Skip to main content

The Prion Protein and Copper

What Is the Connection?

  • Chapter
Handbook of Copper Pharmacology and Toxicology
  • 315 Accesses

Abstract

Prion diseases are neurodegenerative disorders that result from changes in the conformation of a single, highly unusual membrane glycoprotein called PrP (prion protein). This molecular transition converts a normal version of the protein (PrPC) into a pathogenic form (PrPSc) that constitutes the major component of an unprecedented type of infectious particle (prion) devoid of nucleic acid. Although there is a wealth of information now available about the role of PrPSc in the disease process, relatively little is known about the normal physiological function of PrPC. Aside from its intrinsic biological interest, identifying the function of PrPC is likely to be important in understanding the pathogenesis of prion diseases, as it has been suggested that impairment of this function as a result of conversion to PrPSc may explain some features of the disease phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Coltinge, J. (1999) Variant Creutzfeldt-Jakob disease. Lancet 354, 317–323.

    Article  Google Scholar 

  2. Weissmann, C. and Aguzzi, A. (1997) Bovine spongiform encephalopathy and early onset variant Creutzfeldt—Jakob disease. Curr. Opin. Neurobiol. 7, 695–700.

    Article  PubMed  CAS  Google Scholar 

  3. Collinge, J. (2001) Prion diseases of humans and animals: their causes and molecular basis. Annu. Rev. Neurosci. 24, 519–550.

    Article  PubMed  CAS  Google Scholar 

  4. Prusiner, S. B. (1998) Prions. Proc. Natl. Acad. Sci. USA 95, 13, 363–13, 383.

    Google Scholar 

  5. Liu, H., Fan-Jones, S., Ulyanov, N. B., Lu nas, M., Marqusee, S., Groth, et al. (1999) Solution structure of Syrian hamster prion protein rPrP(90–231). Biochemistry 38, 5362–5377.

    Article  PubMed  CAS  Google Scholar 

  6. Riek, R., Hornemann, S., Wider, G., Glockshuber, R., and Wüthrich, K. (1997) NMR characterization of the full-length recombinant murine prion protein, mPrP(23–231). FEBS Leu. 413, 282–288.

    Article  CAS  Google Scholar 

  7. Wickner, R. B., Edskes, H. K., Maddelein, M. L., Taylor, K. L., and Moriyama, H. (1999) Prions of yeast and fungi: proteins as genetic material. J. Biol. Chem. 274, 555–558.

    Article  PubMed  CAS  Google Scholar 

  8. Harris, D. A., Lele, P., and Snider, W. D. (1993) Localization of the mRNA for a chicken prion protein by in situ hybridization. Proc. Natl. Acad. Sci. USA 90, 4309–4313.

    Article  PubMed  CAS  Google Scholar 

  9. Manson, J., West, J. D., Thomson, V., McBride, P., Kaufman, M. H., and Hope, J. (1992) The prion protein gene: a role in mouse embryogenesis? Development 115, 117–122.

    PubMed  CAS  Google Scholar 

  10. Moser, M., Colello, R. J., Pott, U., and Oesch, B. (1995) Developmental expression of the prion protein gene in glial cells. Neuron 14, 509–517.

    Article  PubMed  CAS  Google Scholar 

  11. Herms, J., Tings, T., Gall, S., Madlung, A., Giese, A., Siebert, H., et al. (1999) Evidence of presynaptic location and function of the prion protein. J. Neurosci. 19, 8866–8875.

    PubMed  CAS  Google Scholar 

  12. Büeler, H., Fischer, M., Lang, Y., Fluethmann, H., Lipp, H.-P., DeArmond, S. J., et al. (1992) Normal development and behavior of mice lacking the neuronal cell-surface PrP protein. Nature 356, 577–582.

    Article  PubMed  Google Scholar 

  13. Manson, J. C., Clarke, A. R., Hooper, M. L., Aitchison, L., McConnell, I., and Hope, J. (1994) 129/OIa mice carrying a null mutation in PrP that abolishes mRNA production are developmentally normal. Mol. Neurobiol. 8, 121–127.

    Google Scholar 

  14. Collinge, J., Whittington, M. A., Sidle, K. C., Smith, C. J., Palmer, M. S., Clarke, A. R., et al. (1994) Prion protein is necessary for normal synaptic function. Nature 370, 295–297.

    Article  PubMed  CAS  Google Scholar 

  15. Manson, J. C., Hope, J., Clarke, A. R., Johnston, A., Black, C., and MacLeod, N. (1995) PrP gene dosage and long term potentiation. Neurodegeneration 4, 113–114.

    Article  PubMed  CAS  Google Scholar 

  16. Colling, S. B., Collinge, J., and Jefferys, J. G. R. (1996) Hippocampal slices from prion protein null mice: disrupted Cat+-activated K’ currents. Neurosci. Lett. 209, 49–52.

    Article  PubMed  CAS  Google Scholar 

  17. Herms, J. W., Tings, T., Dunker, S., and Kretzschmar, H. A. (2001) Prion protein affects Cat+-activated K+ currents in cerebellar Purkinje cells. Neurobiol. Dis. 8, 324–330.

    Article  PubMed  CAS  Google Scholar 

  18. Coiling, S. B., Khana, M., Collinge, J., and Jefferys, J. G. R. (1997) Mossy fibre reorganization in the hippocampus of prion protein null mice. Brain Res. 755, 28–35.

    Article  Google Scholar 

  19. Tobler, I., Gaus, S. E., Deboer, T., Achermann, P., Fischer, M., Rulicke, T., et al. (1996) Altered circadian activity rhythms and sleep in mice devoid of prion protein. Nature 380, 639–642.

    Article  PubMed  CAS  Google Scholar 

  20. Tremblay, P., Meiner, Z., Galou, M., Heinrich, C., Petromilli, C., Lisse, T., et al. (1998) Doxycycline control of prion protein transgene expression modulates prion disease in mice. Proc. Natl. Acad. Sci. USA 95, 12,580–12, 585.

    Google Scholar 

  21. Weissmann, C. and Aguzzi, A. (1999) PrP’s double causes trouble. Science 286, 914–915.

    Article  PubMed  CAS  Google Scholar 

  22. Aronoff-Spencer, E., Burns, C. S., Avdievich, N. I., Gerfen, G. J., Peisach, J., Antholine, W. E., et al. (2000) Identification of the Cue+ binding sites in the N-terminal domain of the prion protein by EPR and CD spectroscopy. Biochemistry 39, 13, 760–13, 771.

    Google Scholar 

  23. Brown, D. R., Qin, K. F., Herms, J. W., Madlung, A., Manson, J., Strome, R., et al. (1997) The cellular prion protein binds copper in vivo. Nature 390, 684–687.

    Article  PubMed  CAS  Google Scholar 

  24. Cereghetti, G. M., Schweiger, A., Glockshuber, R., and Van Doorslaer, S. (2001) Electron paramagnetic resonance evidence for binding of Cue+ to the C-terminal domain of the murine prion protein. Biophys. J. 81, 516–525.

    Article  PubMed  CAS  Google Scholar 

  25. Hornshaw, M. P., McDermott, J. R., and Candy, J. M. (1995) Copper binding to the N-terminal tandem repeat regions of mammalian and avian prion protein. Biochem. Biophys. Res. Commun. 207, 621–629.

    Article  PubMed  CAS  Google Scholar 

  26. Hornshaw, M. P., McDermott, J. R., Candy, J. M., and Lakey, J. H. (1995) Copper binding to the N-terminal tandem repeat region of mammalian and avian prion protein: structural studies using synthetic peptides. Biochem. Biophys. Res. Commun. 214, 993–999.

    Article  PubMed  CAS  Google Scholar 

  27. Jackson, G. S., Murray, I., Hosszu, L. L., Gibbs, N., Waltho, J. P., Clarke, A. R., and Collinge, J. (2001) Location and properties of metal-binding sites on the human prion protein. Proc. Natl. Acad. Sci. USA 98, 8531–8535.

    Article  PubMed  CAS  Google Scholar 

  28. Kramer, M. L., Kratzin, H. D., Schmidt, B., Romer, A., Windt, O., Liemann, S., et al. (2001) Prion protein binds copper within the physiological concentration range. J. Biol. Chem. 276, 16.711–16. 719.

    Google Scholar 

  29. Miura, T., Horii, A., Mototani, H., and Takeuchi, H. (1999) Raman spectroscopic study on the copper(II) binding mode of prion octapeptide and its pH dependence. Biochemistry 38, 11, 560–11, 569.

    Google Scholar 

  30. Stöckel, J., Safar, J., Wallace, A. C., Cohen, F. E., and Prusiner, S. B. (1998) Prion protein selectively binds copper(II) ions. Biochemistry 37, 7185–7193.

    Article  PubMed  Google Scholar 

  31. Viles, J. H., Cohen, F. E., Prusiner, S. B., Goodin, D. B., Wright, P. E., and Dyson, H. J. (1999) Copper binding to the prion protein: structural implications of four identical copper binding sites. Proc. Natl. Acad. Sci. USA 96, 2042–2047.

    Article  PubMed  CAS  Google Scholar 

  32. Whittal, R. M., Ball, H. L., Cohen, F. E., Burlingame, A. L., Prusiner, S. B., and Baldwin, M. A. (2000) Copper binding to octarepeat peptides of the prion protein monitored by mass spectrometry. Protein Sci. 9, 332–343.

    Article  PubMed  CAS  Google Scholar 

  33. Van Doorslaer, S., Cereghetti, G. M., Glockshuber, R., and Schweiger, A. (2001) Unraveling the Cu+2 binding sites in the C-terminal domain of the murine prion protein: a pulse EPR and ENDOR study. J. Phys. Chem. B 105, 1631–1639.

    Article  Google Scholar 

  34. Brown, D. R., Clive, C., and Haswell, S. J. (2001) Antioxidant activity related to copper binding of native prion protein. J. Neurochem. 76, 69–76.

    Article  PubMed  CAS  Google Scholar 

  35. Marcotte, E. M. and Eisenberg, D. (1999) Chicken prion tandem repeats form a stable, protease-resistant domain. Biochemistry 38, 667–676.

    Article  PubMed  CAS  Google Scholar 

  36. Miura, T., Horii, A., and Takeuchi, H. (1996) Metal-dependent alpha-helix formation promoted by the glycine-rich octapeptide region of prion protein. FEBS Lett. 396, 248–252.

    Article  PubMed  CAS  Google Scholar 

  37. Qin, K., Yang, D.-S., Yang, Y., Chishti, M. A., Meng, L.-J., Kretzschmar, H. A., et al. (2000) Copper(II)-induced conformational changes and protease resistance in recombinant and cellular PrP. Effect of protein age and deamidation. J. Biol. Chem. 275, 19,121–19, 131.

    Google Scholar 

  38. Wong, B. S., Venien-Bryan, C., Williamson, R. A., Burton, D. R., Gambetti, P., Sy, M.-S., et al. (2000) Copper refolding of prion protein. Biochem. Biophys. Res. Commun. 276, 1217–1224.

    Article  PubMed  CAS  Google Scholar 

  39. Quaglio, E., Chiesa, R., and Harris, D. A. (2001) Copper converts the cellular prion protein into a protease-resistant species that is distinct from the scrapie isoform. J. Biol. Chem. 276, 11,432–11, 438.

    Google Scholar 

  40. Jobling, M. F., Huang, X., Stewart, L. R., Barnham, K. J., Curtain, C., Volitakis, I., et al. (2001) Copper and zinc binding modulates the aggregation and neurotoxic properties of the prion peptide PrP106–126. Biochemistry 40, 8073–8084.

    Article  PubMed  CAS  Google Scholar 

  41. Requena, J. R., Groth, D., Legname, G., Stadtman, E. R., Prusiner, S. B., and Levine, R. L. (2001) Copper-catalyzed oxidation of the recombinant SHa(29–231) prion protein. Proc. Natl. Acad. Sci. USA 98, 7170–7175.

    Article  PubMed  CAS  Google Scholar 

  42. Wong, B. S., Wang, H., Brown, D. R., and Jones, I. M. (1999) Selective oxidation of methionine residues in prion proteins. Biochem. Biophys. Res. Commun. 259, 352–355.

    Article  PubMed  CAS  Google Scholar 

  43. McMahon, H. E. M., Mangé, A., Nishida, N., Créminon, C., Casanova, D., and Lehmann, S. (2001) Cleavage of the amino terminus of the prion protein by reactive oxygen species. J. Biol. Chem. 276, 2286–2291.

    Article  PubMed  CAS  Google Scholar 

  44. Brown, D. R., Hafiz, F., Glasssmith, L. L., Wong, B. S., Jones, I. M., Clive, C., et al. (2000) Consequences of manganese replacement of copper for prion protein function and proteinase resistance. EMBO J. 19, 1180–1186.

    Article  CAS  Google Scholar 

  45. Brown, D. R., Iordanova, I. K., Wong, B. S., Venien-Bryan, C., Hafiz, F., Glasssmith, L. L., et al. (2000) Functional and structural differences between the prion protein from two alleles prnp’ and prnpe of mouse. Eur. J. Biochem. 267, 2452–2459.

    Article  PubMed  CAS  Google Scholar 

  46. Brown, D. R., Wong, B.-S., Hafiz, F., Clive, C., Haswell, S. J., and Jones, I. M. (1999) Normal prion protein has an activity like that of superoxide dismutase. Biochem. J. 344, 1–5.

    Article  PubMed  CAS  Google Scholar 

  47. Wong, B. S., Clive, C., Haswell, S. J., Williamson, R. A., Burton, D. R., Gambetti, P., et al. (2000) Copper has differential effect on prion protein with polymorphism of position 129. Biochem. Biophys. Res. Commun. 269, 726–731.

    Article  PubMed  CAS  Google Scholar 

  48. Wong, B. S., Pan, T., Liu, T., Li, R., Gambetti, P., and Sy, M. S. (2000) Differential contribution of superoxide dismutase activity by prion protein in vivo. Biochem. Biophys. Res. Commun. 273, 136–139.

    Article  CAS  Google Scholar 

  49. Huang, H., Hartshorn, M. A., Atwood, C. S., Farrag, Y. W., Multhaup, G., Tanzi, R. E., et al. (1999) Redox interactions between Cu(II) and prion protein fragments. Soc. Neurosci. Abstr. 25, 41.

    Google Scholar 

  50. Ruiz, F. H., Silva, E., and Inestrosa, N. C. (2000) The N-terminal tandem repeat region of human prion protein reduces copper: role of tryptophan residues. Biochem. Biophys. Res. Commun. 269, 491–495.

    Article  PubMed  CAS  Google Scholar 

  51. Shiraishi, N., Ohta, Y., and Nishikimi, M. (2000) The octapeptide repeat region of prion protein binds Cu(II) in the redox-inactive state. Biochem. Biophys. Res. Commun. 267, 398–402.

    Article  PubMed  CAS  Google Scholar 

  52. Shyng, S. L., Heuser, J. E., and Harris, D. A. (1994) A glycolipid-anchored prion protein is endocytosed via clathrincoated pits. J. Cell Biol. 125, 1239–1250.

    Article  PubMed  CAS  Google Scholar 

  53. Shyng, S. L., Huber, M. T., and Harris, D. A. (1993) A prion protein cycles between the cell surface and an endocytic compartment in cultured neuroblastoma cells. J. Biol. Chem. 268, 15,922–15, 928.

    Google Scholar 

  54. Pauly, P. C. and Harris, D. A. (1998) Copper stimulates endocytosis of the prion protein. J. Biol. Chem. 273, 33,10733, 110.

    Google Scholar 

  55. Perera, W. S. and Hooper, N. M. (2001) Ablation of the metal ion-induced endocytosis of the prion protein by disease-associated mutation of the octarepeat region. Curr. Biol. 11, 519–523.

    Article  PubMed  CAS  Google Scholar 

  56. Brown, D. R. (2001) Prion and prejudice: normal protein and the synapse. Trends Neurosci. 24, 85–90.

    Article  PubMed  CAS  Google Scholar 

  57. Waggoner, D. J., Drisaldi, B., Bartnikas, T. B., Casareno, R. L. B., Prohaska, J. R., Gitlin, J. D., et al. (2000) Brain copper content and cuproenzyme activity do not vary with prion protein expression level. J. Biol. Chem. 275, 7455–7458.

    Article  PubMed  CAS  Google Scholar 

  58. Brown, D. R., Schmidt, B., and Kretzschmar, H. A. (1998) Effects of copper on survival of prion protein knockout neurons and glia. J. Neurochem. 70, 1686–1693.

    Article  PubMed  CAS  Google Scholar 

  59. Brown, D. R., Schulzschaeffer, W. J., Schmidt, B., and Kretzschmar, H. A. (1997) Prion protein-deficient cells show altered response to oxidative stress due to decreased SOD-1 activity. Exp. Neurol. 146, 104–112.

    Article  PubMed  CAS  Google Scholar 

  60. White, A. R., Collins, S. J., Maher, F., Jobling, M. F., Stewart, L. R., Thyer, J. M., et a;. (1999) Prion protein-deficient neurons reveal lower glutathione reductase activity and increased susceptibility to hydrogen peroxide toxicity. Am. J. Pathol. 155, 1723–1730.

    Article  PubMed  CAS  Google Scholar 

  61. Brown, D. R., Schmidt, B., and Kretzschmar, H. A. (1997) Effects of oxidative stress on prion protein expression in PC12 cells. Int. J. Dev. Neurosci. 15, 961–972.

    Article  PubMed  CAS  Google Scholar 

  62. Klamt, F., Dal-Pizzol, F., Conte da Frota, M. L., Walz, R., Andrades, M. E., da Silva, E. G., et al. (2001) Imbalance of antioxidant defense in mice lacking cellular prion protein. Free Radical Biol. Med. 30, 1137–1144.

    Article  CAS  Google Scholar 

  63. Wong, B. S., Liu, T., Li, R., Pan, T., Petersen, R. B., Smith, M. A., et al. (2001) Increased levels of oxidative stress markers detected in the brains of mice devoid of prion protein. J. Neurochem. 76, 565–572.

    Article  PubMed  CAS  Google Scholar 

  64. Brown, D. R. and Besinger, A. (1998) Prion protein expression and superoxide dismutase activity. Biochem. J. 334, 423–429.

    PubMed  CAS  Google Scholar 

  65. McKenzie, D., Bartz, J., Mirwald, J., D., O., Marsh, R., and Aiken, J. (1998) Reversibility of scrapie inactivation is enhanced by copper. J. Biol. Chem. 273, 25, 545–25, 547.

    Google Scholar 

  66. Wadsworth, J. D. F., Hill, A. F., Joiner, S., Jackson, G. S., Clarke, A. R., and Collinge, J. (1999) Strain-specific prion-protein conformation determined by metal ions. Nature Cell Biol. 1, 55–59.

    Article  PubMed  CAS  Google Scholar 

  67. Shaked, Y., Rosenmann, H., Hijazi, N., Halimi, M., and Gabizon, R. (2001) Copper binding to the prp isoforms: a putative marker of their conformation and function. J. Virol. 75, 7872–7874.

    Article  PubMed  CAS  Google Scholar 

  68. Pattison, I. H., and Jebbett, J. N. (1971) Histopathological similarities between scrapie and cuprizone toxicity in mice. Nature 230, 115–117.

    Article  PubMed  CAS  Google Scholar 

  69. Smith, R. M. (1983) Copper in the developing brain, in Neurobiology of the Trace Elements (Dreosti, I. E. and Smith, R. M., eds.), Humana Press, Totowa. NJ, Vol. 1, pp. 1–40.

    Chapter  Google Scholar 

  70. Brown, D. R. (1999) Prion protein expression aids cellular uptake and veratridine-induced release of copper. J. Neurosci. Res. 58, 717–725.

    Article  PubMed  CAS  Google Scholar 

  71. Sayre, L. M., Perry, G., Atwood, C. S., and Smith, M. A. (2000) The role of metals in neurodegenerative diseases. Cell. Mol. Biol. 46, 731–741.

    PubMed  CAS  Google Scholar 

  72. Guentchev, M., Voigtlander, T., Haberler, C., Groschup, M. H., and Budka, H. (2000) Evidence for oxidative stress in experimental prion disease. Neurobiol. Dis. 7, 270–273.

    Article  PubMed  CAS  Google Scholar 

  73. Milhavet, O., McMahon, H. E., Rachidi, W., Nishida, N., Katamine, S., Mange, A., et al. (2000) Prion infection impairs the cellular response to oxidative stress. Proc. Natl. Acad. Sci. USA 97, 13,937–13, 942.

    Google Scholar 

  74. Wong, B. S., Pan, T., Liu, T., Li, R., Petersen, R. B., Jones, I. M., Gambetti, P., et al. (2000) Prion disease: A loss of antioxidant function? Biochem. Biophys. Res. Commun. 275, 249–252.

    Article  PubMed  CAS  Google Scholar 

  75. Cohen, F. E. and Prusiner, S. B. (1998) Pathologic conformations of prion proteins. Annu. Rev. Biochem. 67, 793–819.

    Article  PubMed  CAS  Google Scholar 

  76. Hegde, R. S., Tremblay, P., Groth, D., DeArmond, S. J., Prusiner, S. B., and Lingappa, V. R. (1999) Transmissible and genetic prion diseases share a common pathway of neurodegeneration. Nature 402, 822–826.

    Article  PubMed  CAS  Google Scholar 

  77. Chiesa, R. and Harris, D. A. (2001) Prion diseases: what is the neurotoxic molecule? Neurobiol. Dis. 8, 743–763.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Brown, L.R., Harris, D.A. (2002). The Prion Protein and Copper. In: Massaro, E.J. (eds) Handbook of Copper Pharmacology and Toxicology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-288-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-288-3_5

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-266-7

  • Online ISBN: 978-1-59259-288-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics