapping mechanisms: sequestration, export, and inhibition of entry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Solioz, M. and Vulpe, C. (1996) CPx-type ATPasea class of P-type ATPases that pump heavy metals. TIBS 21, 237–241.

    PubMed  CAS  Google Scholar 

  2. Vasak, M. and Hasler, D. W. (2000) Metallothioneins: new functional and structural insights. Curr. Opin. Chem. Biol. 4, 177–183.

    Article  PubMed  CAS  Google Scholar 

  3. Harrison, M. D. and Dameron, C. T. (1999) Molecular mechanisms of copper metabolism and the role of the Menkes disease protein. J. Biochem. Mol. Toxicol. 13, 93–106.

    Article  PubMed  CAS  Google Scholar 

  4. Rae, T. D., Schmidt, P. J., Pufahl, R. A., Culotta, V. C., and O’Halloran, T. V. (1999) Undetectable intracellular free copper: the requirement of a copper chaperone for superoxide dismutase. Science 284, 805–808.

    Article  PubMed  CAS  Google Scholar 

  5. Harrison, M. D., Jones, C. E., Solioz, M., and Dameron, C. T. (2000) Intracellular copper routing: the role of copper chaperones. TIBS 25, 29–32.

    PubMed  CAS  Google Scholar 

  6. Rosenzweig, A. C. and O’Halloran, T. V. (2000) Structure and chemistry of the copper chaperone proteins. Curr. Opin. Chem. Biol. 4, 140–147.

    Article  PubMed  CAS  Google Scholar 

  7. O’Halloran, T. V. and Culotta, V. C. (2000) Metallochaperones, an intracellular shuttle service for metal ions. J. Biol. Chem. 275, 25,057–25, 060.

    Google Scholar 

  8. Cobine, P., Wickramasinghe, W. A., Harrison, M. D., Weber, T., Solioz, M., and Dameron, C.T. (1999) The Enterococcus hirae copper chaperone CopZ delivers copper(I) to the CopY repressor. FEBS Lett. 445, 27–30.

    Article  PubMed  CAS  Google Scholar 

  9. Odermatt, A. and Solioz, M. (1995) Two trans-acting metalloregulatory proteins controlling expression of the copperATPases of Enterococcus hirae. J. Biol. Chem. 270, 4349–4354.

    CAS  Google Scholar 

  10. Strausak, D. and Solioz, M. (1997) CopY is a copper-inducible repressor of the Enterococcus hirae Copper ATPases. J. Biol. Chem. 272, 8932–8936.

    Article  PubMed  CAS  Google Scholar 

  11. Wimmer, R., Herrmann, T., Solioz, M., and Wuthrich, K. (1999) NMR structure and metal interactions of the CopZ copper chaperone. J. Biol. Chem. 99, 22,597–22, 603.

    Google Scholar 

  12. Richardson, J. S. (1981) The anatomy and taxonomy of protein structures. Adv. Protein Chem 34, 167–339.

    Article  PubMed  CAS  Google Scholar 

  13. Kobe, B., Jennings, I.G., House, C.M., Michell, B.J., Goodwill, K.E., Santarsiero, B.D., et al. (1999) Structural basis of autoregulation of phenylalanine hydroxylase. Nature Struct. Biol. 5, 442–448.

    Google Scholar 

  14. Vendrell, J., Billeter, M., Wider, G., Aviles, F. X., and Wutrich, K. (1991) The NMR structure of the activation domain isolated from porcine procarboxypeptidase B. EMBO J. 10(1) 11–15.

    Google Scholar 

  15. Kissinger, C. R., Sieker, L. C., Adman, E. T., and Jensen, L. H. (1991) Refined crystal structure of ferredoxin II from Desulfovibrio gigas at 1.7 A. J. Mol. Biol. 219 (4), 693–715.

    Article  PubMed  CAS  Google Scholar 

  16. Steele, R. A. and Opella, S. J. (1997) Structures of the reduced and mercury-bound forms of MerP, the periplasmic protein from the bacterial mercury detoxification system. Biochemistry 36, 6885–6895.

    Article  PubMed  CAS  Google Scholar 

  17. Gitschier, J., Moffat, B., Reilly, D., Wood, W.I., and Fairbrother, W.J. (1998) solution structure of the fourth metal-binding domain from the Menkes copper-transporting ATPase. Nature Struct. Biol. 5, 47–54.

    Google Scholar 

  18. Rosenzweig, A. C., Huffman, D. L., Hou, M.Y., Wernimont, A. K., Pufahl, R. A., and O’Halloran, T. V. (1999) Crystal structure of the Atxl metallochaperone at 1.02 A resolution. Structure 7, 605–617.

    Article  PubMed  CAS  Google Scholar 

  19. Lamb, A. L., Wernimont, A. K., Pufahl, R. A., O’Halloran, T. V., and Rosenzweig, A. C. (1999) Crystal structure of the copper chaperone for superoxide dismutase. Nature Struct. Biol. 6, 724–729.

    Article  PubMed  CAS  Google Scholar 

  20. Lu, Z. H., Cobine, P., Dameron, C. T., and Solioz (1999) How cells handle copper: a view from microbes. J. Trace Elements Exp. Med. 12, 347–360.

    Article  CAS  Google Scholar 

  21. Cobine, P. A., George, G. N., Wickramasinghe, W. A., Solioz, M., and Dameron, C. T. (2000) Coordination environment in the copper chaperone CopZ and its target, the repressor CopY. Biochemistry,in press.

    Google Scholar 

  22. Dameron, C. T., Winge, D. R., George, G. N., Sansone, M., Hu, S., and Hamer, D. (1991) A copper–thiolate poly-nuclear cluster in the ACE1 transcription factor. Proc. Natl. Acad. Sci. USA 88, 6127–6131.

    Article  PubMed  CAS  Google Scholar 

  23. Pufahl, R. A., Singer, C. P., Peariso, K. L., Lin, S.-J., Schmidt, P. J., Fahrni, C. J., et al. (1997) Metal ion chaperone function of the soluble Cu(I) receptor Atxl. Science 278, 853–856.

    Article  PubMed  CAS  Google Scholar 

  24. Cobine, P., George, G. N., Winzor, D. J., Harrison, M. D., Mogahaddas, S., and Dameron, C. T. (2000) Stoichiometry of complex formation between copper(I) and the N-terminal domain of the Menkes protein. Biochemistry 39, 6857–6863.

    Article  PubMed  CAS  Google Scholar 

  25. Ralle, M., Cooper, M. J., Lutsenko, S., and Blackburn, N. J. (1998) The Menkes disease protein binds copper via novel 2-coordinate Cu(I)-cysteines in the N-terminal comain. J. Am. Chem. Soc. 120, 13,525–13, 526.

    Google Scholar 

  26. DiDonato, M., Narindrasorasaki, S., Forbes, J. R., Cox, D. W., and Sarkar, B. (1997) Expression, purification, and metal binding properties of the N-terminal domain from the Wilson disease putative copper-transporting ATPase (ATP7B). J. Biol. Chem. 272, 33,279–33, 282.

    Google Scholar 

  27. Desideri, A., Hartmann, H. J., Morante, S., and Weser, U. (1990) An EXAFS study of the copper accumulated by yeast cells. Biol. Met. 3, 45–47.

    Article  PubMed  CAS  Google Scholar 

  28. Ford, P. C., Cariati, E., and Bourassa, J. (1999) Photoluminescence properties of multinuclear copper(I) compounds. Chem. Rev. 99 (12), 3625–3648.

    Article  PubMed  CAS  Google Scholar 

  29. Brown, N. L., Camakaris, J., Lee, B. T. O., Williams, T., Morby, A. P., Parkhill, J., et al. (1991) Bacterial resistances to mercury and copper. J. Cell. Biochem. 46, 106–114.

    Article  PubMed  CAS  Google Scholar 

  30. Thorvaldsen, J. L., Sewell, A. K., McCowen, C. L., and Winge, D. R. (1993) Regulation of metallothionein genes by the ACE1 and AMT] transcription factors. J. Biol. Chem. 268, 12,512–12, 518.

    Google Scholar 

  31. Georgatsou, E., Mavrogiannis, L. A., Fragiadakis, G. S., and Alexandraki, D. (1997) The yeast Frelp/Fre2p cupric reductases facilitate copper uptake and are regulated by the copper-modulated Maclp activator. J. Biol. Chem. 272(21), 13,786–13, 792.

    Google Scholar 

  32. Borghouts, C. and Osiewacz, H. D. (1998) GRISEA, a copper-modulated transcription factor from Podospora anserina involved in senescence and morphogenesis, is an orthology of MAC1 in Saccharomyces cerevisiae. Mol. Gen. Genet. 260 (5), 492–502.

    Article  CAS  Google Scholar 

  33. Winge, D. R., Graden, J. A., Posewitz, M. C., Martins, L. J., Jensen, L. T., and Simon, J. R. (1997) Sensors that mediate copper-specific activation and repression of gene expression. J. Biol. Inorg. Chem. 2, 2–10.

    Article  CAS  Google Scholar 

  34. Huffman, D. L. and O’Halloran, T. V. (2000) Energetics of copper trafficking between the Atxl metallochaperone and the intracellular copper transporter, Ccc2. J. Biol. Chem. 275, 18,611–18, 614.

    Google Scholar 

  35. Schmidt, P. J., Rae, T. D., Pufahl, R. A., Hamma, T., Strain, J., O’Halloran, T. V., et al. (1999) Multiple protein domains contribute to the action of the copper chaperone for superoxide dismutase. J. Biol. Chem. 274(34), 23,719–23, 725.

    Google Scholar 

  36. Eisses, J. F., Strasser, J. P., Ralle, M., Kaplan, J. H., and Blackburn, N. J. (2000) Domains I and III of the human copper chaperone for superoxide dismutase interact via a cysteine-bridged dicopper(I) cluster. Biochemistry 39 (25), 7337–7342.

    Article  PubMed  CAS  Google Scholar 

  37. Odermatt, A., Suter, H., Krapf, R., and Solioz, M. (1993) Primary structure of two P-type ATPases involved in copper homeostasis in Enterococcus hirae. J. Biol. Chem. 268, 12, 775–12, 779.

    Google Scholar 

  38. Solioz, M. and Odermatt, A. (1995) Copper and silver transport by copB-ATPase in membrane vesicles of Enterococcus hirae. J. Biol. Chem. 270, 9217–9221.

    CAS  Google Scholar 

  39. Voskoboinik, I., Strausak, D., Greenough, M., Brooks, H., Petris, M., Smith, S., et al. (1999) Functional analysis of the N-terminal CXXC metal-binding motifs in the human Menkes copper-transporting P-tuype ATPase expressed in cultured mammalian cells. J. Biol. Chem. 274, 22, 008–22, 012.

    Google Scholar 

  40. Harrison, M. D., Meier, S., and Dameron, C. T. (1999) Characterisation of copper-binding to the second subdomain of the Menkes protein (MNKr2). Biochim. Biophys. Acta 1453, 254–260.

    Article  PubMed  CAS  Google Scholar 

  41. Portnoy, M. E., Rosenzweig, A. C., Rae, R., Huffman, D. L., O’Halloran, T. V., and Culotta, V. C. (1999) Structure—function analysis of the ATXI metallochaperone. J. Biol. Chem. 274, 15,041–15, 045.

    Google Scholar 

  42. Cobine, P., Jones, C. E., Deecke, L. N., Wickramasinghe, W. A., and Dameron, C. T. (2000) Unlocking the key-lock mechanism for copper chaperones. Metal Ions in Biology and Medicine (Centeno, J. A., Collerry, P., Vernet, G., Finkelman, R. B., Gibb, H., and Etienne, J.-C., eds.), John Libbey Eurotext, Montrouge, France, Vol. 6, pp. 691–693.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cobine, P.A., Jones, C.E., Wickramasinghe, W.A., Solioz, M., Dameron, C.T. (2002). Interaction of Copper-Binding Proteins from Enterococcus hirae . In: Massaro, E.J. (eds) Handbook of Copper Pharmacology and Toxicology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-288-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-288-3_9

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-266-7

  • Online ISBN: 978-1-59259-288-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics