Skip to main content

Molecular Modeling and Dynamics of Copper Proteins

  • Chapter
  • 318 Accesses

Abstract

For many decades, it has been widely accepted that copper is an essential trace element required for survival by all organisms from bacterial cells to humans (1). What is so special about this trace element that makes it essential in biology? Copper ions undergo unique chemistry because of their ability to adopt distinct redox states, either oxidized, Cu(II), or reduced, Cu(I). Consequently, Cu ions serve as important catalytic cofactors in redox chemistry for proteins that carry out fundamental biological functions required for growth and development (Table 1). Copper proteins show a variety of functions (Table 2) and can be classified by the kind and number of prosthetic centers (Table 3) and/or by the Cu center type found in the protein structure (Table 4). Copper-requiring proteins are involved in a variety of biological processes, and metal deficiency in these enzymes, or alteration in its activity, often causes disease states or pathophysiological conditions. Although it is clear that Cu is essential, it is also a potent cytotoxic agent when allowed to accumulate in excess with respect to cellular needs. In fact, because of its special redox chemistry, copper readily participates in reactions that result in the production of highly reactive oxygen species (ROS), including hydroxyl radicals (2). Hydroxyl radicals are believed to be responsible for devastating cellular damage that includes lipid peroxidation in membranes, direct oxidation of proteins, and cleavage of DNA and RNA molecules. Indeed, the generation and action of ROS are thought to be major contributing factors to the development of cancer, disease of the nervous system, and aging (3). In addition to the generation of ROS, Cu may manifest its toxicity by displacing other metals cofactors from their natural ligands in key cellular signaling proteins. It is highly likely that Cu is able to displace metal ions in a number of catalytic or structural motifs in many cellular proteins. Given that Cu is both essential and toxic, organisms must implement uptake mechanisms to extract Cu from nutrients, transport Cu across the biological membranes, and deliver it to Cu-requiring proteins. Furthermore, precise regulatory mechanisms must be in place to prevent the accumulation of Cu ions to toxic levels (4). Details of the structure and dynamics behavior of copper proteins at atomic resolution are central to understanding mechanism of catalysis, ligand binding, allosteric modulation, and protein—protein interaction.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Linder, M. C. (1991) Biochemistry of Copper. Plenum, New York.

    Google Scholar 

  2. Halliwell, B. and Gutteridge, J. M. C. (1984) Oxygen toxicity, oxygen radicals, transition metals and diseases. Biochem. J. 219, 1–4.

    PubMed  CAS  Google Scholar 

  3. Halliwell, B. and Gutteridge, J. M. C. (1990) Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol. 186, 1–85.

    Article  PubMed  CAS  Google Scholar 

  4. Pena, M. M. O., Lee, J., and Thiele, D. J. (1999) A delicate balance: homeostatic control of copper uptake and distribution. J. Nutr. 129, 1251–1260.

    PubMed  CAS  Google Scholar 

  5. Guex, N. and Peitsch, M. C. (2000) Principles of protein structure, comparative protein modelling and visualisation. http://www.expasy.ch/swissmod/course/ course-index.htm.

    Google Scholar 

  6. Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., et al. (2000) The protein data bank. Nucleic Acids Res. 28, 235–242.

    Google Scholar 

  7. Jones, T. J. and Thirup, S. (1986) Using known substructures in protein model building and crystallography. EMBO J. 5, 819–822.

    PubMed  CAS  Google Scholar 

  8. Claessens, M., Cutsem, E. V., Lasters, I., and Wodak, S. (1989) Modeling the polypeptide backbone with “spare parts” from known protein structures. Protein Eng. 2, 335–345.

    Article  PubMed  CAS  Google Scholar 

  9. Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., States, D. J., Swaminathan, S. and Karplus, M. (1983) CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J. Compar. Chem. 4, 187–217.

    Article  CAS  Google Scholar 

  10. Weiner, P. K. and Kolman, P. A. (1981) AMBER: assisted model building with energy refinement. A general program for modeling molecules and their interaction. J. Compar. Chem. 2, 287–303.

    Article  CAS  Google Scholar 

  11. van Gunsteren, W. F. and Berendsen, H. J. C. (1987) Groningen Molecular Simulation (GROMOS) Library Manual. Biomos, Groningen.

    Google Scholar 

  12. Gurd, F. R. N. and Rothgeb, M. T. (1979) Motions in proteins. Adv. Protein Chem. 33, 73–165.

    Article  PubMed  CAS  Google Scholar 

  13. Huber, R. and Bennet, W. S. Jr. (1983) Functional significance of flexibility in proteins. Biopolymers 22, 261–279.

    Article  PubMed  CAS  Google Scholar 

  14. Fraunfelder, H. and Gratton, E. (1986) Protein dynamics and hydration. Methods Enzymol. 127, 207–217.

    Article  Google Scholar 

  15. Daggett, V. and Levitt, M. (1993) Realistic simulations of native-protein dynamics in solution and beyond. Annu. Rev. Biophys. Biomol. Struct. 22, 353–380.

    Article  PubMed  CAS  Google Scholar 

  16. Allen, M. P. and Tildesley, D. J. (1987) Computer Simulation of Liquids. Clarendon, Oxford.

    Google Scholar 

  17. Ryckaert, J. P., Ciccotti, G., and Berendsen. H. J. C. (1977) Numerical integration of the cartesian equations of motions of a system with constraints: molecular dynamics of N-alkanes. J. Compar. Phys. 23, 327–341.

    Article  CAS  Google Scholar 

  18. Wampler, J. E. (1994) Computational chemistry and molecular modeling of electron-transfer proteins. Methods Enzymol. 243, 559–607.

    Article  PubMed  CAS  Google Scholar 

  19. Folcarelli, S., Battistoni, A., Carri, M. T., Polticelli, F., Falconi, M., Nicolini, L., et al. (1996) Effect of Lys-Arg mutation on the thermal stability of Cu,Zn superoxide dismutase. Influence on the monomer-dimer equilibrium. Protein Eng. 9, 323–325.

    Article  PubMed  CAS  Google Scholar 

  20. Mrabet, N. T., Van den Broeck, A., Van den brande, I., Stanssens, P., Laroche, Y., Lambeir, A. M., et al. (1992) Arginine residues as stabilizing elements in proteins. Biochemistry 31, 2239–2253.

    Article  PubMed  CAS  Google Scholar 

  21. Dong, S., Ybe, J. A., Hecht, M. H., and Spiro, T. G. (1999) H-Bonding maintains the active site of type 1 copper proteins: site-directed mutagenesis of Asn38 in poplar plastocyanin. Biochemistry 38, 3379–3385.

    Article  PubMed  CAS  Google Scholar 

  22. Zhu, Z., Jones, L. H., Graichen, M. E., and Davidson, V. L. (2000) Molecular basis for complex formation between methylamine dehydrogenase and amicyanin revealed by inverse mutagenesis of an interprotein salt bridge. Biochemistry 39, 8830–8836.

    Article  PubMed  CAS  Google Scholar 

  23. Frigerio, F., Falconi, M., Gatti, G., Bolognesi, M., Desideri, A., Marmocchi F., et al. (1989) Crystallographic characterization and three-dimensional model of yeast Cu,Zn superoxide dismutase. Biochem. Biophys. Res. Commun. 160, 677–681.

    Article  PubMed  CAS  Google Scholar 

  24. Falconi, M., Rotilio, G., and Desideri, A. (1991) Modeling the three-dimensional structure and electrostatic potential field of the two Cu,Zn superoxide dismutase variants from Xenopus laevis. Proteins 10, 149–155.

    Article  CAS  Google Scholar 

  25. Fields, B. A., Guss, J. M., and Freeman, H. C. (1991) Three-dimensional model for stellacyanin, a “blue” copper-protein. J. Mol. Biol. 222, 1053–1065.

    Article  PubMed  CAS  Google Scholar 

  26. Desideri, A., Falconi, M., Polticelli, F., Bolognesi, M., Djinovic, K., and Rotilio, G. (1992) Evolutionary conservativeness of electric field in the Cu,Zn superoxide dismutase active site. Evidence for coordinated mutations of charged aminoacid residues. J. Mol. Biol. 223, 337–342.

    Article  PubMed  CAS  Google Scholar 

  27. Oetting, W. S. and King, R. A. (1992) Analysis of mutations in the copper B binding region associated with type I (tyrosinase-related) oculocutaneous albinism. Pigment Cell Res. 5, 274–278.

    Article  PubMed  CAS  Google Scholar 

  28. Gane, P. J., Dunwell, J. M., and Warwicker, J. (1998) Modeling based on the structure of vicilins predicts a histidine cluster in the active site of oxalate oxidase. J. Mol. Evol. 46, 488–493.

    Article  PubMed  CAS  Google Scholar 

  29. Polticelli, F., Falconi, M., O’Neill, P., Petruzzelli, R., Galtieri, A., Lania, A., et al. (1994) Molecular modeling and electrostatic potential calculations on chemically modified Cu,Zn superoxide dismutases from Bos taurus and shark Prionace glauca: role of Lys134 in electrostatically steering the substrate to the active site. Arch. Biochem. Biophys. 312, 22–30.

    Article  PubMed  CAS  Google Scholar 

  30. Hung, I. H., Casareno, R. L., Labesse, G., Mathews, F. S., and Gitlin, J. D. (1998) HAH1 is a copper-binding protein with distinct aminoacid residues mediating copper homeostasis and antioxidant defense. J. Biol. Chem. 273, 1749–1754.

    Article  PubMed  CAS  Google Scholar 

  31. Villoutreix, B. O. and Dahlback, B. (1998) Structural investigation of the A domains of human blood coagulation factor V by molecular modeling. Protein Sci. 7, 1317–1325.

    Article  PubMed  CAS  Google Scholar 

  32. Falconi, M., lovino, M., and Desideri, A. (1999) A model for the incorporation of the metal from the copper chaperone CCS to Cu,Zn superoxide dismutase. Structure 7, 903–908.

    Article  PubMed  CAS  Google Scholar 

  33. Di Patti, M. C., Pascarella, S., Catalucci, D., and Calabrese, L. (1999) Homology modeling of the multicopper oxidase Fet3 gives new insights in the mechanism of iron transport in yeast. Protein Eng. 12, 895–897.

    Article  PubMed  Google Scholar 

  34. Cizewski-Culotta, V., Klomp, L. W. J., Strain, J., Casareno, R. L. B., Krems, B., and Gitlin, J. D. (1997) The copper chaperone for superoxide dismutase. J. Biol. Chem. 272, 23,469–23, 472.

    Google Scholar 

  35. Casareno, R. L. B., Waggoner, D., and Gitlin, J. D. (1998) The copper chaperone CCS directly interacts with copper/ zinc superoxide dismutase. J. Biol. Chem. 273, 23,625–23, 628.

    Google Scholar 

  36. Steele, R. A. and Opella, S. J. (1997) Structures of the reduced and mercury-bound form of MerP, the periplasmic protein from the bacterial mercury detoxification system. Biochemistry 36, 6885–6895.

    Article  PubMed  CAS  Google Scholar 

  37. Parge, H. E., Hallewell, R. A., and Tainer, J. A. (1992) Atomic structures of wild-type and thermostable mutant recombinant human Cu,Zn superoxide dismutase. Proc. Natl. Acad. Sci. USA 89, 6109–6113.

    Article  PubMed  CAS  Google Scholar 

  38. Lamb, A. L., Wernimont, A. K., Pufahl, R. A., Culotta, V. C., O’Halloran, T. V., and Rosenzweig, A.C. (1999) Crystal structure of the copper chaperone for superoxide dismutase. Nat. Struct. Biol. 8, 724–729.

    Google Scholar 

  39. Grossmann, J. G., Ingledew, W. J., Harvey, I., Strange, R. W., and Hasnain, S. S. (1995) X-ray absorption studies and homology modeling define the structural features that specify the nature of the copper site in rusticyanin. Biochemistry 34, 8406–8414.

    Article  PubMed  CAS  Google Scholar 

  40. High, A., Prior, T., Bell, R. A., and Rangachari, P. K. (1999) Probing the “active site” of diamine oxidase: structure-activity relations for histamine potentiation by O-alkylhydroxylamines on colonic epithelium. J. Pharmacol. Exp. Ther. 288, 490–501.

    PubMed  CAS  Google Scholar 

  41. Stillman, M. J., Thomas, D., Trevithick, C., Guo, X., and Siu, M. (2000) Circular dichroism, kinetic and mass spectrometric studies of copper(I) and mercury(II) binding to metallothionein. J. Inorg. Biochem. 79, 11–19.

    Article  PubMed  CAS  Google Scholar 

  42. Hartman, C. and Klinman, J. P. (1991) Structure—function studies of substrate oxidation by bovine serum amine oxidase: relationship of cofactor structure and mechanism. Biochemistry 30, 4605–4611.

    Article  Google Scholar 

  43. Hartman, C., Brzovic, P., and Klinman, J. P. (1993) Spectroscopic detection of chemical intermediates in the reaction of para-substituted benzylamines with bovine serum amine oxidase. Biochemistry 32, 2234–2241

    Article  Google Scholar 

  44. Djinovic, K., Gatti, G., Coda, A., Antolini, L., Pelosi, G., Desideri, A., et al. (1992) Crystal structure of yeast Cu,Zn superoxide dismutase. Crystallographic refinement at 2.5 A resolution. J. Mol. Biol. 225, 791–809.

    Article  PubMed  CAS  Google Scholar 

  45. Bond, C. S., Bendall, D. S., Freeman, H. C., Guss, J. M., Howe, C. J., Wagner, M. J., et al. (1999) The structure of plastocyanin from the cyanobacterium Phormidium laminosum. Acta Crystallogr. D. Biol. Crystallogr. 55, 414–421.

    Article  CAS  Google Scholar 

  46. Bordo, D., Matak, D., Djinovic-Carugo, K., Rosano, C., Pesce, A., Bolognesi, M., et al. (1999) Evolutionary constraints for dimer formation in prokaryotic Cu,Zn superoxide dismutase. J. Mol. Biol. 285, 283–296.

    Article  PubMed  CAS  Google Scholar 

  47. Brown, K., Tegoni, M., Prudencio, M., Pereira, A. S., Besson, S., Moura, J. J., et al. (2000) A novel type of catalytic copper cluster in nitrous oxide reductase. Nat. Struct. Biol. 7, 191–195.

    Article  PubMed  CAS  Google Scholar 

  48. Brown, K., Djinovic-Carugo, K., Haltia, T., Cabrito, I., Saraste, M., Moura, J. J., et al. (2000) Revisiting the catalytic CuZ cluster of N20 reductase: evidence of a bridging inorganic sulphur. J. Biol. Chem. 275, 41,133–41, 136.

    Google Scholar 

  49. Pesce, A., Battistoni, A., Stroppolo, M. E., Polizio, F., Nardini, M., Kroll, J. S., et al. (2000) Functional and crystallographic characterization of Salmonella typhimurium Cu,Zn superoxide dismutase coded by the sodCl virulence gene. J. Mol. Biol. 302, 465–478.

    Article  PubMed  CAS  Google Scholar 

  50. Ubbink, M., Ejdeback, M., Karlsson, B. G., and Bendall, D. S. (1998) The structure of the complex of plastocyanin and cytochrome f, determined by paramagnetic NMR and restrained rigid-body molecular dynamics. Structure 6, 323–335.

    Article  PubMed  CAS  Google Scholar 

  51. Kalverda, A. P., Wymenga, S. S., Lommen, A., van de Ven, F. J., Hilbers C. W., and Canters G. W. (1994) Solution structure of the type 1 blue copper protein amicyanin from Thiobacillus versutus. J. Mol. Biol. 240, 358–371.

    Article  CAS  Google Scholar 

  52. Banci, L., Bertini, I., Bruni, B., Carloni, P., Luchinat, C., Mangani, S., et al. (1994) X-ray, NMR and molecular dynamics studies on reduced bovine superoxide dismutase: implications for the mechanism. Biochem. Biophys. Res. Commun. 202, 1088–1095.

    Article  PubMed  CAS  Google Scholar 

  53. Tsigelny, I., Sugiyama, N., Sine, S. M., and Taylor, P. (1997) A model of the nicotinic receptor extracellular domain based on sequence identity and residue location. Biophys. J. 73, 52–66.

    Article  PubMed  CAS  Google Scholar 

  54. Adman, E. T., Turley, S., Bramson, R., Petratos, K., Banner, D., Tsernoglou, D., et al. (1989) A 2.0 t1 structure of the blue copper protein (cupredoxin) from Alcaligenes faecalis S-6. J. Biol. Chem. 264, 87–99.

    PubMed  CAS  Google Scholar 

  55. Guss, J. M. and Freeman, H. C. (1983) Structure of oxidized poplar plastocyanin at 1.6 resolution. J. Mol. Biol. 169, 521–563.

    Article  PubMed  CAS  Google Scholar 

  56. Chen, L. X. Q., Engh, R. A., Brunger, A. T., Nguyen, D. T., Karplus, M., and Fleming, G. R. (1988) Dynamics simulation studies of apoazurin of Alcaligenes denitrificans. Biochemistry 27, 6908–6921.

    Article  CAS  Google Scholar 

  57. Shen, J. Subramaniam, S., Wong, C. F., and McCammon, A. J. (1989) Superoxide dismutase: fluctuations in the structure and solvation of the active site channel studied by molecular dynamics simulation. Biopolymers 28 2085–2096.

    Google Scholar 

  58. Shen, J. and McCammon, A. J. (1991) Molecular dynamics simulation of superoxide interacting with superoxide dismutase. Chem. Phys. 158, 191–198.

    Article  CAS  Google Scholar 

  59. Banci, L., Carloni, P., La Penna, G., and Orioli, P. L. (1992) Molecular dynamics studies on superoxide dismutase and its mutants: the structural and functional role of Arg143. J. Am. Chem. Soc. 114, 6994–7001.

    Article  CAS  Google Scholar 

  60. Luty, B. A., El Amrani, S., and McCammon, A. J. (1993) Simulation of the bimolecular reaction between superoxide and superoxide dismutase: synthesis of the encounter and reaction steps. J. Am. Chem. Soc. 115, 11.874–11. 877.

    Google Scholar 

  61. Wong, Y., Clark, T. W., Shen, J., and McCammon, A..1. (1993) Molecular dynamics simulation of substrate-enzyme interactions in the active site channel of superoxide dismutase. Mol. Simul. 10, 277–289.

    Google Scholar 

  62. Banci, L., Carloni, P., and Orioli, P. L. (1994) Molecular dynamics studies on mutants of Cu,Zn superoxide dismutase: the functional role of charged residues in the electrostatic loop VII. Proteins 18, 216–230.

    Article  PubMed  CAS  Google Scholar 

  63. Falconi, M., Paci, E., and Gallimbeni, R. (1996) Dimer asymmetry in superoxide dismutase studied by molecular dynamics simulation. J Computer Aided Mol. Des. 10, 490–498.

    Article  CAS  Google Scholar 

  64. Chillemi, G., Falconi, M., Amadei, A., Zimatore, G., Desideri, A., and Di Nola, A. (1997) The essential dynamics of Cu,Zn superoxide dismutase: suggestion of intersubunit communication. Biophys. J. 73, 1007–1018.

    Article  PubMed  CAS  Google Scholar 

  65. Ciocchetti, A., Bizzarri, R., and Cannistraro, S. (1997) Long-term molecular dynamics simulation of copper plastocyanin in water. Biophys. Chem. 69, 185–198.

    Article  PubMed  CAS  Google Scholar 

  66. Daizadeh, I., Medvedev, E. S., and Stuchebrukhov, A. A. (1997) Effect of protein dynamics on biological electron transfer. Proc. Natl. Acad. Sci. USA 94, 3703–3708.

    Article  PubMed  CAS  Google Scholar 

  67. Ungar, L. W., Scherer, N. F., and Voth, G. A. (1997) Classical molecular dynamics simulation of the photoinduced electron transfer dynamics of plastocyanin. Biophys. J. 72, 5–17.

    Article  PubMed  CAS  Google Scholar 

  68. Falconi M., Venerini, F., and Desideri, A. (1998) A spectroscopic and molecular dynamics study of native and of a mutant of Xenopus laevis Cu,Zn superoxide dismutase: mechanistic consequences of replacing four charged aminoacids on the “electrostatic” loop. Biophys. Chem. 75, 235–248.

    Article  PubMed  CAS  Google Scholar 

  69. Melchionna, S., Falconi, M., and Desideri, A. (1998) Effect of temperature and hydration on protein fluctuations: molecular dynamics simulation of Cu,Zn superoxide dismutase at six different temperatures. J. Chem. Phys. 108, 6033–6041.

    Article  CAS  Google Scholar 

  70. Falconi, M., Melchionna, S., and Desideri, A. (1999) Molecular dynamics simulations of Cu,Zn superoxide dismuta se: effect of temperature on dimer asymmetry. Biophys. Chem. 81, 197–205.

    Article  PubMed  CAS  Google Scholar 

  71. Falconi, M., Venerini, F., and Desideri, A. (1999) Dependence of the mechanical intersubunit communication of a dimeric protein to specific mutations as revealed by molecular dynamics simulation. J. Mol. Liquids 84, 29–37.

    Article  Google Scholar 

  72. Paciaroni, A., Stroppolo, M. E., Arcangeli, C., Bizzarri, A. R., Desideri, A., and Cannistraro, S. (1999) Incoherent neutron scattering of copper azurin: a comparison with moleculardynamics simulation results. Eur. Biophys. J. 28, 447–456.

    Article  PubMed  CAS  Google Scholar 

  73. Backgren, C., Hummer, G., Wikstrom, M., and Puustinen, A. (2000) Proton translocation by cytochrome c oxidase can take place without the conserved glutamic acid in subunit I. Biochemistry 39, 7863–7867.

    Article  PubMed  CAS  Google Scholar 

  74. Banci, L., Bertini, I., Cramaro, F., Del Conte, R., Rosato, A., and Viezzoli, M. S. (2000) Backbone dynamics of human Cu,Zn superoxide dismutase and of its monomeric F50E/G51E/E133Q mutant: the influence of dimerization on mobility and function. Biochemistry 39, 9108–9118.

    Google Scholar 

  75. Wang, C. X., Bizzarri, A. R., Xu, Y. W., and Cannistraro, S. (1994) Molecular dynamics of copper plastocyanin: simulations of structure and dynamics as a function of hydration. Chem. Phys. 183, 155–166.

    Google Scholar 

  76. Bizzarri, A. R. and Cannistraro, S. (1996) Molecular dynamics simulation evidence of anomalous diffusion of plastocyanin hydration water. Phys. Rev. E 53, 3040–3043.

    Google Scholar 

  77. Rocchi, C., Bizzarri, A. R., and Cannistraro, S. (1997) Water residence times around copper plastocyanin: a molecular dynamics simulation approach. Chem. Phys. 214, 261–276.

    Article  CAS  Google Scholar 

  78. Arcangeli, C., Bizzarri, A. R., and Cannistraro, S. (1999) Long-term molecular dynamics simulation of copper azurin: structure, dynamics and functionality. Biophys. Chem. 78, 247–257.

    Article  PubMed  CAS  Google Scholar 

  79. Luise, A., Falconi, M., and Desideri, A. (2000) Molecular dynamics simulation of solvated azurin: influence of surface solvent accessibility on water residence times. Proteins 39, 56–67.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Falconi, M., Desideri, A. (2002). Molecular Modeling and Dynamics of Copper Proteins. In: Massaro, E.J. (eds) Handbook of Copper Pharmacology and Toxicology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-288-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-288-3_4

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-266-7

  • Online ISBN: 978-1-59259-288-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics