Skip to main content
Book cover

Osteoporosis pp 375–391Cite as

Androgens and Skeletal Homeostasis

Potential Clinical Implications of Animal Data

  • Chapter
  • 341 Accesses

Part of the book series: Contemporary Endocrinology ((COE))

Abstract

Males deprived of androgen action, due to a lack of functional androgen receptors, have a female and not male phenotype (1,2), indicating that the development of the male phenotype depends on androgen action. The skeletal male phenotype is characterized by stronger bones than in females, primarily because male bones have greater size and not because they contain more mineral for similar size (3,4). It would seem logical, therefore, to assume that androgen action is particularly important for gender differences in bone size. Theoretically, androgen action may affect male skeletal homeostasis in utero, during the neonatal period, as well as before and after puberty. Females, on the other hand, do not secrete sex steroids before early puberty. Therefore, it is unlikely that sex steroids affect skeletal homeostasis before early puberty in the female.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Marcus R, Leary D, Schneider DL, Shane E, Favus M, Quigley CA. The contribution of testosterone to skeletal development and maintenance: lessons from the androgen insensitivity syndrome. J Clin Endocrinol Metab 2000; 85: 1032–1037.

    Article  PubMed  CAS  Google Scholar 

  2. Vanderschueren D, Van Herck E, Suiker AMH, Visser WJ, Schot LPC, Chung K, et al. Bone and mineral metabolism in the androgen-resistant (Testicular Feminized) male rat. J Bone Miner Res 1993; 8: 801–809.

    Article  PubMed  CAS  Google Scholar 

  3. Bonjour J-P, Theintz G, Buchs B, Slosman D, Rizzoli R. Critical years and stages of puberty for spinal and femoral bone mass accumulation during adolescence. J Clin Endocrinol Metab 1991; 73: 555–563.

    Article  PubMed  CAS  Google Scholar 

  4. Seeman E. Osteoporosis in men. Osteoporosis Int 1999; 9: S97 — S110.

    Article  Google Scholar 

  5. Jansson JO, Eden S, Isaksson O. Sexual dimorphism in the control of growth hormone secretion. Endocr Rev 1985; 6: 128–150.

    Article  PubMed  CAS  Google Scholar 

  6. Kerrigan JR, Rogol AD. The impact of gonadal steroid hormone action on growth hormone secretion during childhood and adolescence. Endocr Rev 1992; 13: 281–298.

    PubMed  CAS  Google Scholar 

  7. Schiessl H, Frost HM, Jee WSS. Estrogen and bone-muscle strength and mass relationships. Bone 1998; 22: 1–6.

    Article  PubMed  CAS  Google Scholar 

  8. Frost HM. The mechanostat: a proposed pathogenic mechanism of osteoporoses and the bone mass effects of mechanical and nonmechanical agents. Bone Miner 1987; 2: 73–85.

    PubMed  CAS  Google Scholar 

  9. Saville PD. Changes in skeletal mass and fragility with castration in the rat: a model of osteoporosis. J Am Geriatr Soc 1969; 17: 155–166.

    PubMed  CAS  Google Scholar 

  10. Faugere MC, Friedler RM, Fanti P, Malluche HH. Bone changes occurring early after cessation of ovarian function in beagle dogs: a histomorphometric study employing sequential biopsies. J Bone Miner Res 1990; 5: 263–273.

    Article  PubMed  CAS  Google Scholar 

  11. Longcope C, Hoberg L, Steuterman S, Baran D. The effect of ovariectomy on spine bone mineral density in rhesus monkeys. Bone 1989; 10: 341–344.

    Article  PubMed  CAS  Google Scholar 

  12. Vanderschueren D, Van Herck E, Suiker AMH, Allewaert K, Visser WJ, Geusens P, et al. Bone and mineral metabolism in the adult guinea pig: long-term effects of estrogen and androgen deficiency. J Bone Miner Res 1992; 7: 1407–1415.

    Article  PubMed  CAS  Google Scholar 

  13. Schoutens A, Verhas M, L’hermite-Baleriaux M, L’Hermite M, Verschaeren A, Dourov N, et al. Growth and bone haemodynamic responses to castration in male rats. Reversibility by testosterone. Acta Endocrinologica 1984; 107: 428–432.

    PubMed  CAS  Google Scholar 

  14. Wakley GK, Schutte HD, Hannon KS, Turner RT. Androgen treatment prevents loss of cancellous bone in the orchidectomized rat. J Bone Miner Res 1991; 6: 325–330.

    Article  PubMed  CAS  Google Scholar 

  15. Kimmel DB. Quantitative histologic changes in the proximal tibial growth cartilage of aged female rats. Cells and Materials 1991; Suppl. 1: 11–18.

    Google Scholar 

  16. Frost HM. Bone remodeling and its relationship to metabolic bone disease. In: Thomas CC, ed. Springfield, MA, 1973, pp. 3–27.

    Google Scholar 

  17. Kalu DN. The ovariectomized rat model of postmenopausal bone loss. Bone Miner 1991; 15: 175–192.

    Article  PubMed  CAS  Google Scholar 

  18. Turner RT, Riggs BL, Spelsberg TC. Skeletal effects of estrogen. Endocr Rev 1994; 15: 275–300.

    PubMed  CAS  Google Scholar 

  19. Turner RT, Hannon KS, Demers LM, Buchanan J, Bell NH. Differential effects of gonadal function on bone histomorphometry in male and female rats. J Bone Miner Res 1989; 4: 557–563.

    Article  PubMed  CAS  Google Scholar 

  20. Gunness M, Orwoll E. Early induction of alterations in cancellous and cortical bone histology after orchiectomy in mature rats. J Bone Miner Res 1995; 10: 1735–1744.

    Article  PubMed  CAS  Google Scholar 

  21. Wronski TJ, Walsh CC, Ignaszewski LA. Histologic evidence for osteopenia and increased bone turnover in ovariectomized rats. Bone 1986; 7: 119–123.

    Article  PubMed  CAS  Google Scholar 

  22. Hagaman JR, Ambrose WW, Hirsch PF, Kiebzak GM. Age-related changes in rat trabecular, endosteal, and cortical bone demonstrated with scanning electron microscopy. Cells and Materials 1991; Suppl. 1: 37–46.

    Google Scholar 

  23. Vermeulen A. Androgens in the aging male–Clinical review 24. J Clin Endocrinol Metab 1991; 73: 221–224.

    Article  PubMed  CAS  Google Scholar 

  24. Seeman E, Melton III LJ, O’Fallon WM, Riggs BL. Risk factors for spinal osteoporosis in men. Am J Med 1983; 75: 977–983.

    Article  PubMed  CAS  Google Scholar 

  25. Boonen S, Vanderschueren D, Cheng XG, Verbeke G, Dequeker J, Geusens P, et al. Age-related (type II) femoral neck osteoporosis in men: biochemical evidence for both hypovitaminosis D- and androgen deficiency-induced bone resorption. J Bone Miner Res 1997; 12: 2119–2126.

    Article  PubMed  CAS  Google Scholar 

  26. Orwoll ES, Klein RF. Osteoporosis in men. Endocr Rev 1995; 16: 87–116.

    PubMed  CAS  Google Scholar 

  27. Johansson AG, Eriksen EF, Lindh E, Langdahl B, Blum WF, Lindahl A, et al. Reduced serum levels of the growth-hormone-dependent insulin-like growth factor binding protein and a negative bone balance at the level of individual remodeling units in idiopathic osteoporosis in men. J Clin Endocrinol Metab 1997; 82: 2795–2798.

    Article  PubMed  CAS  Google Scholar 

  28. Riggs BL, Khosla S, Melton III U. A unitary model for involutional osteoporosis: estrogen deficiency causes both type I and type II osteoporosis in postmenopausal women and contributes to bone loss in aging men. J Bone Miner Res 1998; 13: 763–773.

    Article  PubMed  CAS  Google Scholar 

  29. Dehority W, Halloran BP, Bikle DD, Curren T, Kostenuik Pi, Wronski TJ, et al. Bone and hormonal changes induced by skeletal unloading in the mature male rat. Am J Physiol 1999; 276: E62 - E69.

    PubMed  CAS  Google Scholar 

  30. Zhang XZ, Kalu DN, Erbas B, Hopper JL, Seeman E. The effects of gonadectomy on bone size, mass, and volumetric density in growing rats are gender-, site-, and growth hormone-specific. J Bone Miner Res 1999; 14: 802–809.

    Article  PubMed  CAS  Google Scholar 

  31. Tuukkanen J, Peng Z, Väänänen HK. Effect of running exercise on the bone loss induced by orchidectomy in the rat. Calcif Tissue Int 1994; 55: 33–37.

    Article  PubMed  CAS  Google Scholar 

  32. Vanderschueren D, Van Herck E, Nijs J, Ederveen AGH, De Coster R, Bouillon R. Aromatase inhibition impairs skeletal modeling and decreases bone mineral density in growing male rats. Endocrinology 1997; 138: 2301–2307.

    Article  PubMed  CAS  Google Scholar 

  33. Rosen HN, Tollin S, Balena R, Middlebrooks VL, Beamer WG, Rosen C, et al. Differentiating between orchiectomized rats and controls using measurements of trabecular bone density: a comparison among DXA, histomorphometry, and peripheral quantitative computerized tomography. Calcif Tissue Int 1995; 57: 35–39.

    Article  PubMed  CAS  Google Scholar 

  34. Vanderschueren D, Van Herck E, Suiker AMH, Visser WJ, Schot LPC, Bouillon R. Bone and mineral metabolism in aged male rats: short and long term effects of androgen deficiency. Endocrinology 1992; 130: 2906–2916.

    Article  PubMed  CAS  Google Scholar 

  35. Danielsen CC, Mosekilde L, Andreassen TT. Long-term effect of orchidectomy on cortical bone from rat femur: bone mass and mechanical properties. Calcif Tissue Int 1992; 50: 169–174.

    Article  PubMed  CAS  Google Scholar 

  36. Prakasam G, Yeh JK, Chen M-M, Castro-Magana M, Liang CT, Aloia JF. Effects of growth hormone and testosterone on cortical bone formation and bone density in aged orchiectomized rats. Bone 1999; 24: 491–497.

    Article  PubMed  CAS  Google Scholar 

  37. Vanderschueren D, Van Herck E, Schot P, Rush E, Einhorn T, Geusens P, et al. The aged male rat as a model for human osteoporosis: evaluation by nondestructive measurements and biomechanical testing. Calcif Tissue Int 1993; 53: 342–347.

    Article  PubMed  CAS  Google Scholar 

  38. Vanderschueren D, Vandenput L, Boonen S, Van Herck E, Swinnen JV, Bouillon R. An aged rat model of partial androgen deficiency: prevention of both loss of bone and lean body mass by low-dose androgen replacement. Endocrinology 2000; 141: 1642–1647.

    Article  PubMed  CAS  Google Scholar 

  39. Wink CS, Felts WJL. Effects of castration on the bone structure of male rats: a model of osteoporosis. Calcif Tissue Int 1980; 32: 77–82.

    Article  PubMed  CAS  Google Scholar 

  40. Verhas M, Schoutens A, L’hermite-Baleriaux M, Dourov N, Verschaeren A, Mone M, et al. The effect of orchidectomy on bone metabolism in aging rats. Calcif Tissue Int 1986; 39: 74–77.

    Article  PubMed  CAS  Google Scholar 

  41. Vanderschueren D, Van Herck E, De Coster R, Bouillon R. Aromatization of androgens is important for skeletal maintenance of aged male rats. Calcif Tissue Int 1996; 59: 179–183.

    Article  PubMed  CAS  Google Scholar 

  42. Ke HZ, Qi H, Crawford DT, Chidsey-Frink KL, Simmons HA, Thompson DD. Lasofoxifene (CP336,156), a selective estrogen receptor modulator, prevents bone loss induced by aging and orchidectomy in the adult rat. Endocrinology 2000; 141: 1338–1344.

    Article  PubMed  CAS  Google Scholar 

  43. Erben RG, Eberle J, Stahr K, Goldberg M. Androgen deficiency induces high turnover osteopenia in aged male rats: a sequential histomorphometric study. J Bone Miner Res 2000; 15: 1085–1098.

    Article  PubMed  CAS  Google Scholar 

  44. Stepan JJ, Lachman M, Zverina J, Pacovsky V, Baylink DJ. Castrated men exhibit bone loss: effect of calcitonin treatment on biochemical indices of bone remodeling. J Clin Endocrinol Metab 1989; 69: 523–527.

    Article  PubMed  CAS  Google Scholar 

  45. Goldray D, Weisman Y, Jaccard N, Merdler C, Chen J, Matzkin H. Decreased bone density in elderly men treated with the gonadotropin-releasing hormone agonist decapeptyl (D-Trp6-GnRH). J Clin Endocrinol Metab 1993; 76: 288–290.

    Article  PubMed  CAS  Google Scholar 

  46. Daniell HW. Osteoporosis after orchiectomy for prostate cancer. J Urol 1997; 157: 439–444.

    Article  PubMed  CAS  Google Scholar 

  47. Turner RT, Wakley GK, Hannon KS. Differential effects of androgens on cortical bone histomorphometry in gonadectomized male and female rats. J Orthop Res 1990; 8: 612–617.

    Article  PubMed  CAS  Google Scholar 

  48. Behre HM, Kliesch S, Leifke E, Link TM, Nieschlag E. Long-term effect of testosterone therapy on bone mineral density in hypogonadal men. J Clin Endocrinol Metab 1997; 82: 2386–2390.

    Article  PubMed  CAS  Google Scholar 

  49. Katznelson L, Finkelstein JS, Schoenfeld DA, Rosenthal DI, Anderson EJ, Klibanski A. Increase in bone density and lean body mass during testosterone administration in men with acquired hypogonadism. J Clin Endocrinol Metab 1996; 81: 4358–4365.

    Article  PubMed  CAS  Google Scholar 

  50. Leifke E, Körner H-C, Link TM, Behre HM, Peters PE, Nieschlag E. Effects of testosterone replacement therapy on cortical and trabecular bone mineral density, vertebral body area and paraspinal muscle area in hypogonadal men. Eur J Endocrinol 1998; 138: 51–58.

    Article  PubMed  CAS  Google Scholar 

  51. Finkelstein JS, Klibanski A, Neer RM, Doppelt SH, Rosenthal DI, Segre GV, et al. Increases in bone density during treatment of men with idiopathic hypogonadotropic hypogonadism. J Clin Endocrinol Metab 1989; 69: 776–783.

    Article  PubMed  CAS  Google Scholar 

  52. Wakley GK, Evans GL, Turner RT. Short-term effects of high dose estrogen on tibiae of growing male rats. Calcif Tissue Int 1997; 60: 37–42.

    Article  PubMed  CAS  Google Scholar 

  53. Turner RT. Mice, estrogen, and postmenopausal osteoporosis. J Bone Miner Res 1999; 14: 187–191.

    Article  Google Scholar 

  54. Turner RT, Evans GL, Wakley GK. Reduced chondroclast differentiation results in increased cancel-Ions bone volume in estrogen-treated growing rats. Endocrinology 1994; 134: 461–466.

    Article  PubMed  CAS  Google Scholar 

  55. Lips P, Asscheman H, Uitewaal P, Netelenbos JC, Gooren L. The effect of cross-gender hormonal treatment on bone metabolism in male-to-female transsexuals. J Bone Miner Res 1989; 4: 657–662.

    Article  PubMed  CAS  Google Scholar 

  56. Smith EP, Boyd J, Frank GR, Takahashi H, Cohen RM, Specker B, et al. Estrogen resistance caused by a mutation in the estrogen-receptor gene in a man. N Engl J Med 1994; 331: 1056–1061.

    Article  PubMed  CAS  Google Scholar 

  57. Morishima A, Grumbach MM, Simpson ER, Fisher C, Qin K. Aromatase deficiency in male and female siblings caused by a novel mutation and the physiological role of estrogens. J Clin Endocrinol Metab 1995; 80: 3689–3698.

    Article  PubMed  CAS  Google Scholar 

  58. Carani C, Qin K, Simoni M, Faustini-Fustini M, Serpente S, Boyd J, et al. Effect of testosterone and estradiol in a man with aromatase deficiency. N Engl J Med 1997; 337: 91–95.

    Article  PubMed  CAS  Google Scholar 

  59. Bilezikian JP, Morishima A, Bell J, Grumbach MM. Increased bone mass as a result of estrogen therapy in a man with aromatase deficiency. N Engl J Med 1998; 339: 599–603.

    Article  PubMed  CAS  Google Scholar 

  60. Yarbrough WG, Quarmby VE, Simental JA, Joseph DR, Sar M, Lubahn DB, et al. A single base mutation in the androgen receptor gene causes androgen insensitivity in the testicular feminized rat. J Biol Chem 1990; 265: 8893–8900.

    PubMed  CAS  Google Scholar 

  61. Munoz-Torres M, Jódar E, Quesada M, Escobar-Jiménez F. Bone mass in androgen-insensitivity syndrome: response to hormonal replacement therapy. Calcif Tissue Int 1995; 57: 94–96.

    Article  PubMed  CAS  Google Scholar 

  62. Mizunuma H, Soda M, Okano H, Kagami I, Miyamoto S, Ohsawa M, et al. Changes in bone mineral density after orchidectomy and hormone replacement therapy in individuals with androgen insensitivity syndrome. Hum Reprod 1998; 13: 2816–2818.

    Article  PubMed  CAS  Google Scholar 

  63. Vanderschueren D, Van Herck E, Geusens P, Suiker A, Visser W, Chung K, et al. Androgen resistance and deficiency have different effects on the growing skeleton of the rat. Calcif Tissue Int 1994; 55: 198–203.

    Article  PubMed  CAS  Google Scholar 

  64. Rosen HN, Tollin S, Balena R, Middlebrooks VL, Moses AC, Yamamoto M, et al. Bone density is normal in male rats treated with Finasteride. Endocrinology 1995; 136: 1381–1387.

    Article  PubMed  CAS  Google Scholar 

  65. Matzkin H, Chen J, Weisman Y, Goldray D, Pappas F, Jaccard N, et al. Prolonged treatment with finasteride (a 5a-reductase inhibitor) does not affect bone density and metabolism. Clin Endocrinol 1992; 37: 432–436.

    Article  CAS  Google Scholar 

  66. Dagogo-Jack S, al-Ali N, Qurttom M. Augmentation of bone mineral density in hirsute women. J Clin Endocrinol Metab 1997; 82: 2821–2825.

    Article  PubMed  CAS  Google Scholar 

  67. Raisz LG, Wiita B, Artis A, Bowen A, Schwartz S, Trahiotis M, et al. Comparison of the effects of estrogen alone and estrogen plus androgen on biochemical markers of bone formation and resorption in postmenopausal women. J Clin Endocrinol Metab 1996; 81: 37–43.

    Article  PubMed  CAS  Google Scholar 

  68. Gray A, Feldman HA, McKinlay JB, Longcope C. Age, disease, and changing sex hormone levels in middle-aged men: results of the Massachusetts male aging study. J Clin Endocrinol Metab 1991; 73: 1016–1025.

    Article  PubMed  CAS  Google Scholar 

  69. Gordon CM, Glowacki J, LeBoff MS. DHEA and the skeleton (through the ages). Endocrine 1999; 11: 1–11.

    Article  PubMed  CAS  Google Scholar 

  70. Turner RT, Lifrak ET, Beckner M, Wakley GK, Hannon KS, Parker LN. Dehydroepiandrosterone reduces cancellous bone osteopenia in ovariectomized rats. Am J Physiol 1990; 258: E673 - E677.

    PubMed  CAS  Google Scholar 

  71. Lea CK, Moxham V, Flanagan AM. Androstenedione treatment reduces loss of cancellous bone volume in ovariectomised rats in a dose-esponsive manner and the effect is not mediated by oestrogen. J Endocrinol 1998; 156: 331–339.

    Article  PubMed  CAS  Google Scholar 

  72. Lea CK, Flanagan AM. Physiological plasma levels of androgens reduce bone loss in the ovariectomized rat. Am J Physiol 1998; 274: E328 - E335.

    PubMed  CAS  Google Scholar 

  73. Martel C, Sourla A, Pelletier G, Labrie C, Fournier M, Picard S, et al. Predominant androgenic component in the stimulatory effect of dehydroepiandrosterone on bone mineral density in the rat. J Endocrinol 1998; 157: 433–442.

    Article  PubMed  CAS  Google Scholar 

  74. Tobias JH, Gallagher A, Chambers TJ. 5 alpha-Dihydrotestosterone partially restores cancellous bone volume in osteopenic ovariectomized rats. Am J Physiol 1994; 267: E853 - E859.

    PubMed  CAS  Google Scholar 

  75. Coxam V, Bowman BM, Mecham M, Roth CM, Miller MA, Miller SC. Effects of dihydrotestosterone alone and combined with estrogen on bone mineral density, bone growth, and formation rates in ovariectomized rats. Bone 1996; 19: 107–114.

    Article  PubMed  CAS  Google Scholar 

  76. Gallagher AC, Chambers TJ, Tobias JH. Androgens contribute to the stimulation of cancellous bone formation by ovarian hormones in female rats. Am J Physiol 1996; 270: E407 - E412.

    PubMed  CAS  Google Scholar 

  77. Gouling A, Gold E. Flutamide-mediated androgen blockade evokes osteopenia in the female rat. J Bone Miner Res 1993; 8: 763–769.

    Article  Google Scholar 

  78. Lea C, Kendall N, Flanagan AM. Casodex (a nonsteroidal antiandrogen) reduces cancellous, endosteal, and periosteal bone formation in estrogen-replete female rats. Calcif Tissue Int 1996; 58: 268–272.

    PubMed  CAS  Google Scholar 

  79. Ornoy A, Giron S, Aner R, Goldstein M, Boyan BD, Schwartz Z. Gender dependent effects of testosterone and 17b-estradiol on bone growth and modelling in young mice. Bone Miner 1994; 24: 43–58.

    Article  PubMed  CAS  Google Scholar 

  80. Bellido T, Jilka RL, Boyce BF, Girasole G, Broxmeyer H, Dalrymple SA, et al. Regulation of interleukin-6, osteoclastogenesis, and bone mass by androgens. The role of the androgen receptor. J Clin Invest 1995; 95: 2886–2895.

    Article  PubMed  CAS  Google Scholar 

  81. Jilka RL, Weinstein RS, Takahashi K, Parfitt AM, Manolagas SC. Linkage of decreased bone mass with impaired osteoblastogenesis in a murine model of accelerated senescence. J Clin Invest 1996; 97: 1732–1740.

    Article  PubMed  CAS  Google Scholar 

  82. Weinstein RS, Jilka RL, Parfitt AM, Manolagas SC. The effects of androgen deficiency on murine bone remodeling and bone mineral density are mediated via cells of the osteoblastic lineage. Endocrinology 1997; 138: 4013–4021.

    Article  PubMed  CAS  Google Scholar 

  83. Most W, van der Wee-Pals L, Ederveen A, Papapoulos S, Löwik C. Ovariectomy and orchidectomy induce a transient increase in the osteoclastogenic potential of bone marrow cells in the mouse. Bone 1997; 20: 27–30.

    Article  PubMed  CAS  Google Scholar 

  84. Lin S-C, Yamate T, Taguchi Y, Borba VZC, Girasole G, O’Brien CA, et al. Regulation of the gp80 and gp130 subunits of the IL-6 receptor by sex steroids in the murine bone marrow. J Clin Invest 1997; 100: 1980–1990.

    Article  PubMed  CAS  Google Scholar 

  85. Manolagas SC. Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr Rev 2000; 21: 115–137.

    Article  PubMed  CAS  Google Scholar 

  86. Jackson JA, Kleerekoper M, Parfitt AM, Rao DS, Villanueva AR, Frame B. Bone histomorphometry in hypogonadal and eugonadal men with spinal osteoporosis. J Clin Endocrinol Metab 1987; 65: 53–58.

    Article  PubMed  CAS  Google Scholar 

  87. Uesugi Y, Taguchi O, Noumura T, Iguchi T. Effects of sex steroids on the development of sexual dimorphism in mouse innominate bone. Anat Rec 1992; 234: 541–548.

    Article  PubMed  CAS  Google Scholar 

  88. Öz OK, Zerwekh JE, Fisher C, Graves K, Nanu L, Millsaps R, et al. Bone has a sexually dimorphic response to aromatase deficiency. J Bone Miner Res 2000; 15: 507–514.

    Article  PubMed  Google Scholar 

  89. Korach KS, Couse JF, Curtis SW, Washburn TF, Lindzey J, Kimbro KS, et al. Estrogen receptor gene disruption: molecular characterization and experimental and clinical phenotypes. Recent Prog Horm Res 1996; 51: 159–188.

    PubMed  CAS  Google Scholar 

  90. Vidal O, Lindberg MK, Hollberg K, Baylink DJ, Andersson G, Lubahn DB, et al. Estrogen receptor specificity in the regulation of skeletal growth and maturation in male mice. Proc Natl Acad Sci USA 2000; 97: 5474–5479.

    Article  PubMed  CAS  Google Scholar 

  91. Vandenput L, Ederveen AGH, Erben RG, Stahr K, Swinnen JV, Van Herck E, et al. Testosterone prevents orchidectomy-induced bone loss in estrogen receptor-a knockout mice. Biochem Biophys Res Commun 2001; 285: 70–76.

    Article  PubMed  CAS  Google Scholar 

  92. Windahl SH, Vidal O, Andersson G, Gustafsson JA, Ohlsson C. Increased cortical bone mineral content but unchanged trabecular bone mineral density in female ERb-/–mice. J Clin Invest 1999; 104: 895–901.

    Article  PubMed  CAS  Google Scholar 

  93. Vestergaard P, Crawford DT, Chidsey-Frink KL, Pirie CM, Ke HZ, Pan LC. Bone and muscle loss induced by orchidectomy in mice is restored by administration of dihydrotestosterone. J Bone Miner Res 1999;14, Suppl 1:S532(Abstract).

    Google Scholar 

  94. Onoe Y, Miyaura C, Ito M, Ohta H, Nozawa S, Suda T. Comparative effects of estrogen and raloxifene on B lymphopoiesis and bone loss induced by sex steroid deficiency in mice. J Bone Miner Res 2000; 15: 541–549.

    Article  PubMed  CAS  Google Scholar 

  95. Sibonga JD, Dobnig H, Jewison DE, Turner RT. Evidence that endogenous estrogen reduces cancellous bone mass in male rats. J Bone Miner Res 1999;14, Suppl 1:S 227(Abstract).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Vanderschueren, D., Vandenput, L., Swinnen, J.V., Boonen, S., Bouillon, R. (2003). Androgens and Skeletal Homeostasis. In: Orwoll, E.S., Bliziotes, M. (eds) Osteoporosis. Contemporary Endocrinology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-278-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-278-4_18

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-260-5

  • Online ISBN: 978-1-59259-278-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics