Skip to main content

The Genetics of Osteoporosis

Progress in Mice, not Man

  • Chapter
Osteoporosis

Part of the book series: Contemporary Endocrinology ((COE))

  • 343 Accesses

Abstract

Progress in the study of the genetics of osteoporosis is slow for several reasons. For example, the phenotype is poorly defined; fractures are too uncommon to allow credible detection of any association between genes that regulate a structural determinant of bone strength. Areal bone mineral density (aBMD) predicts bone strength, but it has not proven to be clinically useful in the identifying regulators of skeletal growth and aging, in part, because it is a two dimensional projection of a three dimensional structure. This measurement is too ambiguous to allow detection of the cell-, and surface-specific genetic determinants of bone size, geometry, and volumetric bone mineral density (vBMD). Even vBMD, the net result of changes in accrual and changes in bone size during growth and aging, and cortical thickness the net effect of periosteal and endocortical modeling and remodeling, may be too complex for detecting associations with specific genetically determined mechanisms. This complexity, in part, may explain why associations between aBMD and candidate gene polymorphisms are negative, contradictory or, at best, weak. Under 1–3% of the variance in aBMD is accounted for by any polymorphism, excluding their usefulness as a predictor of fracture or bone loss. Bone “loss” is not just resorptive “removal” of bone, it is the net result of the amount of bone resorbed on the endosteal (intracortical, endocortical, trabecular) surfaces and the amount formed on the periosteal surface. The net amount of bone resorbed is a function of the imbalance between the volume of bone resorbed and formed at each BMU and the rate of bone remodeling (activation frequency). Thus, examining the rate of bone loss using densitometry to identify genetic factors accounting for the variance in net bone loss is fraught with problems. No trials have been done stratifying by genotype then randomization to placebo vs treatment within each genotype. Without this design, genotype specific differences in response to drugs, calcium supplementation, or exercise, may be due to covariates unevenly distributed in the genotype groups rather than the genotype.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Smith DM, Nance WE, Kang KW, Christian JC, Johnston CC Jr. Genetic factors in determining bone mass. J Clin Invest 1973; 52: 2800–2808.

    Article  PubMed  CAS  Google Scholar 

  2. Nguyen TV, Eisman JA. Genetics of fracture: challenges and opportunities. J Bone Miner Res 2000; 15: 1253–1256.

    Article  PubMed  CAS  Google Scholar 

  3. Kannus P, Palvanen M, Kaprio J, Parkkari J, Koskenvuo M. Genetic factors and osteoporotic fractures in elderly people: prospective 25 year follow up of a nationwide cohort of elderly Finnish twins. BMJ 1999; 319: 1334–1337.

    Article  PubMed  CAS  Google Scholar 

  4. Aerssens J, Dequeker J, Peeters J, Breemans S, Broos P, Boonen S. Polymorphisms of the VDR, ER and COLIAI genes and osteoporotic hip fracture in elderly postmenopausal women. Osteoporos Int 2000; 11: 58–91.

    Article  Google Scholar 

  5. Uitterlinden AG, Burger H, Huang Q, Fang Y, McGuigan FEA, Grant SFA, et al. Relation of allelles of the collagen Type I alpha 1 gene to bone density and the risk of osteoporotic fractures in postmenopausal women. N Engl J Med 1998; 338: 1016–1021.

    Article  PubMed  CAS  Google Scholar 

  6. Uitterlinden AG, Weel AE, Burger H, Fang Y, van Duijn CM, Hofman A, et al. Interaction between the vitamin D receptor gene and collagen type IA1 gene in susceptibility for fracture. J Bone Miner Res 2001; 16: 379–385.

    Article  PubMed  CAS  Google Scholar 

  7. Weichetova M, Stepan JJ, Michalska D, Haas T, Pols HAP, Uitterlinden AG. COLIA 1 polymorphism contributes to bone mineral density to assess prevalent wrist fractures. Bone 2000; 26: 287–290.

    Article  PubMed  CAS  Google Scholar 

  8. McGuigan FEA, Armbrecht G, Smith R, Felsenberg D, Reid DM, Ralston SH. Prediction of osteoporotic fractures by bone densitometry and COLIAI genotyping: a prospective, population-based study in men and women. Osteoporos Int 2001; 122: 91–96.

    Article  Google Scholar 

  9. McGuigan FEA, Reid DM, Ralston SH. Susceptibility to osteoporotic fracture is determined by allelic variation at the Sp1 site, rather than other polymorphic sites at the COL1A1 locus. Osteoporos Int 2000; 11: 338–343.

    Article  PubMed  CAS  Google Scholar 

  10. Langdahl BL, Lokke E, Carstens M, Stenkjaer LL, Eriksen EF. A TA repeat polymorphism in the estrogen receptor gene is associated with osteoporotic fractures but polymorphisms in the first exon and intron are not. J Bone Miner Res 2000; 15: 2222–2230.

    Article  PubMed  CAS  Google Scholar 

  11. Becherini L, Gennari L, Masi L, Mansani R, Massart F, Morelli A, et al. Evidence of a linkage disequilibrium between polymorphisms in the human estrogen receptor alpha gene and their relationship to bone mass variation in postmenopausal Italian women. Human Mol Genetics 2000; 9: 204–250.

    Article  Google Scholar 

  12. Berg JP, Falch JA, Haug E. Fracture rate, pre- and postmenopausal bone mass and early and late postmenopausal bone loss are not associated with vitamin D receptor genotype in a high-endemic area of osteoporosis. Eur J Endocrinol 1996; 135: 96–100.

    Article  PubMed  CAS  Google Scholar 

  13. Houston LA, Grant SFA, Reid DM, Ralston SH. Vitamin D receptor polymorphism, bone mineral density, and osteoporotic vertebral fracture: studies in a UK population. Bone 1996; 18: 249–252.

    Article  PubMed  CAS  Google Scholar 

  14. Riggs BL, Nguyen TV, Melton LJ III, Morrison NA, O’Fallon WM, Kelly PJ, et al. The contribution of vitamin D receptor gene alleles to the determination of bone mineral density in normal and osteoporotic women. J Bone Miner Res 1995; 10: 991–996.

    Article  PubMed  CAS  Google Scholar 

  15. Langdahl BL, Lykke E, Carstens M, Stenkjor LL, Eriksen EF. Osteoporotic fractures are associated with an 86-base pair repeat polymorphism in the interleukin 1-receptor antagonist gene but not with polymorphisms in the interleukin 1 gene. J Bone Miner Res 2000; 15: 402–414.

    Article  PubMed  CAS  Google Scholar 

  16. Yamada Y, Miyauchi A, Takagi Y, Nakauchi K, Miki N, Mizuno M, et al. Association of a polymorphism of the transforming growth factor b-1 gene with prevalent vertebral fractures in Japanese women. Am J Med. 2000; 109: 244–247.

    Article  PubMed  CAS  Google Scholar 

  17. Deng HW, Chen WM, Recker S, Stegman MR, Li JL, Davies KM, et al. Genetic determination of Colles’ fracture and differential bone mass in women with and without Colles’ fracture. J Bone Miner Res 2000; 15: 1243–1252.

    Article  PubMed  CAS  Google Scholar 

  18. Mann V, Hobson EE, Li BH, Stewart TL, Grant SFA, Robins SP, et al. A COL1A1 Spl binding site polymorphism predisposes to osteoporotic fracture by affecting bone density and quality. J Clin Invest 2001; 107: 899–907.

    Article  PubMed  CAS  Google Scholar 

  19. Seeman E. Growth in bone mass and size: are racial and gender differences in bone mineral density more apparent than real? J Clin Endocrinol Metab 1998; 68: 1414–1419.

    Article  Google Scholar 

  20. Duan Y, Turner CH, Seeman E. Sexual dimorphism in bone fragility is more the result of gender differences in age-related bone gain than bone loss. Submitted.

    Google Scholar 

  21. Seeman E, Duan Y, Fong C, Edmonds J. Fracture site-specific deficits in bone size and volumetric density in men with spine or hip fractures. J Bone Mineral Res 2001; 16: 120–127.

    Article  CAS  Google Scholar 

  22. Neely EK, Marcus R, Rosenfeld R, Bachrach L. Turners syndrome adolescents receiving growth hormone are not osteopenic. J Clin Endocrinol Metab 1993; 76: 861–866.

    Article  PubMed  CAS  Google Scholar 

  23. Zhang XZ, Kalu DN, Erbas B, Hopper JL and Seeman E. The effect of gonadectomy on bone size, mass and volumetric density in growing rats may be gender-, site-, and growth hormone-dependent. J Bone Miner Res 1999; 14: 802–809.

    Article  PubMed  CAS  Google Scholar 

  24. Hopper JL. Variance components for statistical genetics: applications in medical research to characteristics related to human diseases and health. Statistical Meth Med Res. 1993; 2: 199–223.

    Article  CAS  Google Scholar 

  25. Hopper JL, Green RM, Nowson CA, Young D, Sherwin AJ, Kaymakci B, et al. Genetic, common environment, and individual specific components of variance for bone mineral density in 10- to 26year-old females: a twin study. Am J Epidemiol 1998; 147: 17–29.

    Article  PubMed  CAS  Google Scholar 

  26. Spector TD, Cicuttini J, Baker J, Loughlin J, Hart D. Genetic influences on osteoarthritis in woman: a twin study. BMJ 1996; 312: 940–943.

    Article  PubMed  CAS  Google Scholar 

  27. Seeman E, Hopper JL, Bach L, Cooper M, McKay J, Jerums G. Reduced bone mass in the daughters of women with osteoporosis. N Engl J Med. 1989; 320: 554–558.

    Article  PubMed  CAS  Google Scholar 

  28. Seeman E, Hopper JL, Tsalamandris C, Formica C. Bone density in daughters of women with hip fractures. J Bone Miner Res 1994; 9: 739–743.

    Article  PubMed  CAS  Google Scholar 

  29. Cohen-Solal ME, Baudoin C, Omouri M, Kuntz D, De Vernejoul MC. Bone mass in middle-aged osteoporotic men and their relatives: familial effect. J Bone Miner Res 1998; 13: 1909–1914.

    Article  PubMed  CAS  Google Scholar 

  30. Beamer WG, Rosen CJ, Bronson RT, Gu W, Donahue LR, Baylink DJ, et al. Spontaneous fracture (sfx): a mouse genetic model of defective peripubertal bone formation. Bone 2000; 27: 619–626.

    Article  PubMed  CAS  Google Scholar 

  31. Gilsanz V, Skaggs DL, Kovanlikaya A, Sayre J, Loro ML, Kaufman F, Korenman SG. Differential effect of race on the axial and appendicular skeletons of children. J Clin Endocrinol Metab 1998; 83: 1420–1427.

    Article  PubMed  CAS  Google Scholar 

  32. Sainz J, Van Tornout JM, Loro ML, Sayre J, Roe TF, Gilsanz V. Vitamin D-receptor gene polymorphisms and bone density in prepubertal American girls of Mexican descent. N Engl J Med 1997; 337: 77–82.

    Article  PubMed  CAS  Google Scholar 

  33. Bradney M, Pearce G, Naughton G, Seeman E. Differing effects of moderate exercise on bone mass, size and volumetric density in pre-pubertal boys. J Bone Miner Res. 1998; 13: 1814–1821.

    Article  PubMed  CAS  Google Scholar 

  34. Bass S, Delmas PD, Pearce G, Hendrich E, Tabensky A, Seeman E. The differing tempo of growth in bone size, mass and density in girls is region specific. J Clin Invest 1999; 104: 795–804.

    Article  PubMed  CAS  Google Scholar 

  35. Tsuboyama T, Takahashi K, Matsushita M, Okumura H, Yamamuro T, Umezawa M, Takeda T. Decreased endosteal formation during cortical bone modeling in SAM-P/6 mice with a low peak bone mass. Bone Mineral 1989; 7: 1–12

    Article  CAS  Google Scholar 

  36. Tsuboyama T, Matsushita M, Okumura H, Yamamuro T, Hanada K, Takeda T. Modification of strain-specific femoral bone density by bone marrow chimerism in mice: a study of the spontaneously osteoporotic mouse (SAM- P/6) Bone 1989; 10: 57–64.

    Google Scholar 

  37. Richman C, Kutilek S, Miyakoshi N, Srivastava AK, Beamer WG, et al. Postnatal and pubertal skeletal changes contribute predominantly to the differences in peak bone density between C3H/HeJ and C57BL/6J mice J Bone Miner Res 2001; 16: 386–397.

    CAS  Google Scholar 

  38. Sheng MH-C, Baylink DJ, Beamer WG, Donahue LR, Rosen CJ, Lau K-HW, et al. Histomorphometric studies show that bone formation and bone mineral apposition rates are greater in C3H/HeJ (high-density) than C57BL/6J (low-density) mice during growth. Bone 1999; 25: 421–429.

    Article  PubMed  CAS  Google Scholar 

  39. Chen C, Kalu DN. Strain differences in bone density and calcium metabolism between C3H/HeJ and C57BL/6J mice. Bone 1999; 25: 413–420.

    Article  PubMed  CAS  Google Scholar 

  40. Linkhart TA, Linkhart SG, Kodama Y, Farley JR, Dimai HP, Wright KR, et al. Osteoclast formation of bone marrow cultures from two inbred strains of mice with different bone densities. J Bone Miner Res 1999; 14: 39–46.

    Article  PubMed  CAS  Google Scholar 

  41. Turner CH, Hsieh YF, Muller R, Bouxsein ML, Baylink DJ, Rosen CJ, et al. Genetic regulation of cortical and trabecular bone strength and microstructure in inbred strains of mice. J Bone Miner Res. 2000; 15: 1126–1131.

    Article  PubMed  CAS  Google Scholar 

  42. Akhter MP, Iwaniec UT, Covey MA, Cullen DM, Kimmel DB, Recker RR. Genetic variations in bone density, histomorphometry, and strength in mice. Calcif Tissue Int 2000; 67: 337–344.

    Article  PubMed  CAS  Google Scholar 

  43. Sims N, Clement-Lacroix P, Da Ponte F, Bouali Y, Binart N, Moriggl R, et al. Bonr homeostasis in growth hormone receptor-null mice is restored by IGF-1 but independent of Stat 5. J Clin Invest 2000; 106: 1095–1103.

    Article  PubMed  CAS  Google Scholar 

  44. Bonadio J, Sauders TL, Tsai E, Goldstein SA, Morris-Wiiman J, Brinkley L, et al. Transgenic mouse model of the mild dominant form of osteogenesis imperfecta. Proc Natl Acad Sci USA 1990; 87: 7145–7149.

    Article  PubMed  CAS  Google Scholar 

  45. Bonadio J, Jepsen KJ, Mansoura MK, Jaenisch R, Kuhn JL, Goldstein SA. A murine skeletal adaptation that significantly increases cortical bone mechanical properties: implications for human skeletal fragility. J Clin Invest 1993; 92: 1697–1705.

    Article  PubMed  CAS  Google Scholar 

  46. Hankenson KD, Bain SD, Kyriakides TR, Smith EA, Goldstein SA, Bornstein P. Increased marrow-derived osteoprogenitor cells and endosteal bone formation in mice lacking thrombospondin 2. J Bone Miner Res 2000; 15: 851–862.

    Article  PubMed  CAS  Google Scholar 

  47. Chung UI, Schipani E, McMahon AP, Kronenberg HM. Indian hedgehog couples chondrogenesis to osteogenesis in endochondral bone development J Clin Invest 2001; 107: 295–304.

    CAS  Google Scholar 

  48. Calvi L, Sims NA, Hunzelman JL, Knight MC, Giovannetti A, Saxton JM, et al. Activated parathyroid hormone/parathyroid hormone-related protein receptor in osteoblastic cells differentially affects cortical and trabecular bone. J Clin Invest 2001; 107: 277–286.

    Article  PubMed  CAS  Google Scholar 

  49. Gowen M, Lazner F, Dodds R, Kapadia R, Feild J, Tavaria M, et al. Cathepsin K knockout mice develop osteopetrosis due to a deficit in matrix degradation but not demineralization. J Bone Miner Res 1999; 14: 1654–1663.

    Article  PubMed  CAS  Google Scholar 

  50. De Luca F, Barnes KM, Uyeda JA, De-Levi S, Abad V, Palese T, et al. Regulation of growth plate chondrogenesis by bone morphogenetic protein-2. Endocrinology 2001; 142: 430–436.

    Article  PubMed  Google Scholar 

  51. Montero A, Okada Y, Tomita M, Ito M, Tsurukami H, Nakamura T, et al. Disruption of the fibroblast growth factor-2 gene results in decreased bone mass and bone formation J Clin Invest 2000; 105: 1085–1093.

    CAS  Google Scholar 

  52. Bliziotes M, McLoughlin S, Gunness M, Fumagalli F, Jones SR, Caron MG. Bone histomorphometric and biomechanical abnormalities in mice homozygous for deletion of the dopamine transporter gene. Bone 2000; 26: 15–20.

    Article  PubMed  CAS  Google Scholar 

  53. Parfitt AM, Travers R, Rauch F, Glorieux FH. Structural and cellular changes during bone growth in healthy children. Bone 2000; 27: 487–494.

    Article  PubMed  CAS  Google Scholar 

  54. Gilsanz V, Gibbens DT, Roe TF, Carlson M, Senac MO. Vertebral bone density in children: effect of puberty. Radiology 1988; 166: 847–850.

    PubMed  CAS  Google Scholar 

  55. Gilsanz V, Skaggs DI, Kovanlikaya A, Sayre J, Loro ML. Differential effects of race on the axial and appendicular skeleton of children. J Clin Endocrinol Metab 1998; 83: 1420–1427.

    Article  PubMed  CAS  Google Scholar 

  56. Rosen CJ, Dimai HP, Vereault D, Donahue LR, Beamer WG, Farley J, et al. Circulating and skeletal insulin-like growth factor-I (IGF-I) concentrations in two inbred strains of mice with different bone mineral densities. Bone 1996; 21: 217–223.

    Article  Google Scholar 

  57. Suarez F, Zeghoud F, Rossignol C, Walrant O, Garabédian M. Association between vitamin D receptor gene polymorphism and sex-dependent growth during the first two years of life. J Clin Endocrinol Metab. 1997; 82: 2966–2970.

    Article  PubMed  CAS  Google Scholar 

  58. Keen R, Egger P, Fall C, Major PJ, Lanchbury JS, Spector TD, et al. Polymorphisms of the vitamin D receptor, infant growth, and adult bone mass. Calcif Tissue Int 1997; 60: 233–235.

    Article  PubMed  CAS  Google Scholar 

  59. Gunnes M, Berg J.P, Halse J, Lehmann EH. Lack of relationship between vitamin D receptor genotype and forearm bone gain in healthy children, adolescents, and young adults. J Clin Endocrinol Metab. 1997; 82: 851–855.

    Article  PubMed  CAS  Google Scholar 

  60. Harris SS, Eccleshall TR, Gross C, Dawson-Hughes B, Feldman D. The vitamin D receptor start codon polymorphism (FokI) and bone mineral density in premenopausal American black and white women. J Bone Miner Res 1997; 12: 1043–1048.

    Article  PubMed  CAS  Google Scholar 

  61. Gross C, Eccleshall TR, Malloy PJ, Villa ML, Marcus R, Feldman D. The presence of a polymorphism at the translation initiation site of the vitamin D receptor gene is associated with low bone mineral density in postmenopausal Mexican-American women. J Bone Miner Res 1996; 11: 1850–1855.

    Article  PubMed  CAS  Google Scholar 

  62. Arai H, Miyamoto K-I, Taketani Y, Yamamoto H, lemori Y, Morita K, et al. A vitamin D receptor gene polymorphism in the translation initiation codon: effect on protein activity and relation to bone mineral density in Japanese women. J Bone Miner Res. 1997; 12: 915–921.

    Article  PubMed  CAS  Google Scholar 

  63. Eccleshall TR, Garnero P, Gross C, Delmas PD, Feldman D. Lack of correlation between start codon polymorphism of the vitamin D. receptor gene and bone mineral density in premenopausal French women: the OFELY study. J Bone Miner Res 1998; 13: 31–35.

    Article  PubMed  CAS  Google Scholar 

  64. Mizunuma H, Hosoi, Okano H, Soda M, Tokizawa T, Kagami I, et al. Estrogen receptor gene polymorphism and bone mineral density at the lumbar spine of pre- and postmenopausal women. Bone 1997; 21: 379–383.

    Article  PubMed  CAS  Google Scholar 

  65. Takacs I, Koller DL, Peacock M, Christian JC, Evans WE, Hui SL, et al. Sib pair linkage and association studies between bone mineral density and the interleukin-6 gene locus. Bone 2000; 27: 169–173.

    Article  PubMed  CAS  Google Scholar 

  66. Lorentzon M, Lorentzon R, Nordstrom P. Interleukin-6 gene polymorphism is related to bone mineral density during and after puberty in healthy white males: a cross-sectional and longitudinal study. J Bone Miner Res 2000; 15: 1944–1949.

    Article  PubMed  CAS  Google Scholar 

  67. Bagger YZ, Jorgensen HL, Heegaard AM, Bayer L, Hansen L, and Hassager C. No Major effect of estrogen receptor gene polymorphisms on bone mineral density or bone loss in postmenopausal Danish women. Bone 2000; 26: 111–116.

    Article  PubMed  CAS  Google Scholar 

  68. Salmon T, Heikkinen AM, Mahonen A, Kruger H, Komulainen M, Saarikoski S, et al. Early postmenopausal bone loss is associated with Pvu II estrogen receptor gene polymorphism in Finnish women: effect of hormone replacement therapy. J Bone Miner Res 2000; 15: 315–321.

    Article  Google Scholar 

  69. Han Z-H, Palnitka S, Sudhaker RAO, Nelson D, Parfitt AM. Effects of ethnicity and age or menopause on the remodeling and turnover of iliac bone: Implications for mechanisms of bone loss. J Bone Miner Res 1997; 12: 498–508.

    Article  PubMed  CAS  Google Scholar 

  70. Kobayash, S, Inoue S, Hosoi T, Ouchi Y, Shiraki M, Orimo H. Association of bone mineral density with polymorphism of the estrogen receptor gene. J Bone Miner Res 1996; 11: 306–311.

    Article  Google Scholar 

  71. Willing M, Sowers MF, Aron D, Clark MK, Burns T, Bunten C, et al. Bone mineral density and its change in white women: Estrogen and vitamin D receptor genotypes and their interaction. J Bone Miner Res 1998; 13: 695–705.

    Article  PubMed  CAS  Google Scholar 

  72. Uitterlinden AG, Burger H, Huang Q, Yue F, McGuigan FEA, Grant SFA, et al. Relation of alleles of the collagen type Ial gene to bone density and the risk of osteoporotic fractures in postmenopausal women. N Engl J Med 1998; 338: 1016–1021.

    Article  PubMed  CAS  Google Scholar 

  73. Harris SS, Patel MS, Cole DE, Dawson-Hughes B. Associations of the collagen type Ialphal Spl polymorphism with five-year rates of bone loss in older adults. Calcif Tissue Int 2000; 66: 268–271.

    Article  PubMed  CAS  Google Scholar 

  74. Heegaard A, Jorgensen HL, Vestergaard AW, Hassager C, Ralston SH. Lack of influence of collagen type ialphal Sp1 binding site polymorphism on the rate of bone loss in a cohort of postmenopausal Danish women followed for 18 years. Calcif Tissue Int 2000; 66: 409–413.

    Article  PubMed  CAS  Google Scholar 

  75. Garnero P, Borel O, Sornay-Rendu E, Delmas PD. Vitamin D receptor gene polymorphisms do not predict bone turnover and bone mass in healthy premenopausal women. J Bone Miner Res 1995; 10: 1283–1288.

    Article  PubMed  CAS  Google Scholar 

  76. Garnero P, Borel O, Sornay-Rendu E, Arlot ME, Delmas PD. Vitamin D receptor gene polymorphisms are not related to bone turnover, rate of bone loss, and bone mass in postmenopausal women: the OFELY study. J Bone Miner Res 1996; 11: 827–834.

    Article  PubMed  CAS  Google Scholar 

  77. Krall EA, Parry P, Lichter JB, Dawson-Hughes B. Vitamin D receptor alleles and rates of bone loss: influences of years since menopause and calcium intake. J Bone Miner Res 1995; 10: 978–984.

    Article  PubMed  CAS  Google Scholar 

  78. YamagataV, Miyamura T, Iijima S, Sasaki M, Kato J, Koizumi K. Vitamin D receptor gene polymorphism and bone mineral density in healthy Japanese women. Lancet 1994; 344: 1027, 1028.

    Google Scholar 

  79. Ferrari S, Rizzoli R, Chevalley T, Slosman D, Eisman, JA, Bonjour J-P. Vitamin-D-receptor-gene polymorphisms and change in lumbar-spine bone mineral density. Lancet 1995; 345: 423, 424.

    Google Scholar 

  80. Salamone LM, Cauley JA, Zmuda J, Pasagian-Macaulay A, Epstein RS, Ferrell RE, et al. Apolipoprotein E gene polymorphism and bone loss: estrogen status modifies the influence of apolipoprotein E on bone loss. J Bone Miner Res 2000; 15: 308–314.

    CAS  Google Scholar 

  81. Gennari L, Becherini L, Masi L, Gonnelli S, Cepollaro C, Martini S, et al. Vitamin D receptor genotypes and intestinal calcium absorption in postmenopausal women. Calcif Tissue Int 1997; 61: 460–463.

    Article  PubMed  CAS  Google Scholar 

  82. Zmuda JM, Cauley JA, Danielson ME, Wolf RL, Ferrell RE. Vitamin D receptor gene polymorphisms, bone turnover, and rates of bone loss in older African-American women. J Bone Miner Res 1997; 12: 1446–1452.

    Article  PubMed  CAS  Google Scholar 

  83. Dawson-Hughes B, Harris SS. Calcium absorption on high and low calcium intakes in relation to vitamin D receptor genotype. J Clin Endocrinol Metab 1995; 80: 3657–3661.

    Article  PubMed  CAS  Google Scholar 

  84. Kinyamu HK, Gallagher JC, Knezetic JA, DeLuca HF, Prahl JM, Lanspa SJ. Effect of vitamin D receptor genotypes on calcium absorption, duodenal vitamin D receptor concentration, and serum 1,25 dihydroxyvitamin D levels in normal women. Calcif Tissue Int 1997; 60: 491–495.

    Article  PubMed  CAS  Google Scholar 

  85. Francis RM, Harrington F, Turner E, Papiha, SS, Datta HK. Vitamin D receptor gene polymorphism in men and its effect on bone density and calcium absorption. Clin Endocrinol 1997; 46: 83–86.

    Article  CAS  Google Scholar 

  86. Barger-Lux, MJ, Heaney RP, Hayes J, DeLuca HF, Johnson ML, Gong G. Vitamin D receptor gene polymorphism, bone mass, body size, and vitamin D receptor density. Calcif Tissue Int 1995; 57: 161, 162.

    Google Scholar 

  87. Graafmans WC, Lips P, Ooms ME, van Leeuwen JPTM, Pols HAP. The effect of vitamin D supplementation on the bone mineral density of the femoral neck is associated with vitamin D receptor genotype. J Bone Miner Res 1997; 12: 1241–1245.

    Article  PubMed  CAS  Google Scholar 

  88. Tajima O, Ashizawa N, Ischii T, Amagai H, Mashimo T, Liu LJ, et al. Interaction of the effects between vitamin D receptor polymorphism and exercise training on bone metabolism. J Appl Physiol 2000; 88: 1271–1276.

    Article  PubMed  CAS  Google Scholar 

  89. Yamada Y, Harada A, Hosoi T, Miyauchi A, Ikeda K, Ohta H, et al. Association of transforming growth factor b1 genotype with therapeutic response to active Vitamin D for postmenopausal osteoporosis. J Bone Miner Res 2000; 15: 415–420.

    Article  PubMed  CAS  Google Scholar 

  90. Giguere Y, Dodin S, Blanchet C, Morgan K, Rousseau F. The association between heel ultrasound and hormone replacement therapy is modulated by a two-locus vitamin D and estrogen receptor genotype. J Bone Miner Res 2000; 15: 1076–1084.

    Article  PubMed  CAS  Google Scholar 

  91. Marc J, Prezelj J, Komel R, Kocijancic A. VDR genotype and response to etidronate therapy in late post-menopausal women. Osteoporosis Int 1999; 10: 303–306.

    Article  CAS  Google Scholar 

  92. Flicker L, Faulkner KG, Hopper JL, Green RM, Kaymakci B, Nowson CA, et al. Determinants of hip axis length in women aged 10–89 years: a twin study. Bone 1996; 18: 41–45.

    Article  PubMed  CAS  Google Scholar 

  93. Seeman E, Hopper JL, Young NR, Formica C, Goss P, Tsalamandris C. Do genetic factors contribute to associations between muscle strength, fat-free mass and bone density? A twin study. Am J Physiology. 1996; 270 (Endocrinol Metab 33): E320–327.

    CAS  Google Scholar 

  94. Arden NK Spector TD. Genetic influences on muscle strength, lean body mass, and bone mineral density: a twin study. J Bone Miner Res 1997; 12: 2076–2081.

    Google Scholar 

  95. Nguyen TV, Howard GM, Kelly PJ, Eisman JA. Bone mass, lean mass, and fat mass: same genes or same environments? Am J Epidemiol 1998; 147: 3–16.

    Article  PubMed  CAS  Google Scholar 

  96. Geusens P, Vandevyver C, Vanhoof J, Cassiman J-J, Boonen S, Raus J. Quadriceps and grip strength are related to vitamin D receptor genotype in elderly nonobese women. J Bone Miner Res 1997; 12: 2082–2088.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Seeman, E. (2003). The Genetics of Osteoporosis. In: Orwoll, E.S., Bliziotes, M. (eds) Osteoporosis. Contemporary Endocrinology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-278-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-278-4_2

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-260-5

  • Online ISBN: 978-1-59259-278-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics