Skip to main content

Molecular Markers of Bone Turnover

Basic and Analytical Aspects

  • Chapter
Osteoporosis

Part of the book series: Contemporary Endocrinology ((COE))

  • 343 Accesses

Summary

The development of new markers of bone metabolism has greatly enriched the spectrum of serum and urine analytes used in the assessment of skeletal pathologies. Both markers of bone formation and of bone resorption are today widely used in experimental and clinical situations to assess bone turnover, rates of bone loss, future fracture risk and therapeutic efficacy. It should be borne in mind, however, that many of the compounds used as markers of bone turnover may reflect, at least to a certain degree, both bone formation and bone resorption. Furthermore, most of these markers are present in tissues other than bone and may therefore be influenced by nonskeletal processes as well. Thirdly, changes in biochemical markers of bone turnover are usually not disease specific, but reflect overall alterations in skeletal metabolism independent from the underlying cause. Therefore, results of bone marker measurements should always be interpreted against the background of their basic science.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stein GS, Lian JB, Stein JL, et al. Mechanisms regulating osteoblast proliferation and differentiation. In: Principles of Bone Biology. Bilezikian JP, Raisz LG, Rodan G, eds. Academic Press, San Diego, 1996, pp. 69–86.

    Google Scholar 

  2. Rizzoli R, Bonjour JP. Physiology of Calcium and Phosphate Homeostasis. In: Dynamics of Bone and Cartilage Metabolism, Seibel MJ, Robins SP, Bilezikian JP eds. Academic Press, San Diego, 1999, pp. 247–260.

    Google Scholar 

  3. Stinson RA, Hamilton BA. Human liver plasma membranes contain an enzyme activity that removes membrane anchor from alkaline phosphatase and converts it to a plasma-like form. Clin Biochem 1994; 27: 49–55.

    Article  PubMed  CAS  Google Scholar 

  4. Harris H. The human alkaline phosphatases: what we know and what we don’ t know. Clin Chim Acta 1989; 186: 133–150.

    Article  Google Scholar 

  5. Crofton PS. Biochemistry of alkaline phosphatase isoenzymes CRC Crit Rev Clin Lab Sci 1982:161–194.

    Google Scholar 

  6. Koyama I, Miura M, Matsuzaki H, Sakagishi Y, Komoda T. Sugar-chain heterogeneity of human alkaline phosphatases: differences between normal and tumor-associated isoenzymes. Am J Dis Child 1985; 139: 736–40.

    Google Scholar 

  7. Langlois MR, Delanghe JR, Kaufman JM, et al. Posttranslational heterogeneity of bone alkaline phosphatase in metabolic bone disease. Eur J Cli Chem Clin Biochem 1994; 32: 675–680.

    CAS  Google Scholar 

  8. Green S, Antiss CL, Fishman WH. Automated differential isoenzyme analysis. II. The fractionation of serum alkaline phosphatase into liver, intestinal, and other components. Enzymologia 1971; 41: 9–26.

    PubMed  CAS  Google Scholar 

  9. Van Hoof VO, Holyaerts MF, Geryl H, Van Mullem M, Lepoutre LG, De Broe ME. Age and sex distribution of alkaline phosphatase isoenzymes by agarose electrophoresis. Clin. Chem 1990; 36: 875–878.

    Google Scholar 

  10. Magnusson P, Larsson L, Magnusson M, Davie MW, Sharp CA. Isoforms of bone alkaline phosphatase: characterization and origin in human trabecular and cortical bone. J Bone Miner Res 1999; 14: 1926–1933.

    Article  PubMed  CAS  Google Scholar 

  11. Hill CS, Wolfert RL. The preparation of monoclonal antibodies which react preferentially with human bone alkaline phosphatase and not liver alkaline phosphatase. Clin Chem Acta 1989; 186: 315–320.

    Article  Google Scholar 

  12. Rosalki SB, Foo AY. Two new methods for separating and quantifying bone and liver alkaline phosphatase isoenzymes in plasma. Clin Chem 1984; 30: 1182–1186.

    PubMed  CAS  Google Scholar 

  13. Rosalki SB, Foo AY. Lectin affinity electrophoresis of alkaline phosphatase for the differentiation of bone hepatobiliary disease. Electrophoresis 1987; 10: 604–611.

    Article  Google Scholar 

  14. Crofton PM. Wheat-germ lectin affinity electrophoresis for alkaline phosphatase isoforms in children: age-dependent reference ranges and changes in liver and bone disease. Clin Chem 1992; 38: 663–670.

    PubMed  CAS  Google Scholar 

  15. Gomez B Jr, Ardakani S, Ju J, et al. Monoclonal antibody assay for measuring bone-specific alkaline phosphatase activity in serum. Clin Chem 1995; 41: 1560–1566.

    PubMed  CAS  Google Scholar 

  16. Martin M, Van Hoof V, Couttenye M, Prove, A, Blokx P. Analytical and clinical evaluation of a method to quantify bone alkaline phosphatase, a marker of osteoblastic activity. Anticancer Res 1997; 17: 3167–3170.

    PubMed  CAS  Google Scholar 

  17. Woitge H, Seibel MJ, Ziegler R. Comparison of total and bone-specific alkaline phosphatase in patients with nonskeletal disorders or metabolic bone disease Clin Chem 1996; 42: 1796–1804.

    PubMed  CAS  Google Scholar 

  18. Van Straalen JP, Sanders E, Prummel MF, Sanders GTB. Bone alkaline phosphatase as indicator of bone formation. Clin Chim Acta 1991; 201: 27–34.

    Article  PubMed  Google Scholar 

  19. Alpers DH, Goodwin CL, Young GP. Quantitation of human intestinal and liver/bone alkaline phosphatase in serum by rocket electroimmunoassay. Analyt Biochem 1984; 140: 129–137.

    Article  PubMed  CAS  Google Scholar 

  20. Farley JR, Chesnut CH III, Baylink DJ. Improved method for quantitative determination in serum of alkaline phosphatase of skeletal origin. Clin Chem 1981; 27: 2002–2007.

    PubMed  CAS  Google Scholar 

  21. Gorman L, Statland BE. Clinical usefulness of alkaline phosphatase isoenzyme determinations. Clin Biochem 1977; 10: 171–174.

    Article  PubMed  CAS  Google Scholar 

  22. Gallop PM, Lian JB, Hauschka PV. Carboxylated calcium-binding proteins and vitamin K. N EnL J Med 1980; 302: 1460–1466.

    Article  CAS  Google Scholar 

  23. Hauschka PV, Lian JB, Cole DE, Gundberg C. Osteocalcin and matrix Gla protein: vitamin K-dependent proteins in bone. Physiol. Rev 1989; 69: 990–1047.

    PubMed  CAS  Google Scholar 

  24. Gundberg CM, Nishimoto SK. Vitamin K dependent proteins of bone and cartilage. In: Seibel MJ, Robins SP, Bilezikian JP, eds., Dynamics of Bone and Cartilage Metabolism, Academic Press, San Diego, 1999, pp. 43–58.

    Google Scholar 

  25. Price PA. Vitamin K-dependent proteins. In: Cohn DV, ed., Calcium Regulation and Bone Metabolism: Basic and Clinical Aspects, Elsevier Science, Amsterdam, 1987, pp. 419–425.

    Google Scholar 

  26. Ducy P, Desbois C, Boycem B, et al. Increased bone formation in osteocalcin-deficient mice. Nature 1996; 382: 448–452.

    Article  PubMed  CAS  Google Scholar 

  27. Brown JP, Delmas PD, Malaval L, et al. Serum bone Gla-protein: a specific marker for bone formation in postmenopausal osteoporosis. Lancet 1984; 1: 1091–1093.

    Article  PubMed  CAS  Google Scholar 

  28. Bouillon R, Vanderschueren D, Van Herck E, et al. Homologous radioimmunoassay of human osteocalcin. Clin Chem 1992; 38: 2055–2060.

    PubMed  CAS  Google Scholar 

  29. Delmas PD, Stenner D, Wahner HW, et al. Increase in serum bone gamma-carboxyglutamic acid protein with aging in women. J Clin Invest 1983; 71: 1316–1321.

    Article  PubMed  CAS  Google Scholar 

  30. Gundberg CM, Wilson PS, Gallop PM, Parfitt AM. Determination of osteocalcin in human serum: results with two kits compared with those by a well-characterized assay. Clin Chem 1985; 31: 1720–1723.

    PubMed  CAS  Google Scholar 

  31. Taylor AK, Linkhart SG, Mohan S, Baylink DJ. Development of a new radioimmunoassay for human osteocalcin: evidence for a midmolecule epitope. Metabolism 1988; 37: 872–877.

    Article  PubMed  CAS  Google Scholar 

  32. Monaghan DA, Power Al, Fottrell PF. Sandwich enzyme immunoassay of osteocalcin in serum with use of an antibody against human osteocalcin. Clin Chem 1993; 39: 942–947.

    PubMed  CAS  Google Scholar 

  33. Parviainen M, Kuronen I, Kokko H, Lakaniemi M, Savolainen K, Mononen I. Two-site enzyme immunoassay for measuring intact human osteocalcin in serum. J Bone Min. Res. 1994; 9: 347–354.

    Article  CAS  Google Scholar 

  34. Chen JT, Hosoda K, Hasumi K, Ogata E, Shiraki M. Serum N-terminal osteocalcin is a good indicator for estimating responders to hormone replacement therapy in postmenopausal women. J Bone Min Res 1996; 11: 1784–1792.

    Article  CAS  Google Scholar 

  35. Delmas PD, Malaval L, Arlot M, et al. Serum bone-Gla-protein compared to bone histomorphometry in endocrine diseases. Bone 1985; 6: 339–341.

    Article  PubMed  CAS  Google Scholar 

  36. Fournier B, Gineyts E, Delmas PD. Evidence that free gamma carboxyglutamic acid circulates in serum. Clin Chim Acta 1989; 182: 173–182.

    Article  PubMed  CAS  Google Scholar 

  37. Taylor AK, Linkhart S, Mohan S, et al. Multiple osteocalcin fragments in human urine and serum as detected by a midmolecule osteocalcin radioimmunoassay. J Clin Endocrinol Metab. 1990; 70: 467–472.

    Article  PubMed  CAS  Google Scholar 

  38. Baumgrass R, Williamson MK, Price PA. Identification of peptide fragments generated by digestion of bovine and human osteocalcin with the lysosomal proteinases cathepsin B, D, L, H, and S. J Bone Min Res 1997; 12: 447–455.

    Article  CAS  Google Scholar 

  39. Gorai L, Hosoda K, Taguchi Y, et al. A heterogeneity in serum osteocalcin N-terminal fragments in Paget’s disease: Comparison with other biochemical indices in pre-and post-menopause. J Bone Min Res 1997; 12 (S1): T678.

    Google Scholar 

  40. Page AE, Hayman AR, Andersson LMB, Chambers TJ, Warburton MJ. Degradation of bone matrix proteins by osteoclast cathepsins. Internat J Biochem. 1993; 25: 545–550.

    Article  CAS  Google Scholar 

  41. Delmas PD, Christiansen C, Mann KG, Price PA. Bone gla protein (osteocalcin) assay standardization report. J Bone Min Res. 1990; 5: 5–10.

    Article  CAS  Google Scholar 

  42. Masters PW, Jones RG, Purves DA, Cooper EH, Cooney JM. Commercial assays for serum osteocalcin give clinically discordant result Clin. Chem. 1994; 40, 358–363.

    CAS  Google Scholar 

  43. Diego ED, Guerrero R, de la Piedra, C. Six osteocalcin assays compared. Clin Chem. 1994; 40: 2071–2077.

    CAS  Google Scholar 

  44. Liu SH, Yang RS, al-Shaikh R, Lane JM. Collagen in tendon, ligament, and bone healing. A current review. Clin Orthop 1995; 318: 265–278.

    PubMed  Google Scholar 

  45. Dumon JC, Wantier H, Mathieu JJ, Body JJ. Technical and clinical validation of a new immunoradiometric assay for human osteocalcin. Eur J Endocrinol 1996; 135: 231–237.

    Article  PubMed  CAS  Google Scholar 

  46. Liu SH, Yang RS, al-Shaikh R, Lane JM. Collagen in tendon, ligament, and bone healing. A current review. Clin Orthop 1995; 318: 265–278.

    PubMed  Google Scholar 

  47. Merry AH, Harwood R, Wooley DE, Grant ME, Jackson DS. Identification and partial characterization of the non-collagenous amino-and carboxy-terminal extension peptides of cartilage procollagen. Biochem Biophys Res Commun 1976; 71: 83–90.

    Article  PubMed  CAS  Google Scholar 

  48. Fessler LI, Morris NP, Fessler JH. Procollagen: biological scission of amino and carboxy extension peptides. Proc Natl Acad Sci USA 1975; 72: 4905–4909.

    Article  PubMed  CAS  Google Scholar 

  49. Olsen BR, Guzman NA, Engel J, Condit C, Aase S. Purification and characterization of a peptide from the carboxy-terminal region of chick tendon procollagen type I. Biochem. 1977; 16: 3030–3036.

    Article  CAS  Google Scholar 

  50. Smedsrod B, Melkko J, Risteli L, Risteli J. Circulating C-terminal propeptide of type I procollagen is cleared mainly via the mannose receptor in liver endothelial cells. Biochem J 1990; 271, 345–350.

    PubMed  CAS  Google Scholar 

  51. Taubman MB, Goldberg B, Sherr C. Radioimmunoassay for human procollagen. Science 1974; 186: 1115–1117.

    Article  PubMed  CAS  Google Scholar 

  52. Melkko J, Niemi S, Risteli L, Risteli J. Radioimmunoassay of the carboxyterminal propeptide of human type I procollagen. Clin Chem 1990; 36: 1328–1332.

    PubMed  CAS  Google Scholar 

  53. Eriksen EF, Charles P, Meisen F, et al. Serum markers of type 1 collagen formation and degradation in metabolic bone disease: correlation with bone histomorphometry. J Bone Min Res 1993; 8: 127–132.

    Article  CAS  Google Scholar 

  54. Hassager C, Jensen LT, Johansen JS, et al. The carboxy-terminal propeptide of type 1 procollagen in serum as a marker of bone formation: the effect of nandrolone decanoate and female sex hormones. Metabolism 1991; 40: 205–208.

    Article  PubMed  CAS  Google Scholar 

  55. Ebeling PR, Peterson JM, Riggs BL. Utility of type I procollagen propeptide assays for assessing abnormalities in metabolic bone diseases. J Bone Min Res 1992; 7: 1243–1250.

    Article  CAS  Google Scholar 

  56. Charles P, Mosekilde L, Risteli L, et al. Assessment of bone remodeling using biochemical indicators of type I collagen synthesis and degradation: relation to calcium kinetics. Bone Miner 1994; 24: 81–94.

    Article  PubMed  CAS  Google Scholar 

  57. Lowry M, Hall D, Brosnan J. Hydroxyproline metabolism by the rat kidney: distribution of renal enzymes of hydroxyproline catabolism and renal conversion of hydroxyproline to glycine and serine. Metab 1985; 34: 955–961.

    Article  CAS  Google Scholar 

  58. Kivirikko KI. Urinary excretion of hydroxyproline in health and disease. Int Rev Connect Tissue Res 1970; 5: 93–163.

    PubMed  CAS  Google Scholar 

  59. Krane SM, Kantrowitz FG, Byrne M, Pinnell SR, Singer FR. Urinary excretion of hydroxylysine and its glycosides as an index of collagen degradation. J Clin Invest. 1977; 59: 819–827.

    Article  PubMed  CAS  Google Scholar 

  60. Smith R. Collagen and disorders of bone. Clin Sci 1980; 59: 215–223.

    PubMed  CAS  Google Scholar 

  61. Prockop DJ, Kivirikko KI, Tuderman L, Guzman NA. The biosynthesis of collagen and its disorders. N Engl J Med 1979; 301: 13–23.

    Article  PubMed  CAS  Google Scholar 

  62. Robins SP. Turnover of collagen and its precursors. In: Viidik A, Vuust J. eds., Biology of Collagen, Academic Press, NY, 1980; pp. 135–151.

    Google Scholar 

  63. Cunningham LW, Ford JD, Segrest JP. The isolation of identical hydroxylysyl glycosides from hydroxylates of soluble collagen and from human urine. J Biol Chem 1967; 242: 2570–2571.

    PubMed  CAS  Google Scholar 

  64. Moro L, Modricki C, Stagni N, et al. High performance liquid chromatography analysis of urinary hydroxylysine glycosides as indicators of collagen turnover. Analyst 1984; 109: 1621–1628.

    Article  PubMed  CAS  Google Scholar 

  65. Moro L, Noris-Suarez K, Michalsky M, Romanello M, de Bernard B. The glycosides of hydroxylysine are final products of collagen degradation in humans. Biochim Biophys Acta 1993; 1156: 288–290.

    Article  PubMed  CAS  Google Scholar 

  66. Segrest JP, Cunningham LW. Variations in human urinary 0-hydroxylysyl glycoside levels and their relationship to collagen metabolism. J Clin Invest 1970; 49: 1497–1509.

    Article  PubMed  CAS  Google Scholar 

  67. Bettica P, Moro L, Robins SP, et al. The comparative performance of urinary bone resorption markers: galactosyl hydroxylysine, pyridinium crosslinks, hydroxyproline. Clin Chem 1992; 38: 2313–2318.

    PubMed  CAS  Google Scholar 

  68. Fujimoto D, Moriguchi T, Ishida T, Hayashi H. The structure of pyridinoline, a collagen crosslink. Biochem Biophys Res Commun 1978; 84: 52–57.

    Article  PubMed  CAS  Google Scholar 

  69. Robins SP. Fibrillogenesis and maturation of collagens. In: Seibel MJ, Robins SP, Bilezikian JP, eds., Dynamics of Bone and Cartilage Metabolism, Academic Press, San Diego, CA, 1999, pp. 31–42.

    Google Scholar 

  70. von der Mark, K. Structure and Biosynthesis of Collagens. In: Seibel M, Robins S, Bilezikian J, eds., Dynamics of Bone and Cartilage Metabolism, Academic Press, San Diego, CA, 1999, pp. 3–30.

    Google Scholar 

  71. Gunja-Smith Z, Boucek RJ. Collagen crosslink components in human urine. Biochem J 1981; 197: 759–762.

    PubMed  CAS  Google Scholar 

  72. Delmas PD, Schlemmer A, Gineyts E, et al. Urinary excretion of pyridinoline crosslinks correlates with bone turnover measured on iliac crest biopsy in patients with vertebral osteoporosis. J Bone Min Res 1991; 6: 639–644.

    Article  CAS  Google Scholar 

  73. Eastell R, Colwell A, Hampton L, Reeve J. Biochemical markers of bone resorption compared with estimates of bone resorption from radiotracer kinetic studies in osteoporosis. J Bone Miner Res 1997; 12: 59–65.

    Article  PubMed  CAS  Google Scholar 

  74. Colwell A, Russell R, Eastell R. Factors affecting the assay of urinary 3-hydroxy pyridinium crosslinks of collagen as markers of bone resorption. Eur J Clin Invest 1993; 23: 341–349.

    Article  PubMed  CAS  Google Scholar 

  75. Boucek RJ, Noble NL, Gunja-Smith Z, Butler WT. The Marfan syndrome: a deficiency in chemically stable collagen crosslinking. N Engl J Med 1981; 305: 988–991.

    Article  PubMed  CAS  Google Scholar 

  76. Eyre DR, Dickson IR, Van Ness KP. Collagen crosslinking in human bone and articular cartilage. Biochem J 1988; 252: 495–500.

    PubMed  CAS  Google Scholar 

  77. Seibel MJ, Robins SP, Bilezikian JP. Urinary pyridinium crosslinks of collagen: specific markers of bone resorption in metabolic bone disease. Trends Endocrinol Metab 1992; 3: 263–270.

    Article  PubMed  CAS  Google Scholar 

  78. Kraenzlin EM, Seibel MJ. Measurement of biochemical markers of bone resorption. In: Seibel MJ, Robins SP, Bilezikian JP, eds., Dynamics of Bone and Cartilage Metabolism, Academic Press, San Diego, CA, 1999, pp. 411–426.

    Google Scholar 

  79. Brixen K, Eriksen EF. Validation of local and systemic markers of bone turnover. In: Seibel MJ, Robins SP, Bilezikian JP, eds., Dynamics of Bone and Cartilage Metabolism, Academic Press, San Diego, CA, 1999, pp. 427–436.

    Google Scholar 

  80. Black D, Duncan A, Robins SP. Quantitative analysis of the pyridinium crosslinks of collagen in urine using ion-paired reversed-phase high-performance liquid chromatography. Anal Biochem 1988; 169: 197–203.

    Article  PubMed  CAS  Google Scholar 

  81. Pratt DA, Daniloff Y, Duncan A, Robins SP. Automated analysis of the pyridinium crosslinks of collagen in tissue and urine using solid-phase extraction and reversed-phase high-performance liquid chromatography. Anal Biochem 1992; 207: 168–175.

    Article  PubMed  CAS  Google Scholar 

  82. James IT, Perrett D. Automated on-line solid-phase extraction and high-performance liquid chromatographic analysis of total and free pyridinium crosslinks in serum. J Chromatogr 1998; 79: 159–166.

    Google Scholar 

  83. Robins SP, Duncan A, Riggs BL. Direct measurement of free hydroxy-pyridinium crosslinks of collagen in urine as new markers of bone resorption in osteoporosis. In: Christiansen C, Overgaard K, eds., Osteoporosis 1990. Osteopress, Copenhagen, 1990, pp. 465–468.

    Google Scholar 

  84. Seyedin SM, Kung VT, Daniloff YN et al. Immunoassay for urinary pyridinoline: the new marker of bone resorption. J Bone Miner Res 1993; 8: 635–641.

    Article  PubMed  CAS  Google Scholar 

  85. Robins SP, Woitge H, Hesley R, Ju J, Seyedin S, Seibel MJ. Direct, enzyme-linked immunoassay for urinary deoxypyridinoline as a specific marker for measuring bone resorption. J Bone Miner Res 1994; 9: 1643–1649.

    Article  PubMed  CAS  Google Scholar 

  86. Delmas PD, Gineyts E, Bertholin A, Garnero P, Marchand F Immunoassay of urinary pyridinoline crosslink excretion in normal adults and in Paget’s disease. J Bone Min Res 1993; 8: 643–648.

    Article  CAS  Google Scholar 

  87. Ristell J, Niemi S, Elomaa I, Risteli L. Bone resorption assay based on a peptide liberated during type I collagen degradation. J Bone Min Res 1991; 6: 5251, A670

    Google Scholar 

  88. Risteli J, Risteli L. Products of bone collagen metabolism. In: Seibel M, Robins S, Bilezikian J, eds., Dynamics of Bone and Cartilage Metabolism. Academic Press, San Diego, CA, 1999, pp. 275–288.

    Google Scholar 

  89. Bonde MQP, Fledelius C, Riis BJ, Christiansen C. Immunoassay for quantifying type I degradation products in urine evaluated. Clin Chem 1994; 40: 2022–2025.

    PubMed  CAS  Google Scholar 

  90. Fledelius C, Johnsen AH, Cloos PAC, Bonde M, Qvist P. Characterization of urinary degradation products derived from type I collagen. Identification of a beta-isomerized Asp-Gly sequence within the C-terminal telopeptide (alphal) region. J Biol Chem 1997; 272: 9755–9763.

    Article  PubMed  CAS  Google Scholar 

  91. Bonde M, Fledelius C, Qvist P, Christiansen C. Coated-tube radioimmunoassay for C-telopeptides of type I collagen to assess bone resorption. Clin Chem 1996; 42: 1639–1644.

    PubMed  CAS  Google Scholar 

  92. Garnero P, Fledelius C, Gineyts E, et al. Decreased beta-isomerization of the C-terminal telopeptide of type I collagen alpha 1 chain in Paget’s disease of bone. J Bone Miner Res 1997; 12: 1407–1415.

    Article  PubMed  CAS  Google Scholar 

  93. Cloos PAC, Fledelius C. Two new bone resorption assays measuring racemized protein fragments: measurement of age-modified peptides to assess bone quality. Bone 1998; 23 (Suppl): T114.

    Article  Google Scholar 

  94. Cloos PAC, Fledelius C, Ovist P, Garnero P. Biological clocks of bone aging: racemisation and isomerization, potential tools to assess bone turnover. Bone 1998; 23 (Suppl.): F440.

    Google Scholar 

  95. Bonde M, Garnero P, Fledelius C, et al. Measurement of bone degradation products in serum using antibodies reactive with an isomerized form of an 8 amino acid sequence of the C-telopeptide of type I collagen. J Bone Miner Res 1997; 12: 1028–1034.

    Article  PubMed  CAS  Google Scholar 

  96. Hanson DA, Weis MA, Bollen AM, Maslan SL, Singer FR, Eyre DR. A specific immunoassay for monitoring human bone resorption: quantitation of type I collagen cross-linked N-telopeptides in urine. J Bone Miner Res 1992; 7: 1251–1258.

    Article  PubMed  CAS  Google Scholar 

  97. Robins SP. Collagen crosslinks in metabolic bone disease. Acta Orthop Scand Suppl 1995; 266: 171–175.

    PubMed  CAS  Google Scholar 

  98. Woitge HW, Oberwittler H, Farahmand I, et al. Novel serum markers of bone resorption. J Bone Mineral Res 1999; 14: 792–801.

    Article  CAS  Google Scholar 

  99. Fisher LW, Whitson SW, Avioli LW, Termine JD. Matrix sialoprotein of developing bone. J Biol Chem 1983;258:12, 723–127, 27.

    Google Scholar 

  100. Oldberg A, Franzen A, Heinegard D. Isolation and characterization of two sialoproteins present only in bone. Biochem J 1985; 232: 715–724.

    Google Scholar 

  101. Chen J, Shapiro HS, Wrana JL, Reimers S, Heersche J, Sodek J. Localization of bone sialoprotein (BSP) expression to sites of mineral tissue formation in fetal rat tissue by in situ hybridization. Matrix 1991; 11: 133–143.

    Article  PubMed  CAS  Google Scholar 

  102. Bianco P, Fisher LW, Young MF, Termine JD, Robey PG. Expression of bone sialoprotein (BSP) in developing human tissues. Calcif Tissue Int 1991; 49 (6): 421–426.

    Article  PubMed  CAS  Google Scholar 

  103. Bellahcene A, Castronovo V. Expression of bone matrix proteins in human breast cancer: potential roles in microcalcification formation and in the genesis of bone metastases. Bull Cancer 1997; 84: 17–24.

    PubMed  CAS  Google Scholar 

  104. Ross FP, Chappel J, Alvarez JI, et al. Interactions between the bone matrix proteins osteopontin and bone sialoprotein and the osteoclast integrin av b3 potentiate bone resorption. J Biol Chem 1993; 268: 9901–9907.

    PubMed  CAS  Google Scholar 

  105. Hunter GK, Goldberg HA. Modulation of crystal formation by bone phosphoproteins: role of glutamic acid-rich sequences in the nucleation of hydroxyapatite by bone sialoprotein. Biochem J 1994; 302: 175–179.

    PubMed  CAS  Google Scholar 

  106. Saxne T, Zunino L, Heinegard D. Increased release of bone sialoprotein into synovial fluid reflects tissue destruction in rheumatoid arthritis. Arthritis Rheum 1995; 38: 82–90.

    Article  PubMed  CAS  Google Scholar 

  107. Karmatschek M, Woitge HW, Armbruster FP, Ziegler R, Seibel MJ. Improved purification of human bone sialoprotein and development of a homologous radioimmunoassay. Clin Chem 1997; 43: 2076–2082.

    PubMed  CAS  Google Scholar 

  108. Fedarko NS, Fohr B, Robey PG, Young MF, Fisher LW. Factor H binding to bone sialoprotein and osteopontin enables tumor cell evasion from complement-mediated attack. J Biol Chem 2000;275(22):16,666–16,672.

    Google Scholar 

  109. Seibel MJ, Woitge HW, PecherstorferM, et al. Serum immunoreactive bone sialoprotein as a new marker of bone turnover in metabolic and malignant bone disease. J Clin Endocrinol Metab 1996; 81: 3289–3294.

    Article  PubMed  CAS  Google Scholar 

  110. Minkin C Bone acid phosphatase: tartrate-resistant acid phosphatase as a marker of osteoclast function, Calcif Tissue Int 1982;34:285–290.

    Google Scholar 

  111. Halleen JM, Karp M, Viloma S, Laaksonen P, Hellman J, Kakonen SM, Stepan JJ, et al. Two-site immunoassays for osteoclastic tartrate-resistant acid phosphatase based on characterization of six monoclonal antibodies. J Bone Miner Res 1999; 14: 464–469.

    Article  PubMed  CAS  Google Scholar 

  112. Halleen JM, Alatalo SL, Suominen H, Cheng S, Janckila AJ, Vaananen HK. Tartrate-resistant acid phosphatase 5b: a novel serum marker of bone resorption. J Bone Miner Res 2000; 15: 1337–1345.

    Article  PubMed  CAS  Google Scholar 

  113. Kraenzlin ME, Lau KH, Liang L, et al. Development of an immunoassay for human serum osteoclastic tartrate-resistant acid phosphatase. J Clin Endocrinol Metab 1990; 71: 442–451.

    Article  PubMed  CAS  Google Scholar 

  114. Cheung C, Panesar N, Haines C, Masarei J, Swaminathan R. Immunoassay of a tartrate-resistant acid phosphatase in serum. Clin Chem 1995; 41: 679–686.

    PubMed  CAS  Google Scholar 

  115. Bais R, Edwards JB. An optimized continuous-monitoring procedure for semiautomated determination of serum acid phosphatase activity. Clin Chem 1976; 22: 2025–2028.

    PubMed  CAS  Google Scholar 

  116. Lang M, Seibel MJ, Zipf A, Ziegler R. Influence of a new protease inhibitor on the stability of osteocalcin in serum. Clin Lab 1996; 42: 5–10.

    CAS  Google Scholar 

  117. Colwell A Hamer A Blumsohn A. and Eastell R. To determine the effects of ultraviolet light natural light and ionizing radiation on pyridinium cross-links in bone and urine using high-performance liquid chromatography. Eur J Clin Invest 1996; 26: 1107–1114.

    Article  PubMed  CAS  Google Scholar 

  118. Blumsohn A, Colwell A, Naylor KE, Eastell R. Effect of light and gamma-irradiation on pyridinolines and telopeptides of type I collagen in urine. Clin Chem 1995; 41: 1195–1197.

    PubMed  CAS  Google Scholar 

  119. Mautalen CA. Circadian rhythm of urinary total and free hydroxyproline excretion and its relation to creatinine excretion. J Lab Clin Med 1970; 75: 11–18.

    PubMed  CAS  Google Scholar 

  120. Jensen JB, Kollerup G, Sorensen A, Sorensen OH. Intraindividual variability of bone markers in the urine. Scand J Clin Lab Invest 1997; 57: 29–34.

    Google Scholar 

  121. Wichers M, Schmidt E, Bidlingmaier F, Klingmüller D. Diurnal rhythm of crosslaps in human serum. Clin Chem 1999; 45: 1858–1860.

    PubMed  CAS  Google Scholar 

  122. Schlemmer A, Hassager C, Jensen SB, Christiansen C. Marked diurnal variation in urinary excretion of pyridinium cross-links in premenopausal women. J Clin Endocrinol Metab 1992; 74: 476–480.

    Article  PubMed  CAS  Google Scholar 

  123. Schlemmer A, Hassager C, Pedersen B, Christiansen C. Posture age menopause and osteopenia do not influence the circadian variation in the urinary excretion of pyridinium crosslinks J Bone Miner Res 1994; 9: 1883–1888.

    PubMed  CAS  Google Scholar 

  124. Eastell R, Simmons PS, Assiri AM, Burritt MF, Russel RGG, Riggs BL. Nyctohemeral changes in bone turnover assessed by serum bone gla-protein concentration and urinary deoxypyridinoline excretion: effect of growth and aging. Clin Sci 1992; 83: 375–382.

    PubMed  CAS  Google Scholar 

  125. Nielsen HK, Laurberg P, Brixen K, Mosekilde L. Relations between diurnal variations in serum osteocalcin cortisol parathyroid hormone and ionized calcium in normal individuals. Acta Endocrinol (Copenh.) 1991; 124: 391–398.

    CAS  Google Scholar 

  126. Popp-Snijders C, Lips P, Netelenbos JC. Intra-individual variation in bone resorption markers in urine. Ann Clin Biochem 1996; 33: 347, 348.

    Google Scholar 

  127. McLaren AM, Isdale AH, Whitings PH, Bird HA, Robins SP. Physiological variations in the urinary excretion of pyridinium crosslinks of collagen. Br J Rheumatol 1993; 32: 307–312.

    Article  PubMed  CAS  Google Scholar 

  128. Blumsohn A, Hannon RA, al-Dehaimi AW, Eastell R. Short-term intraindividual variability of markers of bone turnover in healthy adults. J Bone Miner Res 1994; 9 (Suppl.1): S153.

    Google Scholar 

  129. Nielsen HK, Brixen K, Bouillon R, Mosekilde L. Changes in biochemical markers of osteoblastic activity during the menstrual cycle. J Clin Endocrinol Metab 1990; 70: 1431–1437.

    Article  PubMed  CAS  Google Scholar 

  130. Schlemmer A, Hassager C, Risteli J, Risteli L, Jensen SB, Christiansen C. Possible variation in bone resorption during the normal menstrual cycle. Acta Endocrinol (Copenh.) 1993; 129: 388–392.

    CAS  Google Scholar 

  131. Gorai I, Chaki O, Nakayama M, Minaguchi H. Urinary biochemical markers for bone resorption during the menstrual cycle. Cale Tiss Int 1995; 57: 100–104.

    Article  CAS  Google Scholar 

  132. Christiansen C, Riis BJ, Nilas L, Rodbro P, Deftos L. Uncoupling of bone formation and resorption by combined estrogen and progestagen therapy in postmenopausal osteoporosis. Lancet 1985; 800, 801.

    Google Scholar 

  133. Scharla S, Scheidt-Nave C, Leidig G, Seibel MJ, Ziegler R. Lower serum 25-hydroxyvitamin D is associated with increased bone resorption markers and lower bone density at the proximal femur in normal females: a population-based study. Exp Clin Endocrinol Diabetes 1996; 104: 289–292.

    Article  PubMed  CAS  Google Scholar 

  134. Morgan DB, Rivlin RS, Davis R. Seasonal changes in the urinary excretion of calcium. Am J Clin Nutr 1972; 25: 652–654.

    PubMed  CAS  Google Scholar 

  135. Woitge H, Scheidt-Nave C, Kissling C, Leidig G, Meyer K, Grauer A, Scharla S, Ziegler R, Seibel MJ. Seasonal variation of biochemical indices of bone turnover: results of a population based study. J Clin Endocrinol Metab 1998; 83: 68–75.

    Article  PubMed  CAS  Google Scholar 

  136. Stepan JJ, Tesarova A, Havranek T, Jodl J, Normankova J, Pacovsky V. Age and sex dependency of the biochemical indices of bone remodeling. Clin Chem. Acta 1985; 151: 273–283.

    CAS  Google Scholar 

  137. Eastell R, Delmas PD, Hodgson SF, Eriksen EF, Mann KG, Riggs BL. Bone formation rate in older normal women: concurrent assessment with bone histomorphometry calcium kinetics and biochemical markers. J Clin Endocrinol Metab 1988; 67: 741–748.

    Article  PubMed  CAS  Google Scholar 

  138. Kelly PJ, Pocock NA, Sambrook PN, Eisman JA. Age and menopause-related changes in indices of bone turnover. J Clin Endocrinol Metab 1989; 69: 1160–1165.

    Article  PubMed  CAS  Google Scholar 

  139. Gundberg CM, Hanning R, Liu A, Zlotkin S, Balfe J, Cole D. Clearance of osteocalcin by peritoneal dialysis in children with end-stage renal disease. Ped Res 1987; 21: 296–300.

    Article  CAS  Google Scholar 

  140. Woitge HW, Oberwittler H, Farahmand I, Lang M, Ziegler R, Seibel MJ. New serum assays for bone resorption. Results of a cross-sectional study. J Bone Mineral Res 1999; 14: 792–801.

    Article  CAS  Google Scholar 

  141. Wallace JD, Cuneo RC, Lundberg PA, Rosen T, Jorgensen JO, Longobardi S, et al. Responses of markers of bone and collagen turnover to exercise, growth hormone (GH) administration, and GH withdrawal in trained adult males. J Clin Endocrinol Metab 2000; 85: 124–133.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fohr, B., Woitge, H.W., Seibel, M.J. (2003). Molecular Markers of Bone Turnover. In: Orwoll, E.S., Bliziotes, M. (eds) Osteoporosis. Contemporary Endocrinology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-278-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-278-4_8

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-260-5

  • Online ISBN: 978-1-59259-278-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics