Skip to main content

Intracellular Copper Transport and ATP7B, the Wilson’s Disease Protein

  • Chapter
Handbook of Copper Pharmacology and Toxicology

Abstract

Copper is an essential trace metal for all living organisms because this metal serves as a cofactor for activating numerous enzymes critical for homeostasis. However, when copper exceeds the cellular needs, it is toxic through the production of highly reactive hydroxyl radicals that have deleterious effects on cellular components, including destabilization of plasma membranes and lysosomal membranes, disturbance of mitochondrial respiration, depletion of glutathione reserves, and damage of nucleic acids (1). To prevent the accumulation of copper to the toxic level, cells are provided regulatory mechanisms that maintain the balance of intracellular copper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sternlieb, I. (1994) Copper and zinc, in The Liver: Biology and Pathobiology, 3rd ed. ( Arias, I. M., Boyer, J. L., Fausto, N., Jakoby, W. B., Schachter, D. A., and Shafritz, D. A., eds.), Raven, New York, pp. 585–596.

    Google Scholar 

  2. Lippard, S. J. (1999) Free copper ions in the cell? Science 284, 748–749.

    Article  PubMed  CAS  Google Scholar 

  3. Solioz, M. and Vulpe, C. (1996) CPx-type ATPases: a class of P-type ATPases that pump heavy metals. Trends Biochem. Sci 21, 237–241.

    PubMed  CAS  Google Scholar 

  4. Harrison, M. D., Jones, C. E., Solioz, M., and Dameron, C. T. (2000) Intracellular copper routing: the role of copper chaperones. Trends Biochem. Sci 25, 29–32.

    Article  PubMed  CAS  Google Scholar 

  5. Pena, M. M. O., Lee, J., and Thiele, D. J. (1999) A delicate balance: homeostatic control of copper uptake and distribution. J. Nutr 129, 1251–1260.

    PubMed  CAS  Google Scholar 

  6. Sambongi, Y., Wakabayashi T., Yoshimizu, T., Omote, H., Oka, T., and Futai, M. (1997) Caenorhabditis elegans cDNA for a Menkes/Wilson disease gene homologue and its function in a yeast CCC2 gene deletion mutant. J. Biochem 121, 1169–1175.

    CAS  Google Scholar 

  7. Lutsenko, S. and Kaplan, J. H. (1995) Organization of P-type ATPases: significance of structural diversity. Biochemistry 34, 15, 607–15, 613.

    Google Scholar 

  8. Yuan, D. S., Stearman, R., Dancis, A., Dunn, T., Beeler, T., and Klausner, R. D. (1995) The Menkes/Wilson disease gene homologue in yeast provides copper to a ceruloplasmin-like oxidase required for iron uptake. Proc. Natl. Acad. Sci. USA 92, 2632–2636.

    Article  PubMed  CAS  Google Scholar 

  9. Danks, D. M. (1995) Disorders of copper transport, in The Metabolic and Molecular Bases of Inherited Disease, 7th ed. ( Scriver, C. R., Beaudet, A. L., Sly, W. S., and Valle, D., eds.), McGraw-Hill, New York, pp. 2211–2235.

    Google Scholar 

  10. Scheinberg, I. H. and Sternlieb, I. (1984) Wilson’s Disease. Major Problems in Internal Medicine, Vol. 23 ( Smith Jr., L. H. ed.), W.B. Saunders, Philadelphia.

    Google Scholar 

  11. l. Payne, A. S. and Gitlin, J. D. (1998) Functional expression of the Menkes disease protein reveals common biochemical mechanisms among the copper-transporting P-type ATPases. J. Biol. Chem 273, 3765–3770.

    CAS  Google Scholar 

  12. Hung, I. H., Suzuki, M., Yamaguchi, Y., Yuans, D. S., Klausner, R. D., and Gitlin, J. D. (1997) Biochemical characterization of the Wilson disease protein and functional expression in the Yeast Saccharomyces cerevisiae. J. Biol. Chem. 272, 21,461–21, 466.

    Google Scholar 

  13. Terada, K., Nakako, T., Yang, X. L., Iida, M., Aiba, N., Minamiya, Y., et al. (1998) Restoration of holoceruloplasmin synthesis in LEC rat after infusion of recombinant adenovirus bearing WND cDNA. J. Biol. Chem 273, 1815–1820.

    Article  PubMed  CAS  Google Scholar 

  14. Terada, K., Aiba, N., Yang, X. L., Iida, Y., Nakai, M., Miura, N., et al. (1998) Biliary excretion of copper in LEC rat after introduction of copper transporting P-type ATPase, ATP7B. FEBS Lett. 448, 53–56.

    Article  Google Scholar 

  15. Iida, M., Terada, K., Sambongi, Y., Wakabayashi, T., Miura, N., Koyama, K., et al. (1998) Analysis of functional domains of Wilson disease protein (ATP7B) in Saccharomyces cerevisiae. FEBS Lett. 428, 281–285.

    Article  CAS  Google Scholar 

  16. Petrukhin, K., Fischer, S. G., Pirastu, M., Tanzi, R. E., Chernov, I., Devoto, M., et al. (1993) Mapping, cloning and genetic characterization of the region containing the Wilson disease gene. Nature Genet. 5, 338–343.

    Article  PubMed  CAS  Google Scholar 

  17. Tanzi, R. E., Petrukhin, K., Chernov, I., Pellequer, J. L., Wasco, W., Ross, B., et al. (1993) The Wilson disease gene is a copper transporting ATPase with homology to the Menkes disease gene. Nature Genet. 5, 344–350.

    Article  PubMed  CAS  Google Scholar 

  18. Bull, P. C., Thomas, G. R., Rommens, J. M., Forbes, J. R., and Cox, D. W. (1993) The Wilson disease gene is a putative copper transporting P-type ATPase similar to the Menkes gene. Nature Genet. 5, 327–337.

    Article  PubMed  CAS  Google Scholar 

  19. Yamaguchi, Y., Heiny, M. E., and Gitlin, J. D. (1993) Isolation and characterization of a human liver cDNA as a candidate gene for Wilson disease. Biochem. Biophys. Res. Commun 197, 271–277.

    Article  PubMed  CAS  Google Scholar 

  20. Thomas, G. R., Forbes, J. R., Roberts, E. A., Walshe, J. M., and Cox, D. W. (1995) The Wilson disease gene: spectrum of mutations and their consequences. Nature Genet. 9, 210–217.

    Article  PubMed  CAS  Google Scholar 

  21. Shah, A. B., Chernov, I., Zhang, H. T., Ross, B. M., Das, K., Lutsenko, S., et al. (1997) Identification and analysis of mutations in the Wilson disease gene (ATP7B): population frequencies, genotype-phenotype correlation, and functional analyses. Am. J. Hum. Genet 61, 317–328.

    Google Scholar 

  22. Mori, M, Yoshida, M. C., Takeichi, N., and Taniguchi, N., eds. (1993) The LEC Rat, a New Model for Hepatitis and Liver Cancer. Springer-Verlag, Tokyo.

    Google Scholar 

  23. Li, Y., Togashi, Y., Sato, S., Emoto, T., Kang, J. H., Takeichi, N., et al. (1991) Spontaneous hepatic copper accumulation in Long—Evans Cinnamon rats with hereditary hepatitis. J. Clin. Invest 87, 1858–1861.

    Article  PubMed  CAS  Google Scholar 

  24. Ono, T., Abe, S., and Yoshida, M. C. (1991) Hereditary low level of plasma ceruloplasmin in LEC rats associated with spontaneous development of hepatitis and liver cancer. Jpn. J. Cancer Res 82, 486–489.

    Article  PubMed  CAS  Google Scholar 

  25. Wu, J., Forbes, J. R., Chen, H. S., and Cox, D. W. (1994) The LEC rat has a deletion in the copper transporting ATPase gene homologous to the Wilson disease gene. Nature Genet. 7, 541–545.

    Article  PubMed  CAS  Google Scholar 

  26. Suzuki, M. and Aoki, T. (1994) Impaired hepatic copper homeostasis in Long—Evans Cinnamon rats: reduced biliary excretion of copper. Pediatr. Res 35, 598–601.

    Article  PubMed  CAS  Google Scholar 

  27. Theophilos, M. B., Cox, D. W., and Mercer, J. F. B. (1996) The toxic milk mouse is a murine model of Wilson disease. Hum. Mol. Genet 5, 1619–1624.

    Article  PubMed  CAS  Google Scholar 

  28. Petrukhin, K., Lutsenko, S., Chernov, I., Ross, B. M, Kaplan, J. H., and Gilliam, T. C. (1994) Characterization of the Wilson disease gene encoding a P-type copper transporting ATPase: genomic organization, alternative splicing, and structure/function predictions. Hum. Mol. Genet 3, 1647–1656.

    Google Scholar 

  29. Borjigin, J., Payne, A. S., Deng, J., Li, X., Wang, M. M., Ovodenko, B., et al. (1999) A novel pineal night-specific ATPase encoded by the Wilson disease gene. J. Neurosci 19, 1018–1026.

    PubMed  CAS  Google Scholar 

  30. Schaefer, M., Hopkins, R. G., Failla M. L., and Gitlin, J. D. (1999) Hepatocyte-specific localization and copper-dependent trafficking of the Wilson’s disease protein in the liver. Am. J. Physiol 276, G639 — G646.

    PubMed  CAS  Google Scholar 

  31. Pedersen, P. L. and Carafoli, E. Ion motive ATPases. (1987) Trends Biochem. Sci 12, 146–150.

    Article  CAS  Google Scholar 

  32. Lutsenko, S., Petrukhin, K., Cooper, M. J., Gilliam, T. C., and Kaplan, J. H. (1997) N-Terminal domains of human copper-transporting adenosine triphosphatases (the Wilson’s and Menkes disease proteins) bind copper selectively in vivo and in vitro with stoichiometry of one copper per metal-binding repeat. J. Biol. Chem. 272, 18,939–18, 944.

    Google Scholar 

  33. Forbes, J. R., Hsi, G., and Cox, D. W. (1999) Role of the copper-binding domain in the copper transport function of ATP7B, the P-type ATPase defective in Wilson disease. J. Biol. Chem. 274, 12, 408–12, 413.

    Google Scholar 

  34. Yang, X. L., Miura, N., Kawarada, Y., Terada, K., Petrukhin, K., Gilliam, T. C., et al. (1997) Two forms of Wilson disease protein produced by alternative splicing are localized in distinct cellular compartments. Biochem. J 326, 897–902.

    PubMed  CAS  Google Scholar 

  35. Schaefer, M., Roelofsen, H., Wolters, H., Hofmann, W. J., Muller, M., Kuipers, F., et al. (1999) Localization of the Wilson’s disease protein in human liver. Gastroenterology 117, 1380–1385.

    Article  PubMed  CAS  Google Scholar 

  36. Harada, M., Sakisaka, S., Terada, K., Kimura, R., Kawaguchi, T., Koga, H., et al. (2000) Role of ATP7B in biliary copper excretion in a human hepatoma cell line and normal rat hepatocytes. Gastroenterology 118, 921–928.

    Article  PubMed  CAS  Google Scholar 

  37. Lutsenko, S., and Cooper, M. J. (1998) Localization of the Wilson’s disease protein product to mitochondria. Proc. Natl. Acad. Sci. USA 95, 6004–6009.

    Article  PubMed  CAS  Google Scholar 

  38. Nagano, K., Nakamura, K., Urakami, K., Umezawa, K., Uchiyama, H., Koiwai, K., et al. (1998) Intracellular distribution of the Wilson’s disease gene product (ATPase7B) after in vitro and in vivo exogenous expression in hepatocytes from the LEC rat, an animal model of Wilson’s disease. Hepatology 27, 799–807.

    Article  PubMed  CAS  Google Scholar 

  39. Petris, M. J., Mercer, J. F. B., Culvenor, J. G., Lockhart, P., Gleeson, P. A., and Camakaris, J. (1996) Ligand-regulated transport of the Menkes copper P-type ATPase efflux pump from the Golgi apparatus to the plasma membrane: a novel mechanism of regulated trafficking. EMBO J. 15, 6084–6095.

    PubMed  CAS  Google Scholar 

  40. Terada, K., Kawarada, Y., Miura, N., Yasui, O., Koyama, K., and Sugiyama, T. (1995) Copper incorporation into ceruloplasmin in rat livers. Biochim. Biophys. Acta 2170, 58–62.

    Google Scholar 

  41. Murata, Y., Yamakawa, E., Iizuka, T., Kodama, H., Abe, T., Seki, Y., et al. (1995) Failure of copper incorporation into ceruloplasmin in the Golgi apparatus of LEC rat hepatocytes. Biochem. Biophys. Res. Commun 209, 349–355.

    Article  PubMed  CAS  Google Scholar 

  42. Harada, M., Sakisaka, S., Yoshitake, M., Shakado, S., Gondoh, K., Sata, M., et al. (1993) Biliary copper excretion in acutely and chronically copper-loaded rats. Hepatology 17, 111–117.

    Article  PubMed  CAS  Google Scholar 

  43. Payne, A. S., Kelly, E. J., and Gitlin, J. D. (1998) Functional expression of the Wilson disease protein reveals mislocalization and impaired copper-dependent trafficking of the common H1069Q mutation. Proc. Natl. Acad. Sci. USA 95, 10,854–10, 859.

    Google Scholar 

  44. Zhou, B. and Gitschier, J. (1997) hCTRI: a human gene for copper uptake identified by complementation in yeast. Proc. Natl. Acad. Sci. USA 94, 7481–7486.

    Google Scholar 

  45. Dancis, A., Yuan, D. S., Haile, D., Askwith, C., Eide, D., Moehle, C., et al. (1994) Molecular characterization of a copper transporter protein in S. cerevisiae: an expected role for copper in iron transport. Cell 76, 393–402.

    Article  PubMed  CAS  Google Scholar 

  46. Klomp, L. W. J., Lin, S. J., Yuan, D. S., Klausner, R. D., Culotta, V. C., and Gitlin, J. D. (1997) Identification and functional expression of HAH1, a novel human gene involved in copper homeostasis. J. Biol. Chem 272, 9221–9226.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Terada, K., Sugiyama, T. (2002). Intracellular Copper Transport and ATP7B, the Wilson’s Disease Protein. In: Massaro, E.J. (eds) Handbook of Copper Pharmacology and Toxicology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-288-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-288-3_13

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-266-7

  • Online ISBN: 978-1-59259-288-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics