Skip to main content

Peripheral Bone Mineral Assessment of the Axial Skeleton

Technical Aspects

  • Chapter
Osteoporosis

Part of the book series: Contemporary Endocrinology ((COE))

  • 342 Accesses

Abstract

The purpose of the bone density measurement is to quantify the density or mass of bone mineral (calcium hydroxyapatite) in a medium consisting not only of the mineral itself, but also fat, muscle and bone marrow constituents as well as other biological materials. Mea­surements at central sites, such as the hip and spine, are inherently more complex than peripheral measurements because the bones are embedded in greater tissue thicknesses of more variable composition. Compared to peripheral sites (e.g., the calcaneus and forearm), where single-energy x-ray absorptiometry (SXA) and ultrasound measurements are avail­able, central measurements require multiple-energy projection imaging techniques such as dual x-ray absorptiometry (DXA) or quantitative computed tomography (QCT).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Madsen M. Vertebral and peripheral bone mineral content by photon absorptiometry. Investigative Radiology 1977; 12: 185–188.

    Article  PubMed  CAS  Google Scholar 

  2. Cameron EC, Boyd RM, Luk D, McIntosh HW, Walker VR. Cortical thickness measurements and photon absorptiometry for determination of bone quantity. Can Med Assoc J 1977; 116: 145–147.

    PubMed  CAS  Google Scholar 

  3. Naftchi NE, Viau AT, Marshall CH, Davis WS, Lowman EW. Bone mineralization in the distal forearm of hemiplegic patients. Arch Phys Med Rehab 1975; 56: 487–4892.

    CAS  Google Scholar 

  4. Mazess RB, Peppier WW, Chesnut CHd, Nelp WB, Cohn SH, Zanzi I. Total body bone mineral and lean body mass by dual-photon absorptiometry. II. Comparison with total body calcium by neutron activation analysis. Calcified Tissue Int 1981; 33: 361–363.

    Article  CAS  Google Scholar 

  5. Mazess RB, Peppier WW, Harrison JE, McNeill KG. Total body bone mineral and lean body mass by dual-photon absorptiometry. III. Comparison with trunk calcium by neutron activation analysis. Calcified Tissue Int 1981; 33: 365–368.

    Article  CAS  Google Scholar 

  6. Peppler WW, Mazess RB. Total body bone mineral and lean body mass by dual-photon absorptiometry. I. Theory and measurement procedure. Calcified Tissue Int 1981; 33: 353–359.

    Article  CAS  Google Scholar 

  7. Borders J, Kerr E, Sartoris DJ, et al. Quantitative dual-energy radiographic absorptiometry of the lumbar spine: in vivo comparison with dual-photon absorptiometry. Radiology 1989; 170: 129–131.

    PubMed  CAS  Google Scholar 

  8. Stein J, Hochberg AM, Lazetawsky L. Quantitative digital radiography for bone mineral analysis. In: Dequeker JV, Geusens P, Wahner HW, eds. Bone mineral measurements by photon absorptiometry: methodological problems. Louvain, Belgium: Leuven University Press, 1988: 411–414.

    Google Scholar 

  9. Mazess RB, Collick B, Trempe J, Barden H, Hanson J. Performance evaluation of a dual energy x-ray bone densitometer. Calcified Tissue Int 1989; 44: 228–232.

    Article  CAS  Google Scholar 

  10. Steiger P, von Stetten E, Weiss H, Stein JA. Paired AP and lateral supine dual x-ray absorptiometry of the spine: initial results with a 32 detector system. Osteoporosis Int 1991; 1: 190.

    Google Scholar 

  11. Lang T, Takada M, Gee R, et al. A preliminary evaluation of the Lunar Expert-XL for bone densitometry and vertebral morphometry. J Bone Mineral Res 1997; 12: 136–143.

    Article  CAS  Google Scholar 

  12. Mazess RB, Hanson JA, Payne R, Nord R, Wilson M. Axial and total-body bone densitometry using a narrow-angle fan-beam. Osteoporosis Int 2000; 11: 158–166.

    Article  CAS  Google Scholar 

  13. Crabtree N, Wright J, Walgrove A, et al. Vertebral morphometry: repeat scan precision using the Lunar Expert-XL and the Hologic 4500A. A study for the `WISDOM’ RCT of hormone replacement therapy. Osteoporosis Int 2000; 11: 537–543.

    Article  CAS  Google Scholar 

  14. Stein JA, Lazewatsky JL, Hochberg AM. Dual energy x-ray bone densitometer incorporating an internal reference system. Radiology 1987; 165 (P): 313.

    Google Scholar 

  15. Lehmann LA, Alvarez RE, Macovski A, Brody WR. Generalized image combinations in dual-kVpdigital radiography. Med Phys 1981; 8: 659–667.

    Article  PubMed  CAS  Google Scholar 

  16. Cardinal HN, Fenster A. An accurate method for direct dual-energy calibration and decomposition. Med Phys 1990; 17: 327–341.

    Article  PubMed  CAS  Google Scholar 

  17. Bezakova E, Collins PJ, Beddoe AH. Absorbed dose measurements in dual energy X-ray absorptiometry (DXA). British J Rad 1997; 70: 172–179.

    CAS  Google Scholar 

  18. Njeh CF, Samat SB, Nightingale A, McNeil EA, Boivin CM. Radiation dose and in vitro precision in paediatric bone mineral density measurement using dual X-ray absorptiometry. Br J Rad 1997; 70: 719–727.

    CAS  Google Scholar 

  19. Kalender WA. Effective Dose Values in Bone Mineral Measurements by Photon Absorptiometry and Computed Tomography. Osteoporosis Int 1992; 2: 82–87.

    Article  CAS  Google Scholar 

  20. Adams JE. Single-and Dual-energy: X-ray absorptiometry. In: Genant HK, Guglielmi, G, Jergas, M, ed. Bone Densitometry and Osteoporosis. Vol. 1. Berlin: Springer-Verlag, 1998: 305–347.

    Chapter  Google Scholar 

  21. Eiken P, Kolthoff N, Bärenholdt O, Hermansen F, Pors Nielsen S. Switching from DXA pencil-beam to fan-beam. II: Studies in vivo. Bone 1994; 15: 671–676.

    CAS  Google Scholar 

  22. Kuiper JW, van Kuijk C, Grashuis JL, Ederveen AG, Schütte HE. Accuracy and the influence of marrow fat on quantitative CT and dual-energy X-ray absorptiometry measurements of the femoral neck in vitro. Osteoporosis Int 1996; 6: 25–30.

    Article  CAS  Google Scholar 

  23. Kolta S, Ravaud P, Fechtenbaum J, Dougados M, Roux C. Accuracy and precision of 62 bone densitometers using a European Spine Phantom. Osteoporosis Int 1999; 10: 14–19.

    Article  CAS  Google Scholar 

  24. Khan KM, Henzell SL, Broderick C, et al. Instrument performance in bone density testing at five Australian centres. Aus N Zealand J Med 1997; 27: 526–530.

    Article  CAS  Google Scholar 

  25. Pors Nielsen S, Bärenholdt O, Diessel E, Armbrust S, Felsenberg D. Linearity and accuracy errors in bone densitometry. Br J Radiol 1998; 71: 1062–1068.

    PubMed  CAS  Google Scholar 

  26. Pouilles JM, Collard P, Tremollieres F, et al. Accuracy and precision of in vivo bone mineral measurements in sheep using dual-energy X-ray absorptiometry. Calcified Tissue Int 2000; 66: 70–73.

    Article  CAS  Google Scholar 

  27. Lochmüller EM, Miller P, Bürklein D, Wehr U, Rambeck W, Eckstein F. In situ femoral dual-energy X-ray absorptiometry related to ash weight, bone size and density, and its relationship with mechanical failure loads of the proximal femur. Osteoporosis Int 2000; 11: 361–367.

    Article  Google Scholar 

  28. Engelke K, Glüer CC, Genant HK. Factors influencing short-term precision of dual X-ray bone absorptiometry (DXA) of spine and femur. Calcified Tissue Int 1995; 56: 19–25.

    Article  CAS  Google Scholar 

  29. Glüer CC, Blake G, Lu Y, Blunt BA, Jergas M, Genant HK. Accurate assessment of precision errors: how to measure the reproducibility of bone densitometry techniques. Osteoporosis Int 1995; 5: 262–270.

    Article  Google Scholar 

  30. Mazess RB, Nord R, Hanson JA, Barden HS. Bilateral measurement of femoral bone mineral density. J Clin Densitomet 2000; 3: 133–140.

    Article  CAS  Google Scholar 

  31. Patel R, Blake GM, Rymer J, Fogelman I. Long-term precision of DXA scanning assessed over seven years in forty postmenopausal women. Osteoporosis Int 2000; 11: 68–75.

    Article  CAS  Google Scholar 

  32. Ravaud P, Reny JL, Giraudeau B, Porcher R, Dougados M, Roux C. Individual smallest detectable difference in bone mineral density measurements. J Bone Mineral Res 1999; 14: 1449–1456.

    Article  CAS  Google Scholar 

  33. Jergas M, Breitenseher M, CC G, Yu W, Genant H. Estimates of volumetric density from projectional estimates improve the discriminatory capability of dual X-ray absorptiometry. J Bone Mineral Res 1995; 10: 1101–1110.

    Article  CAS  Google Scholar 

  34. Carter DR, Bouxsein ML, Marcus R. New approaches for interpreting projected bone densitometry data. J Bone Mineral Res 1992; 7: 137–145.

    Article  CAS  Google Scholar 

  35. Cummings SR, Cauley JA, Palermo L, et al. Racial differences in hip axis lengths might explain racial differences in rates of hip fractures. Osteoporosis Int 1994; 4: 226–229.

    Article  CAS  Google Scholar 

  36. Yoshikawa T, Turner CH, Peacock M, et al. Geometric structure of the femoral neck measured using dual-energy x-ray absorptiometry. J Bone Mineral Res 1994; 9: 1053–1064.

    Article  CAS  Google Scholar 

  37. Schönau E. Problems of bone analysis in childhood and adolescence. Ped Nephrol 1998; 12: 420–429.

    Article  Google Scholar 

  38. Sievänen H, Backström MC, Kuusela AL, Ikonen RS, Mäki M. Dual energy x-ray absorptiometry of the forearm in preterm and term infants: evaluation of the methodology. Ped Res1999; 45: 100–105.

    Google Scholar 

  39. Koo WW. Body composition measurements during infancy. Ann NY Acad Sci 2000; 904: 383–392.

    Article  PubMed  CAS  Google Scholar 

  40. Lapillonne A, Braillon PM, Delmas PD, Salle BL. Dual-energy X-ray absorptiometry in early life. Hormone Res 1997;48 Suppl 1: 43–49.

    Google Scholar 

  41. Tothill P, Avenell A. Errors in dual-energy X-ray absorptiometry of the lumbar spine owing to fat distribution and soft tissue thickness during weight change. Br J Radiol 1994; 67: 71–75.

    Article  PubMed  CAS  Google Scholar 

  42. Svendsen OL, Hassager C, Skt dt V, Christiansen C. Impact of soft tissue on in vivo accuracy of bone mineral measurements in the spine, hip, and forearm: a human cadaver study. J Bone Mineral Res 1995; 10: 868–873.

    Article  CAS  Google Scholar 

  43. Formica C, Loro ML, Gilsanz V, Seeman E. Inhomogeneity in body fat distribution may result in inaccuracy in the measurement of vertebral bone mass. J Bone Mineral Res 1995; 10: 1504–1511.

    Article  CAS  Google Scholar 

  44. Ruetsche AG, Lippuner K, Jaeger P, Casez JP. Differences between dual X-ray absorptiometry using pencil beam and fan beam modes and their determinants in vivo and in vitro. J Clin Densitomet 2000; 3: 157–166.

    Article  CAS  Google Scholar 

  45. Griffiths MR, Noakes KA, Pocock NA. Correcting the magnification error of fan beam densitometers. J Bone Mineral Res 1997; 12: 119–123.

    Article  CAS  Google Scholar 

  46. Blake GM, McKeeney D, B., Chhaya SC, Ryan P, J., Fogelman J. Dual energy x-ray absorptiometry: the effects of beam hardening on bone density measurements. Med Phys 1992; 19: 459–465.

    CAS  Google Scholar 

  47. Pietrobelli A, Gallagher D, Baumgartner R, Ross R, Heymsfield SB. Lean R value for DXA two-component soft-tissue model: influence of age and tissue or organ type. Appl Rad Isotopes 1998; 49: 743, 744.

    Google Scholar 

  48. Glüer CC, Steiger P, Selvidge R, Elliesen-Kliefoth K, Hayashi C, Genant HK. Comparative assessment of dual-photon-absorptiometry and dual-energy-radiography. Radiology 1990; 174: 223–228.

    PubMed  Google Scholar 

  49. Grampp S, Genant H, Mathur A, et al. Comparisons of Noninvasive Bone Mineral Measurements in Assessing Age-Related Loss, Fracture Discrimination and Diagnostic Classification. J Bone Mineral Res 1997; 12: 697–711.

    Article  CAS  Google Scholar 

  50. Pacifici R, Rupich R, Griffin M, Chines A, Susman N, Avioli LV. Dual energy radiography versus quantitative computer tomography for the diagnosis of osteoporosis. J Clin Endocrinol Metab 1990; 70: 705–710.

    Article  PubMed  CAS  Google Scholar 

  51. Kalender WA, Polacin A. Physical performance of spiral CT scanning. Med Physics 1991; 18: 910–915.

    Article  CAS  Google Scholar 

  52. Kalender WA, Seissler W, Klotz E, Vock P. Spiral volumetric CT with single-breath-hold technique, continuous transport and continuous scanner rotation. Radiology 1990; 176: 181–183.

    PubMed  CAS  Google Scholar 

  53. Cann CE. Low-dose CT scanning for quantitative spinal mineral analysis. Radiology 1981; 140: 813–815.

    PubMed  CAS  Google Scholar 

  54. Cann CE, Genant HK. Precise measurement of vertebral mineral content using computed tomography. J Comp Assist Tomogr 1980; 4: 493–500.

    Article  CAS  Google Scholar 

  55. Genant HK, Cann CE, Boyd DP, et al. Quantitative computed tomography for vertebral mineral determination. In: Frame B, Potts JT, eds. Clinical disorders of bone and mineral metabolism. Amsterdam-Oxford-Princeton: Excerpta Medica, 1983: 40–47.

    Google Scholar 

  56. Kalender WA, Klotz E, Süss C. Vertebral bone mineral analysis: an integrated approach. Radiology 1987; 164: 419–423.

    PubMed  CAS  Google Scholar 

  57. Steiger P, Block JE, Steiger S, et al. Spinal bone mineral density by quantitative computed tomography: effect of region of interest, vertebral level, and technique. Radiology 1990; 175: 537–543.

    PubMed  CAS  Google Scholar 

  58. Lang TF, Li J, Harris ST, Genant HK. Assessment of vertebral bone mineral density using volumetric quantitative CT. J Computer Assis Tomogr 1999; 23: 130–137.

    Article  CAS  Google Scholar 

  59. Faulkner KG, Glüer CC, Grampp S, Genant HK. Cross calibration of liquid and solid QCT calibration standards: corrections to the UCSF normative data. Osteo Int 1993; 3: 36–42.

    Article  CAS  Google Scholar 

  60. Goodsitt M, Hoover P, MS V, Hsueh S. The composition of bone marrow for a dual-energy quantitative computed tomography technique: a cadaver and computer simulation study. Invest. Radiol 1994; 29: 695–704.

    Article  PubMed  CAS  Google Scholar 

  61. Glüer CC, Genant HK. Impact of marrow fat on accuracy of quantitative CT. J Comput Assist Tomogr 1989; 13: 1023–1035.

    Article  PubMed  Google Scholar 

  62. Glüer CC, Reiser UJ, Davis CA, Rutt BK, Genant HK. Vertebral mineral determination by quantitative computed tomography (QCT): Accuracy of single and dual energy measurements. J Comput Assist Tomogr 1988; 12: 242–258.

    Article  PubMed  Google Scholar 

  63. Dunnill M, Anderson J, Whitehead R. Quantitative histological studies on age changes in bone. J Pathol Bacteriol 1967; 94: 275–291.

    Article  PubMed  CAS  Google Scholar 

  64. Laval-Jeantet AM, Genant HK, Wu.C., Glüer CC, Faulkner K, Steiger P. Factors influencing longterm in vivo reproducibility of QCT (vertebral densitometry). JCAT 1993; 17: 915–921.

    CAS  Google Scholar 

  65. Kalender WA, Schmidt B, Zankl M, Schmidt M. A PC program for estimating organ dose and effective dose values in computed tomography. Eur Radiol 1999; 9: 555–562.

    Article  PubMed  CAS  Google Scholar 

  66. Lang TF, Keyak JH, Heitz MW, et al. Volumetric quantitative computed tomography of the proximal femur: precision and relation to bone strength. Bone 1997; 21: 101–108.

    Article  PubMed  CAS  Google Scholar 

  67. Heitz M, Kalender W. Evaluation of femoral density and strength using volumetric CT and anatomical coordinate systems, 10th International Workshop on Bone Densitometry, Venice, Italy, 1994.

    Google Scholar 

  68. Mautalen C, Vega E, Einhorn T. Are the Etiologies of Cervical and Trochanteric Hip Fractures Different? Bone 1996; 18: 133S - 137S.

    Article  PubMed  CAS  Google Scholar 

  69. Lang TF, Augat P, Lane NE, Genant HK. Trochanteric hip fracture: strong association with spinal trabecular bone mineral density measured with quantitative CT. Radiology 1998; 209: 525–530.

    PubMed  CAS  Google Scholar 

  70. Hans D, Dargent P, Schott A, Breart G, Meunier P. Ultrasound parameters are better predictors of trochanteric than cervical hip fracture: the EPIDOS prospective study, World Congress on Osteoporosis, Amsterdam, May 18–23, 1996. Vol. 1. Elsevier.

    Google Scholar 

  71. Cann C, Roe E, Sanchez S, Arnaud C. PTH effects in the femur: envelope-specific responses by 3DQCT in postmenopausal women. J Bone Mineral Res 1999; 14: s137.

    Google Scholar 

  72. Sandor T, Felsenberg D, Kalender WA, Clain A, Broen E. Compact and trabecular components of the spine using quantitative computed tomography. Calcified Tissue Int 1992; 50: 502–506.

    Article  CAS  Google Scholar 

  73. Sandor T, Felsenberg D, Kalender W, Brown E. Heterogeneity of the Loss of BMD from Spinal Cortical Bone, 9th Int Workshop of Bone Den., Traverse City, 1992.

    Google Scholar 

  74. Sandor T, Felsenberg D, Kalender W, Brown E. Global and Regional Variations in the Spinal trabecular Bone: Single and Dual Energy Examinations. J Clin Endocrinol Metab 1991; 72: 1157–1168.

    Article  PubMed  CAS  Google Scholar 

  75. Faulkner KG, Cann CE, Hasegawa BH. The effect of bone distribution on vertebral strength: assessment with patient-specific nonlinear finite element analysis. Radiology 1991; 179: 669–674.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lang, T.F., Duryea, J. (2003). Peripheral Bone Mineral Assessment of the Axial Skeleton. In: Orwoll, E.S., Bliziotes, M. (eds) Osteoporosis. Contemporary Endocrinology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-278-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-278-4_4

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-260-5

  • Online ISBN: 978-1-59259-278-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics