Skip to main content

Use of Bone Densitometry in the Clinical Management of Osteoporosis

  • Chapter
Osteoporosis

Part of the book series: Contemporary Endocrinology ((COE))

  • 346 Accesses

Abstract

Osteoporosis is sometimes termed the “silent epidemic”ause early osteoporosis is asymptomatic, and significant bone loss may become evident only after a hip or vertebral fracture has occurred. Fractures, especially of the spine, hip, and wrist, are the clinical complications of osteoporosis. Initially, spine fractures tend to be asymptomatic but they are associated with significant morbidity as the severity and number of fractures increase. The most serious fractures are those of the hip, which contribute substantially to morbidity, mortality, and health care costs. Within a year of a hip fracture the mortality rate is as high as 20% with reduced functional capacity in 50% of surviving patients (1). Even the presence of clinical risk factors such as lifestyle, diet and family history of osteoporosis are relatively insensitive in predicting the presence of osteopenia (2). The pathophysiology of osteoporosis is multifactorial and complex. Fractures, the clinical manifestations of osteoporosis, depend on a variety of factors including the propensity to fall, visual acuity, response to falling, and bone strength (3,4). However, bone mass is the most important determinant of bone strength and accounts for up to 80% of its variance (5,6). Thus reduced bone mass should be a useful predictor of increased fracture risk (7). In fact, many prospective studies of older subjects have shown that levels of bone density at the spine or hip that are one standard deviation below the population mean increases the risk by a factor of two to three (8–11). Methods of measuring bone mineral density are pertinent to the assessment of osteopenia, identification of those individuals at risk of fracture, and identification of candidates for prevention or treatment strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cooper C, Atkinson EJ, Jacobsen SJ, O’Fallon WM, Melton LJd. Population-based study of survival after osteoporotic fractures. Am J Epidemiol 1993; 137 (9): 1001–1005.

    PubMed  CAS  Google Scholar 

  2. Cooper C, Shah S, Hand DJ, Adams J, Compston J, Davie M, et al. Screening for vertebral osteoporosis using individual risk factors. The Multicentre Vertebral Fracture Study Group. Osteoporos Int 1991; 2 (1): 48–53.

    Article  PubMed  CAS  Google Scholar 

  3. Prudham D, Evans JG. Factors associated with falls in the elderly: a community study. Age Ageing 1981; 10 (3): 141–146.

    Article  PubMed  CAS  Google Scholar 

  4. Kelsey JL, Hoffman S. Risk factors for hip fracture [editorial]. N Engl J Med 1987; 316 (7): 404–406.

    Article  PubMed  CAS  Google Scholar 

  5. Hodgskinson R, Njeh CF, Currey JD, Langton CM. The ability of ultrasound velocity to predict the stiffness of cancellous bone in vitro. Bone 1997; 21 (2): 183–190.

    Article  PubMed  CAS  Google Scholar 

  6. Rice JC, Cowin SC, Bowman JA. On the dependence of the elasticity and strength of cancellous bone on apparent density. J Biomech 1988; 21 (2): 155–168.

    Article  PubMed  CAS  Google Scholar 

  7. Ross PD, Davis JW, Vogel JM, Wasnich RD. A critical review of bone mass and the risk of fractures in osteoporosis. Calcif Tissue Int 1990; 46 (3): 149–161.

    Article  PubMed  CAS  Google Scholar 

  8. Cummings SR, Black DM, Nevitt MC, Browner W, Cauley J, Ensrud K, Genant HK, Palermo L, Scott J, Vogt TM. Bone density at various sites for prediction of hip fractures. The Study of Osteoporotic Fractures Research Group. Lancet 1993; 341 (8837): 72–75.

    Article  PubMed  CAS  Google Scholar 

  9. Marshall D, Johnell O, Wedel H. Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ (Clin Res ed.) 1996;312(7041):1254–1259.

    Google Scholar 

  10. Nevitt MC, Johnell O, Black DM, Ensrud K, Genant HK, Cummings SR. Bone mineral density predicts non-spine fractures in very elderly women. Study of Osteoporotic Fractures Research Group. Osteoporos Int 1994; 4 (6): 325–331.

    Article  PubMed  CAS  Google Scholar 

  11. Nguyen T, Sambrook P, Kelly P, Jones G, Lord S, Freund J, Eisman J. Prediction of osteoporotic fractures by postural instability and bone density [see comments]. BMJ 1993; 307 (6912): 1111–1115.

    Article  PubMed  CAS  Google Scholar 

  12. Williamson MR, Boyd CM, Williamson SL. Osteoporosis: diagnosis by plain chest film versus dual photon bone densitometry. Skeletal Radiol 1990; 19 (1): 27–30.

    Article  PubMed  CAS  Google Scholar 

  13. Masud T, Mootoosamy I, McCloskey EV, O’Sullivan MP, Whitby EP, King D, et al. Assessment of osteopenia from spine radiographs using two different methods: the Chingford Study. Br J Radiol 1996; 69 (821): 451–456.

    Article  PubMed  CAS  Google Scholar 

  14. Jergas M, Uffmann M, Escher H, Glüer CC, Young KC, Grampp S, et al. Interobserver variation in the detection of osteopenia by radiography and comparison with dual x-ray absorptiometry (DXA) of the lumbar spine. Skeletal Radiol 1994; 23 (3): 195–199.

    Article  PubMed  CAS  Google Scholar 

  15. Tothill P. Methods of bone mineral measurement. Phys. Med. Biol. (UK) 1989; 34 (5): 541–572.

    Google Scholar 

  16. Blake GM, Jagathesan T, Herd RJ, Fogelman I. Dual X-ray absorptiometry of the lumbar spine: the precision of paired anteroposterior/lateral studies. Br J Radiol 1994; 67 (799): 624–630.

    Article  PubMed  CAS  Google Scholar 

  17. Genant HK, Engelke K, Fuerst T, Gluer CC, Grampp S, Harris ST, et al. Noninvasive assessment of bone mineral and structure: state of the art. J Bone Miner Res 1996; 11 (6): 707–730.

    Article  PubMed  CAS  Google Scholar 

  18. Njeh CF, Boivin CM, Langton CM. The role of ultrasound in the assessment of osteoporosis: a review. Osteoporos Int 1997; 7 (1): 7–22.

    Article  PubMed  CAS  Google Scholar 

  19. Adams JE. Single and dual energy X-ray absorptiometry. Eur Radiol 1997; 2: 520–31.

    Google Scholar 

  20. Levis S, Altman R. Bone densitometry: clinical considerations. Arthritis Rheum 1998; 41 (4): 577–587.

    Article  PubMed  CAS  Google Scholar 

  21. Looker AC, Wahner HW, Dunn WL, Calvo MS, Harris TB, Heyse SP, et al. Proximal femur bone mineral levels of US adults. Osteoporosis Int 1995; 5: 389–409.

    Article  CAS  Google Scholar 

  22. Slosman DO, Rizzoli R, Pichard C, Donath A, Bonjour JP. Longitudinal measurement of regional and whole body bone mass in young healthy adults. Osteoporos Int 1994; 4 (4): 185–190.

    Article  PubMed  CAS  Google Scholar 

  23. Physician’s Guide to Prevention and Treatment of Osteoporosis. National Osteoporosis Foundation, Washington, D.C.

    Google Scholar 

  24. Wasnich RD. A new, standardized approach to fracture risk interpretation. Hawaii Med J 1996; 55 (8): 141–143.

    PubMed  CAS  Google Scholar 

  25. Melton LJd, Kan SH, Wahner HW, Riggs BL. Lifetime fracture risk: an approach to hip fracture risk assessment based on bone mineral density and age. J Clin Epidemiol 1988; 41 (10): 985–994.

    Google Scholar 

  26. Baran DT, Faulkner KG, Genant HK, Miller PD, Pacifici R. Diagnosis and management of osteoporosis: guidelines for the utilization of bone densitometry. Calcified Tissue Int 1997; 61: 433–440.

    Article  CAS  Google Scholar 

  27. Miller PD, Bonnick SL, Rosen CJ, Altman RD, Avioli LV, Dequeker J, et al. Clinical utility of bone mass measurements in adults: consensus of an international panel. The Society for Clinical Densitometry. Semin Arthritis Rheum 1996; 25 (6): 361–372.

    Article  PubMed  CAS  Google Scholar 

  28. Schlenker RA, Oltman BG, Kotek TJ. Proceedings: bone mineral mass and width in normal white women and men. Am J Roentgenol 1976;126(6): 1282, 1283.

    Google Scholar 

  29. Schlenker RA. Proceedings: percentages of cortical and trabecular bone mineral mass in the radius and ulna. Am J Roentgenol 1976; 126 (6): 1309–1312.

    Article  CAS  Google Scholar 

  30. Melton LJ II, Atkinson EJ, O’Fallon WM, Wahner HW, Riggs BL. Long-term fracture prediction by bone mineral assessed at different skeletal sites. J Bone Miner Res 1993; 8 (10): 1227–1233.

    Article  PubMed  Google Scholar 

  31. Yu W, Gluer CC, Grampp S, Jergas M, Fuerst T, Wu CY, et al. Spinal bone mineral assessment in postmenopausal women: a comparison between dual X-ray absorptiometry and quantitative computed tomography. Osteoporos Int 1995; 5 (6): 433–439.

    Article  PubMed  CAS  Google Scholar 

  32. Davis JW, Ross PD, Wasnich RD. Evidence for both generalized and regional low bone mass among elderly women. J Bone Miner Res 1994; 9 (3): 305–309.

    Article  PubMed  CAS  Google Scholar 

  33. Black DM, Palermo L, Nevitt MC, Genant HK, Epstein R, San Valentin R, et al. Comparison of methods for defining prevalent vertebral deformities: the study of osteoporotic fractures. J Bone Miner Res 1995; 10 (6): 890–902.

    Article  PubMed  CAS  Google Scholar 

  34. Blake GM, Fogelman I. Technical principles of dual energy x-ray absorptiometry. Semin Nucl Med 1997; 27 (3): 210–228.

    Article  PubMed  CAS  Google Scholar 

  35. Hassager C, Jensen SB, Gotfredsen A, Christiansen C. The impact of measurement errors on the diagnostic value of bone mass measurements: theoretical considerations. Osteoporos Int 1991; 1 (4): 250–266.

    Article  PubMed  CAS  Google Scholar 

  36. WHO 1994 World Health Organization, Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. WHO, Geneva.

    Google Scholar 

  37. He YF, Ross PD, Davis JW, Epstein RS, Vogel JM, Wasnich RD. When should bone density measurements be repeated? Calcif Tissue Int 1994; 55 (4): 243–248.

    Article  PubMed  CAS  Google Scholar 

  38. Eastell R. Management of corticosteroid-induced osteoporosis. UK Consensus Group Meeting on Osteoporosis. J Intern Med 1995; 237 (5): 439–447.

    Article  PubMed  CAS  Google Scholar 

  39. Cummings SR, Palermo L, Browner W, Marcus R, Wallace R, Pearson J, et al. Monitoring osteoporosis therapy with bone densitometry: misleading changes and regression to the mean. Fracture Intervention Trial Research Group. JAMA 2000; 283 (10): 1318–1321.

    Article  PubMed  CAS  Google Scholar 

  40. Ryan PJ, Harrison R, Blake GM, Fogelman I. Compliance with hormone replacement therapy (HRT) after screening for post menopausal osteoporosis [see comments]. Br J Ob Gyn 1992; 99 (4): 325–328.

    Article  CAS  Google Scholar 

  41. Rubin S, Cummings S. Results of bone densitometry affect women’s decisions about taking measures to prevent fractures. Ann Int Med 1992; 116: 990–995.

    PubMed  CAS  Google Scholar 

  42. Phillipov G, Mos E, Scinto S, Phillips PJ. Initiation of hormone replacement therapy after diagnosis of osteoporosis by bone densitometry. Osteoporos Int 1997; 7 (2): 162–164.

    Article  PubMed  CAS  Google Scholar 

  43. Stock JL, Bell NH, Chesnut CH, III, Ensrud KE, Genant HK, Harris ST, et al. Increments in bone mineral density of the lumbar spine and hip and suppression of bone turnover are maintained after discontinuation of alendronate in postmenopausal women. Am J Med 1997; 103 (4): 291–297.

    Article  PubMed  CAS  Google Scholar 

  44. Gluer CC, Blake G, Lu Y, Blunt BA, Jergas M, Genant HK. Accurate assessment of precision errors: how to measure the reproducibility of bone densitometry techniques. Osteoporos Int 1995; 5 (4): 262–270.

    Article  PubMed  CAS  Google Scholar 

  45. Lu Y, Glüer C-C. Statistical tools in Quantitative ultrasound applications. In: Njeh CF, Hans D, Fuerst T, Glüer C-C, Genant HK, eds. Quantitative Ultrasound: Assessment of Osteoporosis and Bone Status. Martin Dunitz, London, 1999, pp. 77–100.

    Google Scholar 

  46. Ravn P, Overgaard K, Huang C, Ross PD, Green D, McClung M. Comparison of bone densitometry of the phalanges, distal forearm and axial skeleton in early postmenopausal women participating in the EPIC Study. Osteoporos Int 1996; 6 (4): 308–313.

    Article  PubMed  CAS  Google Scholar 

  47. Glüer CC. Monitoring skeletal changes by radiological techniques. J Bone Miner Res 1999; 14 (11): 1952–1962.

    Article  PubMed  Google Scholar 

  48. Gluer CC. Quantitative ultrasound techniques for the assessment of osteoporosis: expert agreement on current status. The International Quantitative Ultrasound Consensus Group. J Bone Miner Res 1997; 12 (8): 1280–1288.

    Article  PubMed  CAS  Google Scholar 

  49. Miller CG, Herd RJ, Ramalingam T, Fogelman I, Blake GM. Ultrasonic velocity measurements through the calcaneus: which velocity should be measured? Osteoporos Int 1993; 3 (1): 31–35.

    Article  PubMed  CAS  Google Scholar 

  50. Bland JM, Altman DG. Regression towards the mean. BMJ 1994; 308 (6942): 1499.

    Article  PubMed  CAS  Google Scholar 

  51. Gluer CC. The use of bone densitometry in clinical practice. Baillieres Best Pract Res Clin Endocrinol Metab 2000; 14 (2): 195–211.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Shepherd, J., Njeh, C., Genant, H.K. (2003). Use of Bone Densitometry in the Clinical Management of Osteoporosis. In: Orwoll, E.S., Bliziotes, M. (eds) Osteoporosis. Contemporary Endocrinology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-278-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-278-4_5

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-260-5

  • Online ISBN: 978-1-59259-278-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics