Skip to main content

The Role of PINA in Copper Transport, Circadian Rhythms, and Wilson’s Disease

  • Chapter
Book cover Handbook of Copper Pharmacology and Toxicology

Abstract

Circadian rhythms are found in virtually all organisms and are tightly coupled to environmental lighting conditions. These rhythms dictate our daily sleep schedule and hormonal fluctuations (1) and even influence our susceptibility to disease such as heart attacks (2), strokes (3), and seizures (4). One of the best studied circadian rhythms is the activity of the pineal gland, an organ situated deep within the brain. The pineal exhibits dramatic diurnal fluctuations in secretion of the hormone melatonin, which is best known for its soporific effects in humans. Melatonin is the only vertebrate hormone that is known to universally link environmental light information to the body’s physiological responses, including clock resetting, seasonal reproduction, and sleep (5). To understand the molecular basis of the circadian regulation of the pineal gland, we identified a set of genes expressed exclusively in the nighttime pineal. One of these genes, the pineal night-specific ATPase (PINA) is the focus of this chapter. PINA is a novel splice form of ATP7B and a putative copper transporter, which is active in the pineal only at night. The identification of PINA suggests that dynamic regulation of copper may play an integral role in circadian rhythms, and the study of PINA’ s functional differences from ATP7B may prove useful in understanding metal-transporting ATPases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Moore-Ede, M. C., Sultzman, F. M., and Fuller, C. A. (1982) The Clocks That Time Us-Physiology of the Circadian Timing System. Harvard University Press, Cambridge, MA.

    Google Scholar 

  2. Purcell, H. and Mulcahy, D. (1995) Circadian rhythms and the onset of myocardial infarction: clinical implications. J. Cardiovasc. Risk 2, 510–514.

    Article  PubMed  CAS  Google Scholar 

  3. Vermeer, S. E., Rinkel, G. J., and Algra, A. (1997) Circadian fluctuations in onset of subarachnoid hemorrhage. New data on aneurysmal and perimesencephalic hemorrhage and a systematic review. Stroke 28, 805–808.

    Article  PubMed  CAS  Google Scholar 

  4. Quigg, M. (2000) Circadian rhythms: interactions with seizures and epilepsy. Epilepsy Res. 42, 43–55.

    Article  PubMed  CAS  Google Scholar 

  5. Arendt, J. (1995) Melatonin and the Mammalian Pineal Gland. Chapman & Hall, London.

    Google Scholar 

  6. Borjigin, J., Li, X., and Snyder, S. H. (1999) The pineal gland and melatonin: molecular and pharmacologic regulation. Annu. Rev. Pharmacol. Toxicol. 39, 53–65.

    Article  PubMed  CAS  Google Scholar 

  7. Borjigin, J., Wang, M. M., and Snyder, S. H. (1995) Diurnal variation in mRNA encoding serotonin N-acetyltransferase in pineal gland. Nature 378, 783–785.

    Google Scholar 

  8. Li, X., Chen, S., Wang, Q., Zack, D. J., Snyder, S. H., and Borjigin, J. (1998) A pineal regulatory element (PIRE) mediates transactivation by the pineal/retina-specific transcription factor CRX. Proc. Natl. Acad. Sci. USA 95, 1876 1881.

    Google Scholar 

  9. Thomas, G. R., Forbes, J. R., Roberts, E. A., Walshe, J. M., and Cox, D. W. (1995) The Wilson disease gene: spectrum of mutations and their consequences [published erratum appears in Nature Genet. 1995 Apr;9(4):451]. Nature Genet. 9, 210–217.

    Article  PubMed  CAS  Google Scholar 

  10. Borjigin, J., Payne, A. S., Deng, J., Li, X., Wang, M. M., Ovodenko, B., et al. (1999) A novel pineal night-specific ATPase encoded by the Wilson disease gene. J. Neurosci. 19, 1018–1026.

    PubMed  CAS  Google Scholar 

  11. Bull, P. C. and Cox, D. W. (1994) Wilson disease and Menkes disease: new handles on heavy-metal transport. Trends Genet. 10, 246–252.

    Article  PubMed  CAS  Google Scholar 

  12. Wu, J., Forbes, J. R., Chen, H. S., and Cox, D. W. (1994) The LEC rat has a deletion in the copper transporting ATPase gene homologous to the Wilson disease gene. Nature Genet. 7, 541–545.

    Article  PubMed  CAS  Google Scholar 

  13. Mori, M., Hattori, A., Sawaki, M., Tsuzuki, N., Sawada, N., Oyamada, M., et al. (1994) The LEC rat: a model for human hepatitis, liver cancer, and much more. Am. J. Pathol. 144, 200–204.

    PubMed  CAS  Google Scholar 

  14. Drijfhout, W. J., Grol, C. J., and Westerink, B. H. (1993), Microdialysis of melatonin in the rat pineal gland: methodology and pharmacological applications. J. Neurochem. 61, 936–942

    Article  PubMed  CAS  Google Scholar 

  15. Gastel, J. A., Roseboom, P. H., Rinaldi, P. A., Weller, J. L., and Klein, D. C. (1998) Melatonin production: proteasomal proteolysis in serotonin N-acetyltransferase regulation. Science 279, 1358–1360.

    Google Scholar 

  16. Sethi, S., Grover, S., and Khodaskar, M. B. (1993) Role of copper in Indian childhood cirrhosis. Ann. Trop. Paediatr. 13, 3–5.

    PubMed  CAS  Google Scholar 

  17. Muller, T., Feichtinger, H., Berger, H., and Muller, W. (1996) Endemic Tyrolean infantile cirrhosis: an ecogenetic disorder. Lancet 347, 877–880.

    Article  PubMed  CAS  Google Scholar 

  18. Muller, T., van de Sluis, B., Muller, W., Pearson, P., and Wijmenga, C. (1999) Non-Indian childhood cirrhosis. Eur. J. Med. Res. 4, 293–297.

    PubMed  CAS  Google Scholar 

  19. Sato, M., Sugiyama, T., Daimon, T., and Iijima, K. (1994) Histochemical evidence for abnormal copper distribution in the central nervous system of LEC mutant rat. Neurosci. Lett. 171, 97–100.

    Article  PubMed  CAS  Google Scholar 

  20. Saito, T., Itoh, T., Fujimura, M., and Saito, K. (1995) Age-dependent and region-specific differences in the distribution of trace elements in 7 brain regions of Long-Evans Cinnamon (LEC) rats with hereditary abnormal copper metabolism. Brain Res. 695, 240–244.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Borjigin, J., Sun, X., Wang, M.M. (2002). The Role of PINA in Copper Transport, Circadian Rhythms, and Wilson’s Disease. In: Massaro, E.J. (eds) Handbook of Copper Pharmacology and Toxicology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-288-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-288-3_11

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-266-7

  • Online ISBN: 978-1-59259-288-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics