Skip to main content
Book cover

Osteoporosis pp 349–373Cite as

Androgen Action in Bone

Basic Cellular and Molecular Aspects

  • Chapter
  • 342 Accesses

Part of the book series: Contemporary Endocrinology ((COE))

Abstract

The obvious impact of the menopause on skeletal health has focused much of the research on the general action of gonadal steroids on bone on the specific effects of estrogen. However, androgens, independently, have important beneficial effects on skeletal development and on the maintenance of bone mass in both men and women. For example, androgens (1) influence growth plate maturation and closure helping to determine longitudinal bone growth during development, (2) mediate dichotomous regulation of cancellous and cortical bone mass, leading to a sexually dimorphic skeleton, (3) modulate peak bone mass acquisition, and (4) inhibit bone loss (1–4). In castrate animals, replacement with nonaromatizable androgens (e.g., dihydrotestosterone) yields beneficial effects that are clearly distinct from those observed with estrogen replacement (5, 6). In intact females, blockade of the androgen receptor (AR) with the specific AR antagonist hydroxyflutamide results in osteopenia (7). Data suggest that combination therapy with both estrogen and androgenic steroids is more effective than estrogen replacement alone (8–11). At the same time, nonaromatizable androgen alone and in combination with estrogen also result in distinct changes in bone mineral density in females (12). These reports illustrate the independent actions of androgens and estrogens on the skeleton. Thus, in both men and women it is probable that androgens and estrogens each have important, yet distinct, functions during bone development and in the subsequent maintenance of skeletal homeostasis. Given the increasing awareness of the importance of the effects of androgen on skeletal homeostasis, and the potential use of androgen for the treatment of bone disorders, much is yet to be learned.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vanderschueren D, Bouillon R. Androgens and bone. Calcif Tissue Int 1995; 56: 341–346

    Article  PubMed  CAS  Google Scholar 

  2. Orwoll E. Androgens. In: Bilezekian J, Raisz L, Rodan G, ed. Principles of Bone Biology. Academic Press, San Diego, CA, 1996, pp. 563–580.

    Google Scholar 

  3. Vanderschueren D, Bouillon R. Androgens and their role in skeletal homeostasis. Horm Res 1996; 46: 95–98.

    Article  PubMed  CAS  Google Scholar 

  4. Orwoll E. Androgen and bone: clinical aspects. In: Orwoll E, ed. Osteoporosis in Men. Academic Press, San Diego, CA, 1999, pp. 247–274.

    Chapter  Google Scholar 

  5. Turner R, Riggs B, Spelsberg T. Skeletal effects of estrogen. Endocrine Rev 1994; 15: 275–300.

    CAS  Google Scholar 

  6. Turner R, Wakley G, Hannon K. Differential effects of androgens on cortical bone histomorphometry in gonadectomized male and female rats. J Orthopaedic Res 1990; 8: 612–617.

    Article  CAS  Google Scholar 

  7. Goulding A, Gold E. Flutamide-mediated androgen blockade evokes osteopenia in the female rat. J Bone Miner Res 1993; 8: 763–769.

    Article  PubMed  CAS  Google Scholar 

  8. Watts N, Notelovitz M, Timmons M, Addison W, Wiita B, Downey L. Comparison of oral estrogens and estrogens plus androgen on bone mineral density, menopausal symptoms, and lipid-lipoprotein profiles in surgical menopause. Obstet Gynecol 1995; 85: 529–537.

    Article  PubMed  CAS  Google Scholar 

  9. Raisz L, Wiita B, Artis A, Bowen A, Schwartz S, Trahiotis M, et al. Comparison of the effects of estrogen alone and estrogen plus androgen on biochemical markers of bone formation and resorption in postmenopausal women. J Clin Endocrinol Metab 1996; 81: 37–43.

    Article  PubMed  CAS  Google Scholar 

  10. Rosenberg M, King T, Timmons M. Estrogen-androgen for hormone replacement. J Reprod Med 1997; 42: 394–404.

    PubMed  CAS  Google Scholar 

  11. Barrett-Connor E. 1998 Efficacy and safety of estrogen/androgen therapy. J Reprod Med 43: 746–752.

    PubMed  CAS  Google Scholar 

  12. Coxam V, Bowman B, Mecham M, Roth C, Miller M, Miller S. Effects of dihydrotestosterone alone and combined with estrogen on bone mineral density, bone growth, and formation rates in ovariectomized rats. Bone 1996; 19: 107–114.

    Article  PubMed  CAS  Google Scholar 

  13. Abu E, Horner A, Kusec V, Triffitt J, Compston J. The localization of androgen receptors in human bone. J Clin Endocrinol Metab 1997; 82: 3493–3497.

    Article  PubMed  CAS  Google Scholar 

  14. Hofbauer L, Khosla S. Androgen effects on bone metabolism: recent progress and controversies. Eur J Endocrinol 1999; 140: 271–286.

    Article  PubMed  CAS  Google Scholar 

  15. Chang C, Kokontis J, Liao S. Structural analysis of complementary DNA and amino acid sequences of human and rat androgen receptors. Proc Natl Acad Sci USA 1988; 85: 7211–7215.

    Article  PubMed  CAS  Google Scholar 

  16. Lubahn D, Joseph D, Sar M, Tan J, Higgs H, Larson R, French F, Wilson E. The human androgen receptor: complementary deoxyribonucleic acid cloning, sequence analysis, and gene expression in prostate. Mol Endocrinol 1988; 2: 1265–1275.

    Article  PubMed  CAS  Google Scholar 

  17. Colvard D, Spelsberg T, Eriksen E, Keeting P, Riggs L. Evidence of steroid receptors in human osteoblast-like cells. Connect Tissue Res 1989; 20: 33–40.

    Article  PubMed  CAS  Google Scholar 

  18. Benz D, Haussler M, Thomas M, Speelman B, Komm B. High-affinity androgen binding and androgenic regulation of al(I)-procollagen and transforming growth factor-ß steady state messenger ribonucleic acid levels in human osteoblast-like osteosarcoma cells. Endocrinology 1991; 128: 2723–2730.

    Article  PubMed  CAS  Google Scholar 

  19. Orwoll E, Stribska L, Ramsey E, Keenan E. Androgen receptors in osteoblast-like cell lines. Calcif Tissue Int 1991; 49: 183–187.

    Article  PubMed  CAS  Google Scholar 

  20. Zhuang Y, Blauer M, Pekki A, Tuohimaa P. Subcellular location of androgen receptor in rat prostate, seminal vesicle and human osteosarcoma MG-63 cells. J Steroid Biochem Mol Biol 1992; 41: 693–696.

    Article  PubMed  CAS  Google Scholar 

  21. Liesegang P, Romalo G, Sudmann M, Wolf L, Schweikert H. Human osteoblast-like cells contain specific, saturable, high-affinity glucocorticoid, androgen, estrogen, and 1 a,25-dihydroxycholecalciferol receptors. J Androl 1994; 15: 194–199.

    PubMed  CAS  Google Scholar 

  22. Nakano Y, Morimoto I, Ishida O, Fujihira T, Mizokami A, Tanimoto A, Yanagihara N, Izumi F, Eto S. The receptor, metabolism and effects of androgen in osteoblastic MC3T3–E1 cells. Bone Miner 1994; 26: 245–259.

    Article  PubMed  CAS  Google Scholar 

  23. Takeuchi M, Kakushi H, Tohkin M. Androgens directly stimulate mineralization and increase androgen receptors in human osteoblast-like osteosarcoma cells. Biochem Biophys Res Commun 1994; 204: 905–911.

    Article  PubMed  CAS  Google Scholar 

  24. Kasperk C, Helmboldt A, Borcsok I, Heuthe S, Cloos O, Niethard F, et al. Skeletal site-dependent expression of the androgen receptor in human osteoblastic cell populations. Calcif Tissue Int 1997; 61: 464–473.

    Article  PubMed  CAS  Google Scholar 

  25. Wilson C, McPhaul M. A and B forms of the androgen receptor are present in human genital skin fibroblasts. Proc Natl Acad Sci USA 1994; 91: 1234–1238.

    Article  PubMed  CAS  Google Scholar 

  26. Gao T, McPhaul M. Functional activities of the A and B forms of the human androgen receptor in response to androgen receptor agonists and antagonists. Mol Endocrinol 1998; 12: 654–663.

    Article  PubMed  CAS  Google Scholar 

  27. Masuyama A, Ouchi Y, Sato F, Hosoi T, Nakamura T, Orimo H. Characteristics of steroid hormone receptors in cultured MC3T3–E1 osteoblastic cells and effect of steroid hormones on cell proliferation. Calcif Tissue Int 1992; 51: 376–381.

    Article  PubMed  CAS  Google Scholar 

  28. Mangelsdorf D, Thummel C, Beato M, Herrlich P, Schutz G, Umesono K, et al. The nuclear receptor superfamily: the second decade. Cell 1995; 83: 835–839.

    Article  PubMed  CAS  Google Scholar 

  29. Tyag iR, Lavrovsky Y, Ahn S, Song C, Chatterjee B, Roy A. Dynamics of intracellular movement and nucleocytoplasmic recycling of the ligand-activated androgen receptor in living cells. Mol Endocrinol 2000; 14: 1162–1174.

    Article  Google Scholar 

  30. Noble B, Routledge J, Stevens H, Hughes I, Jacobson W. Androgen receptors in bone-forming tissue. Horm Res 1998; 51: 31–36.

    Article  Google Scholar 

  31. Georget V, Lobaccaro J, Terouanne B, Mangeat P, Nicolas J-C, Sultan C. Trafficking of the androgen receptor in living cells with fused green fluorescent protein-androgen receptor. Mol Cell Endocrinol 1997; 129: 17–26.

    Article  PubMed  CAS  Google Scholar 

  32. Whitfield G, Jurutka P, Haussler C, Haussler M. Steroid hormone receptors: evolution, ligands, and molecular basis of biologic function. J Cell Biochem 1999; S32 /33: 110–122.

    Article  PubMed  Google Scholar 

  33. Denison S, Sands A, Tindall D. A tyrosine aminotransferase glucocorticoid response element also mediates androgen enhancement of gene expression. Endocrinology 1989; 124: 1091–1093.

    Article  PubMed  CAS  Google Scholar 

  34. Verrijdt G, Schoenmakers E, Alen P, Haelens A, Peeters B, Rombauts W, Claessens F. Androgen specificity of a response unit upstream of the human secretory component gene is mediated by differential receptor binding to an essential androgen response element. Mol Endocrinol 1999; 13: 1558–1570.

    Article  PubMed  CAS  Google Scholar 

  35. Chang C, Saltzman N, Yeh S, Young W, Keller E, Lee H-J, Wang C, Mizokami A. Androgen receptor: an overview. Crit Rev Eukaryot Gene Expr 1995; 5: 97–125.

    Article  PubMed  CAS  Google Scholar 

  36. Rogatsky I, Trowbridge J, Garabedian M. Potentiation of the human estrogen receptor a transcriptional activation through phosphorylation of serines 104 and 106 by the cyclin A-CDK2 complex. J Biol Chem 1999;274:22, 296–22, 302.

    Google Scholar 

  37. Kemppainen J, Lane M, Sar M, Wilson E. Androgen receptor phosphorylation, turnover, nuclear transport, and transcriptional activities. J Biol Chem 1992; 267: 968–974.

    PubMed  CAS  Google Scholar 

  38. Ikonen T, Palvimo J, Kallio P, Reinikainen P, Janne O. Stimulation of androgen-regulated transactivation by modulators of protein phosphorylation. Endocrinology 1994; 135: 1359–1366.

    Article  PubMed  CAS  Google Scholar 

  39. Blok L, de Ruiter P, Brinkmann A. Androgen receptor phosphorylation. Endocrin Res 1996; 22: 197–219.

    Article  CAS  Google Scholar 

  40. Culig A, Hobisch A, Cronauer M, Radmayr C, Trapman J, Hittmair A, et al. Androgen receptor activation in prostatic tumor cell lines by insulin-like growth factor-I, keratinocyte growth factor, and epidermal growth factor. Cancer Res 1994; 54: 5474–5478.

    PubMed  CAS  Google Scholar 

  41. Nazareth L, Weigel N. Activation of the human androgen receptor through a protein kinase A signaling pathway. J Biol Chem 1996;271:19, 900–19, 907.

    Google Scholar 

  42. Horwitz K, Jackson T, Bain D, Richer J, Takimoto G, Tung L. Nuclear receptor coactivators and corepressors. Endocrinology 1996; 10: 1167–1177.

    Article  CAS  Google Scholar 

  43. McKenna N, Lanz R, O’Malley B. Nuclear receptor coregulators: cellular and molecular biology. Endocr Rev 1999; 20: 321–344.

    Article  PubMed  CAS  Google Scholar 

  44. Fu M, Wang C, Reutens A, Wang J, Angeletti R, Siconolfi-Baez L, Ogryzko V, Avantaggiati M-L, Pestell R. p300 and p300/cAMP-response element-binding protein-associated factor acetylate the androgen receptor at sites governing hormone-dependent transactivation. J Biol Chem 2000;275:20, 853–20, 860.

    Google Scholar 

  45. MacLean H, Warne G, Zajac J. Localization of functional domains in the androgen receptor. J Steroid Biochem Molec Biol 1997; 62: 233–242.

    Article  PubMed  CAS  Google Scholar 

  46. Yeh S, Chang C. Cloning and characterization of a specific coactivator, ARA70, for the androgen receptor in human prostate cells. Proc Natl Acad Sci USA 1996; 93: 5517–5521.

    Article  PubMed  CAS  Google Scholar 

  47. Haussler M, Haussler C, Jurutka P, Thompson P, Hsieh J, Remus L, Selznick S, Whitfield G. The vitamin D hormone and its nuclear receptor: molecular actions and disease states. J Endocrinol 1997;154 Suppl:S57–73.

    Google Scholar 

  48. Wiren K, Lundblad J, Zhang X-W, Orwoll E. Androgen receptor function in osteoblasts: expression of coactivators and cointegrators. 80th Annual Meeting, Endocrine Society Abstract 1997;#P2–466:

    Google Scholar 

  49. Meikle A, Dorchuck R, Araneo B, Stringham J, Evans T, Spruance S, Daynes R. The presence of a dehydroepiandrosterone-specific receptor binding complex in murine T cells. J Steroid Biochem Molec Biol 1992; 42: 293–304.

    Article  PubMed  CAS  Google Scholar 

  50. Kasperk C, Wakley G, Hierl T, Ziegler R. Gonadal and adrenal androgens are potent regulators of human bone cell metabolism in vitro. J Bone Miner Res 1997; 12: 464–471.

    Article  PubMed  CAS  Google Scholar 

  51. Bodine P, Riggs B, Spelsberg T. Regulation of c-fos expression and TGF-ß production by gonadal and adrenal androgens in normal human osteoblastic cells. J Steroid Biochem Molec Biol 1995; 52: 149–158.

    Article  PubMed  CAS  Google Scholar 

  52. Wrogemann K, Podolsky G, Gu J, Rosenmann E. A 63 -kDa protein with androgen-binding activity is not from the androgen receptor. Biochem Cell Biol 1991; 69: 695–701.

    Article  PubMed  CAS  Google Scholar 

  53. Pettaway C. Racial differences in the androgen/androgen receptor pathway in prostate cancer. J Natl Med Assoc 1999; 91: 653–660.

    PubMed  CAS  Google Scholar 

  54. Grierson A, Mootoosamy R, Miller C. Polyglutamine repeat length influences human androgen receptor/c-Jun mediated transcription. Neurosci Lett 1999; 277: 9–12.

    Article  PubMed  CAS  Google Scholar 

  55. Benten W, Lieberherr M, Stamm O, Wrehlke C, Guo Z, Wunderlich F. Testosterone signaling through internalizable surface receptors in androgen receptor-free macrophages. Mol Biol Cell 1999; 10: 3113–3123.

    PubMed  CAS  Google Scholar 

  56. Peterziel H, Mink S, Schonert A, Becker M, Klocker H, Cato A. Rapid signalling by androgen receptor in prostate cancer cells. Oncogene 1999; 18: 6322–6329.

    Article  PubMed  CAS  Google Scholar 

  57. Lieberherr M, Grosse B. Androgens increase intracellular calcium concentration and inositol 1,4,5-triphosphate and diacylglycerol formation via a pertussis toxin-sensitive G-protein. J Biol Chem 1994; 269: 7217–7223.

    PubMed  CAS  Google Scholar 

  58. Lieberherr M, Grosse B, Kachkache M, Balsan S. Cell signaling and estrogens in female rat osteoblasts: a possible involvement of unconventional nonnuclear receptors. J Bone Miner Res 1993; 8: 1365–1376.

    Article  PubMed  CAS  Google Scholar 

  59. Aarnisalo P, Palvimo J, Janne O. CREB-binding protein in androgen receptor-mediated signaling. Proc Natl Acad Sci USA 1998; 86: 854–857.

    Google Scholar 

  60. Aarnisalo P, Santti H, Poukka H, Palvimo J, Janne O. Transcription activating and repressing functions of the androgen receptor are differentially influenced by mutations in the deoxyribonucleic acid-binding domain. Endocrinology 1999; 140: 3097–3105.

    Article  PubMed  CAS  Google Scholar 

  61. Bellido T, Jilka R, Boyce B, Girasole G, Broxmeyer H, Dalrymple S, Murray R, Manolagas S. Regulation of interleukin-6, osteoclastogenesis, and bone mass by androgens. J Clin Invest 1995; 95: 2886–2895.

    Article  PubMed  CAS  Google Scholar 

  62. Carrascosa A, Audi L, Ferrandez M, Ballabriga A. Biological effects of androgens and identification of specific dihydrotestosterone-binding sites in cultured human fetal epiphyseal chondrocytes. J Clin Endocrinol Metab 1990; 70: 134–140.

    Article  PubMed  CAS  Google Scholar 

  63. Oursler M, Osdoby P, Pyfferoen J, Riggs B, Spelsberg T. Avian osteoclasts as estrogen target cells. Proc Natl Acad Sci USA 1991; 88: 6613–6617.

    Article  PubMed  CAS  Google Scholar 

  64. Mizuno Y, Hosoi T, Inoue S, Ikegami A, Kaneki M, Akedo Y, Nakamura T, Ouchi Y, Chang C, Orimo H Immunocytochemical identification of androgen receptor in mouse osteoclast-like multi-nucleated cells. Calcif Tissue Int 1994; 54: 325–326.

    Article  PubMed  CAS  Google Scholar 

  65. Weinstein R, Jilka R, Parfitt A, Manolagas S. The effects of androgen deficiency on murine bone remodeling and bone mineral density are mediated via cells of the osteoblastic lineage. Endocrinology 1997; 138: 4013–4021.

    Article  PubMed  CAS  Google Scholar 

  66. Wiren K, Zhang X-W, Chang C, Keenan E, Orwoll E. Transcriptional up-regulation of the human androgen receptor by androgen in bone cells. Endocrinology 1997; 138: 2291–2300.

    Article  PubMed  CAS  Google Scholar 

  67. Wiren K, Keenan E, Zhang X, Ramsey B, Orwoll E. Homologous androgen receptor up-regulation in osteoblastic cells may be associated with enhanced functional androgen responsiveness. Endocrinology 1999; 140: 3114–3124.

    Article  PubMed  CAS  Google Scholar 

  68. Hofbauer L, Hicok K, Schroeder M, Harris S, Robinson J, Khosla S. Development and characterization of a conditionally immortalized human osteoblastic cell line stably transfected with the human androgen receptor gene. J Cell Biochem 1997; 66: 542–551.

    Article  PubMed  CAS  Google Scholar 

  69. Hofbauer L, Hicok K, Khosla S. Effects of gonadal and adrenal androgens in a novel androgen-responsive human osteoblastic cell line. J Cell Biochem 1998; 71: 96–108.

    Article  PubMed  CAS  Google Scholar 

  70. Kasperk C, Wergedal J, Farley J, Linkart T, Turner R, Baylink D. Androgens directly stimulate proliferation of bone cells in vitro. Endocrinology 1989; 124: 1576–1578.

    Article  PubMed  CAS  Google Scholar 

  71. Kasperk C, Fitzsimmons R, Strong D, Mohan S, Jennings J, Wergedal J, Baylink D. Studies of the mechanism by which androgens enhance mitogenesis and differentiation in bone cells. J Clinic Endocrinol Metab 1990; 71: 1322–1329.

    Article  CAS  Google Scholar 

  72. Somjen D, Weisman Y, Harell A, Berger E, Kaye A. Direct and sex-specific stimulation by sex steroids of creatine kinase activity and DNA synthesis in rat bone. Proc Natl Acad Sci USA 1989; 86: 3361–3365.

    Article  PubMed  CAS  Google Scholar 

  73. Scheven B, Milne J. Dehydroepiandrosterone (DHEA) and DHEA-S interact with 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) to stimulate human osteoblastic cell differentiation. Life Sci 1998; 62: 59–68.

    Article  PubMed  CAS  Google Scholar 

  74. Wyllie A, Kerr J, Currie A. Cell death: the significance of apoptosis. Int Rev Cyto11980; 68: 251–307.

    Google Scholar 

  75. Hughes D, Boyce B. Apoptosis in bone physiology and disease. J Clini Pathol. Mol Pathol 1997; 50: 132–137.

    Article  CAS  Google Scholar 

  76. Manolagas S, Weinstein R. New developments in the pathogenesis and treatment of steroid-induced osteoporosis. J Bone Miner Res 1999; 14: 1061–1066.

    Article  PubMed  CAS  Google Scholar 

  77. Lynch M, Capparelli C, Stein J, Stein G, Lian J. Apoptosis during bone-like tissue development in vitro. J Cell Biochem 1998; 68: 31–49.

    Article  PubMed  CAS  Google Scholar 

  78. Dempster D, Moonga B, Stein L, Horbert W, Antakly T. Glucocorticoids inhibit bone resorption by isolated rat osteoclasts by enhancing apoptosis. J Endocrinol 1997; 154: 397–406.

    Article  PubMed  CAS  Google Scholar 

  79. Manolagas S. Cellular and molecular mechanisms of osteoporosis. Aging (Milano) 1998; 10: 182–190.

    CAS  Google Scholar 

  80. Weinstein R, Jilka R, Parfitt A, Manolagas S. Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts and osteocytes by glucocorticoid: potential mechanisms of their deleterious effects on bone. J Clin Invest 1999; 104: 1363–1374.

    Article  PubMed  Google Scholar 

  81. Gohel A, McCarthy M, Gronowicz G. Estrogen prevents glucocorticoid-induced apoptosis in osteoblasts in vivo and in vitro. Endocrinology 1999; 140: 5339–5347.

    Article  PubMed  CAS  Google Scholar 

  82. Tomkinson A, Reeve J, Shaw R, Noble B. The death of osteocytes via apoptosis accompanies estrogen withdrawal in human bone. J Clin Endocrinol Metab 1997; 82: 3128–3135.

    Article  PubMed  CAS  Google Scholar 

  83. Tomkinson A, Gevers E, Wit J, Reeve J, Noble B. The role of estrogen in the control of rat osteocyte apoptosis. J Bone Miner Res 1998; 18: 1243–1250.

    Article  Google Scholar 

  84. Abreu-Martin M, Chari A, Palladino A, Craft N, Sawyers C. Mitogen-activated protein kinase kinase kinase 1 activates androgen receptor-dependent transcription and apoptosis in prostate cancer. Mol Cell Biol. 1999; 19: 5143–5154.

    PubMed  CAS  Google Scholar 

  85. Lim I, Joo H, Choi K, Sueoka E, Lee M, Ryu M, Fuijiki H. Protection of 5a-dihydrotestosterone against TGF-ß-induced apoptosis in FaO cells and induction of mitosis in HepG2 cells. Int J Cancer 1997; 72: 351–355.

    Article  PubMed  CAS  Google Scholar 

  86. Kasperk C, Faehling K, Borcsok I, Ziegle R. Effects of androgens on subpopulations of the human osteosarcoma cell line SaOS2. Calcif Tissue Int 1996; 58: 3796–382.

    Google Scholar 

  87. Gray C, Colston K, Mackay A, Taylor M, Arnett T. Interaction of androgen and 1,25-dihydroxyvitamin D3: effects on normal rat bone cells. J Bone Miner Res 1992; 7: 41–46.

    Article  PubMed  CAS  Google Scholar 

  88. Davey R, Hahn C, May B, Morris H. Osteoblast gene expression in rat long bones: effects of ovariectomy and dihydrotestosterone on mRNA level. Calcif Tissue Int 2000; 67: 75–79.

    Article  PubMed  CAS  Google Scholar 

  89. Kapur S, Reddi A. Influence of testosterone and dihydrotestosterone on bone-matrix induced endochondral bone formation. Calcif Tissue Int 1989; 44: 108–113.

    Article  PubMed  CAS  Google Scholar 

  90. Centrella M, Horowitz M, Wozney J, McCarthy T. Transforming growth factor-ß gene family members and bone. Endoc Rev 1994; 15: 27–39.

    CAS  Google Scholar 

  91. Harris S, Bonewald L, Harris M, Sabatini M, Dallas S, Feng J, et al. Effects of transforming growth factor ß on bone nodule formation and expression of bone morphogenetic protein 2, osteocalcin, osteopontin, alkaline phosphatase, and type I collagen mRNa in long-term cultures of fetal rat calvarial osteoblasts. J Bone Miner Res 1994; 9: 855–863.

    Article  PubMed  CAS  Google Scholar 

  92. Noda M, Rodan G. Type-beta transforming growth factor inhibits proliferation and expression of alkaline phosphatase in murine osteoblast-like cells. Biochem Biophys Res Commun 1986; 140: 56–65.

    Article  PubMed  CAS  Google Scholar 

  93. Pfeilschifter J, D’ouza S, Mundy G. Effects of transforming growth factor-beta on osteoblastic osteosarcoma cells. Endocrinology 1987; 121: 212–218.

    Article  PubMed  CAS  Google Scholar 

  94. Datta H, Zaidi M, Champaneri J, MacIntyre I. Transforming growth factor-beta-induced mitogenesis of human bone cancer cells. Biochem Biophys Res Commun 1989; 161: 672–676.

    Article  PubMed  CAS  Google Scholar 

  95. Subramaniam M, Harris S, Oursler M, Rasmussen K, Riggs B, Spelsberg T. Identification of a novel TGF-beta-regulated gene encoding a putative zinc finger protein in human osteoblasts. Nucleic Acids Res 1995; 23: 4907–4912.

    Article  PubMed  CAS  Google Scholar 

  96. Gill R, Turner R, Wronski T, Bell N. Orchiectomy markedly reduces the concentration of the three isoforms of transforming growth factor beta in rat bone, and reduction is prevented by testosterone. Endocrinology 1989; 139: 546–550.

    Article  Google Scholar 

  97. Canalis E, Centrella M, McCarthy T. Regulation of insulin-like growth factor-II production in bone cultures. Endocrinology 1991; 129: 2457–2462.

    Article  PubMed  CAS  Google Scholar 

  98. Gori F, Haufbauer L, Conover C, Khosla S. Effects of androgens on the insulin-like growth factor system in an androgen-responsive human osteoblastic cell line. Endocrinology 1999; 140: 5579–5586.

    Article  PubMed  CAS  Google Scholar 

  99. Fukayama S, Tashjian H. Direct modulation by androgens of the response of human bone cells (SaOS2) to human parathyroid hormone (PTH) and PTH-related protein. Endocrinology 1989; 125: 1789–1794.

    Article  PubMed  CAS  Google Scholar 

  100. Gray A, Feldman H, McKinlay J, Longcope C. Age, disease, and changing sex hormone levels in middle-aged men: results of the Massachusetts male aging study. J Clin Endocrinol Metab 1991; 73: 1016–1025.

    Article  PubMed  CAS  Google Scholar 

  101. Vermeulen A. Clinical review 24: androgens in the aging male. J Clin Endocrinol Metab 71991; 3: 221–224.

    Google Scholar 

  102. Pilbeam C, Raisz L. Effects of androgens on parathyroid hormone and interleukin-l-stimulated prostaglandin production in cultured neonatal mouse calvariae. J Bone Miner Res 1990; 5: 1183–1188.

    Article  PubMed  CAS  Google Scholar 

  103. Passeri G, Girasole G, Jilka R, Manolagas S. Increased interleukin-6 production by murine bone marrow and bone cells after estrogen withdrawal. Endocrinology 1993; 133: 822–828.

    Article  PubMed  CAS  Google Scholar 

  104. Kassem M, Harris S, Spelsberg T, Riggs B. Estrogen inhibits interleukin-6 production and gene expression in a human osteoblastic cell line with high levels of estrogen receptors. J Bone Miner Res 1996; 11: 193–199.

    Article  PubMed  CAS  Google Scholar 

  105. Rifas L, Kenney J, Marcelli M, Pacifici R, Cheng S, Dawson L, Avioli L. Production of interleukin-6 in human osteoblasts and human bone marrow stromal cells: evidence that induction by interleukin-1 and tumor necrosis factor-alpha is not regulated by ovarian steroids. Endocrinology 1995; 136: 4056–4067.

    Article  PubMed  CAS  Google Scholar 

  106. Lin S, Yamate T, Taguchi Y, Borba V, Girasole G, O’Brien C, et al. Regulation of the gp80 and gp130 subunits of the IL-6 receptor by sex steroids in the murine bone marrow. J Clin Invest 1997; 100: 1980–1990.

    Article  PubMed  CAS  Google Scholar 

  107. Vittek J, Altman K, Gordon G, Southren A. The metabolism of 7a-3H-testosterone by rat mandibular bone. Endocrinology 1974; 94: 325–329.

    Article  PubMed  CAS  Google Scholar 

  108. Schweikert H, Rulf W, Niederle N, Schafer H, Keck E, Kruck F. Testosterone metabolism in human bone. Acta Endocrinol 1980; 95: 258–264.

    PubMed  CAS  Google Scholar 

  109. Russell D, Wilson J. Steroid 5a-reductase: two genes/two enzymes. Annu Rev Biochem 1994; 63.

    Google Scholar 

  110. Saito H, Yanaihara T. Steroid formation in osteoblast-like cells. J Internat Med Res 1998; 26: 1–12.

    CAS  Google Scholar 

  111. Bruch H, Wolf L, Budde R, Romalo G, Scheikert H. Androstenedione metabolism in cultured human osteoblast-like cells. J Clin Endocrinol Metab 1992; 75: 101–105.

    Article  PubMed  CAS  Google Scholar 

  112. Audi L, Carrascosa A, Ballabriga A. Androgen metabolism by human fetal epiphyseal cartilage and its condrocytes in primary culture. J Clin Endocrinol Metab 1984; 58: 819–825.

    Article  PubMed  CAS  Google Scholar 

  113. Turner R, Bleiberg B, Colvard D, Keeting P, Evans G, Spelsberg T. Failure of isolated rat tibial periosteal cells to 5a reduce testosterone to 5a-dihydroxytestosterone. 1990; 57: 775–779.

    Google Scholar 

  114. Damien E, Price J, Lanyon L. Mechanical strain stimulates osteoblast proliferation through the estrogen receptor in males as well as females. J Bone Miner Res 2000; 15: 2169–2177.

    Article  PubMed  CAS  Google Scholar 

  115. Fisher L, Kogut M, Moore R, Goebelsmann U, Weitzman J, Isaacs Jr H, et al. Clinical, endocrinological and enzymatic characterization of two patients with 5a-reductase deficiency: evidence that a single enzyme is responsible for the 5a-reduction of cortisol and testosterone. J Clin Endocrinol Metab 1978; 47: 653–664.

    Article  PubMed  CAS  Google Scholar 

  116. Mahendroo M, Cala K, Landrum C, Russell D. Fetal death in mice lacking 5a-reductase type 1 caused by estrogen excess. Mol Endocrinol 12997; 11: 917–927.

    Google Scholar 

  117. Rosen H, Tollin S, Balena R, Middlebrooks V, Beamer W, Donohue L, et al. Differentiating between orchiectomized rats and controls using measurements of trabecular bone density: a comparison among DXA, histomorphometry, and peripheral quantitative computerized tomography. Calcif Tissue Int 1995; 57: 35–39.

    Article  PubMed  CAS  Google Scholar 

  118. Simpson E, Mahendroo M, Means G, Kilgore M, Hinshelwood M, Graham-Lorence S, et al. Aromatase cytochrome P450, the enzyme responsible for estrogen biosynthesis. Endocr Rev 1994; 15: 342–355.

    PubMed  CAS  Google Scholar 

  119. Nawata H, Tanaka S, Tanaka S, Takayanagi R, Sakai Y, Yanase T,. Aromatase in bone cell: association with osteoporosis in postmenopausal women. J Steroid Biochem Mol Bio11995; 53: 165–174.

    Google Scholar 

  120. Schweikert H, Wolf L, Romalo G. Oestrogen formation from androstenedione in human bone. Clin Endocr 1995; 43: 37–42.

    Article  PubMed  CAS  Google Scholar 

  121. Sasano H, Uzuki M, Sawai T, Nagura H, Matsunaga G, Kashimoto O, et al. Aromatase in human bone tissue. J Bone Miner Res 1997; 12: 1416–1423.

    Article  PubMed  CAS  Google Scholar 

  122. Purohit A, Flanagan A, Reed M. Estrogen synthesis by osteoblast cell lines. Endocrinology 1992; 131: 2027–2029.

    Article  PubMed  CAS  Google Scholar 

  123. Tanaka S, Haji Y, Yanase T, Takayanagi R, Nawata H. Aromatase activity in human osteoblast-like osteosarcoma cell. Calcif Tissue Int 1993; 52: 107–109.

    Article  PubMed  CAS  Google Scholar 

  124. Eyre L, Bland R, Bujalska I, Sheppard M, Stewart P, Hewison M. Characterization of aromatase and 17ß-hydroxysteroid dehydrogenase expression in rat osteoblatic cells. J Bone Miner Res 1998; 13: 996–1004.

    Article  PubMed  CAS  Google Scholar 

  125. Jakob F, Siggelkow H, Homann D, Kohrle J, Adamski J, Schutze N. Local estradiol metabolism in osteoblast-and osteoclast-like cells. J Steroid Biochem Molec Biol 1974; 61: 167–174.

    Article  Google Scholar 

  126. Abdelgadir S, Resko J, Ojeda S, Lephart E, McPhaul M, Roselli C. Androgens regulate aromatase cytochrome P450 messenger ribonucleic acid in rat brain. Endocrinology 1994; 135: 395–401.

    Article  PubMed  CAS  Google Scholar 

  127. Conte F, Grumbach M, Ito Y, Fisher C, Simpson E. A syndrome of female pseudohermaphrodism, hypergonadotropic hypogonadism, and multicystic ovaries associated with missense mutations in the gene encoding aromatase (P450arom). J Clin Endocrinol Metab 1994; 78: 1287–1292.

    Article  PubMed  CAS  Google Scholar 

  128. Carani C, Qin K, Simoni M, Faustini-Fustini M, Serpente S, Boyd J, et al. Effect of testosterone and estradiol in a man with aromatase deficiency. N Engl J Med 1997; 337: 91–95.

    Article  PubMed  CAS  Google Scholar 

  129. Morishima A, Grumbach M, Simpson E, Fisher C, Qin K. Aromatase deficiency in male and female siblings caused by a novel mutation and the physiological role of estrogens. J Clin Endocrinol Metab 1995; 80: 3689–3698.

    Article  PubMed  CAS  Google Scholar 

  130. Smith E, Boyd J, Frank G, Takahashi H, Cohen R, Specker B, et al. Estrogen resistance caused by a mutation in the estrogen-receptor gene in a man. N Engl J Med 1994; 331: 1056–1061.

    Article  PubMed  CAS  Google Scholar 

  131. Bilezikian J, Morishima A, Bell J, Grumbach M. Increased bone mass as a result of estrogen therapy in a man with aromatase deficiency. N Engl J Med 1998; 339: 599–603.

    Article  PubMed  CAS  Google Scholar 

  132. Vanderschueren D, Van Herck E, Nijs J, Ederveen A. Aromatase inhibition impairs skeletal modeling and decreases bone mineral density in growing male rats. Endocrinology 1997; 138: 2301–2307.

    Article  PubMed  CAS  Google Scholar 

  133. Vanderschueren D, Van Herck E, De Coster R, Bouillon R.Aromatization of androgens is important for skeletal maintenance of aged male rats. Calcif Tissue Int 1996; 59: 179–183.

    Article  PubMed  CAS  Google Scholar 

  134. Somjen D, Weisman Y, Mor Z, Harell A, Kaye A. Regulation of proliferation of rat cartilage and bone by sex steroid hormones. J Steroid Biochem Molec Biol 1991; 40: 717–723.

    Article  PubMed  CAS  Google Scholar 

  135. Corvol M, Carrascosa A, Tsagris L, Blanchard O, Rappaport R. Evidence for a direct in vitro action of sex steroids on rabbit cartilage cells during skeletal growth: influence of age and sex. Endocrinology 1987; 120: 1422–1429.

    Article  PubMed  CAS  Google Scholar 

  136. Schwartz Z, Nasatzky E, Ornoy A, Brooks B, Soskolne W, Boyan B. Gender-specific, maturation-dependent effects of testosterone on chondrocytes in culture. Endocrinology 1994; 134: 1640–1647.

    Article  PubMed  CAS  Google Scholar 

  137. Weisman Y, Cassorla F, Malozowski S, Krieg R, Goldray D, Kaye A, Somjen D. Sex-specific response of bone cells to gonadal steroids: modulation in perinatally androgenized females and in testicular feminized male rats. Steroids 1993; 58: 126–133.

    Article  PubMed  CAS  Google Scholar 

  138. Somjen D, Mor Z, Kaye A. Age dependence and modulation by gonadectomy of the sex-specific response of rat diaphyseal bone to gonadal steroids. Endocrinology 1993; 134: 809–814.

    Article  Google Scholar 

  139. Kasra M, Grynpas M. The effects of androgens on the mechanical properties of primate bone. Bone 1995; 17: 265–270.

    Article  PubMed  CAS  Google Scholar 

  140. Bateman T, Broz J, Fleet M, Simske S. Differing effects of two-week suspension on male and female mouse bone metabolism. Biomed Sci Instrum 1997; 34: 374–379.

    PubMed  CAS  Google Scholar 

  141. Spencer T, Jenster G, Burcin M, Allis C, Zhou J, Missen C, McKenna N, et al. Steroid receptor coactivator-1 is a histone acetyltransferase. Nature 1997; 389: 194–198.

    Article  PubMed  CAS  Google Scholar 

  142. Beato M, Sanchez-Pacheco A. Interaction of steroid hormone receptors with the transcription initiation complex. Endocr Rev 1996; 17: 587–609.

    PubMed  CAS  Google Scholar 

  143. Yeh S, Miyamoto H, Nishimura K, Kang H, Ludlow J, Hsiao P, Wang C, Su C, Chang C. Retino-blastoma, a tumor suppressor, is a coactivator for the androgen receptor in human prostate cancer DÚ145 cells. Biochem Biophys Res Commun 1998; 248: 361–367.

    Article  PubMed  CAS  Google Scholar 

  144. Lee D, Duan H, Chang C. From androgen receptor to the general transcription factor TFIIH. J Biol Chem 2000; 275: 9308–9313.

    Article  PubMed  CAS  Google Scholar 

  145. McEwan I, Gustafsson J. Interaction of the human androgen receptor transactivation function with the general transcription factor TFIIF. Proc Natl Acad Sci USA 1997; 94: 8485–8490.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wiren, K.M. (2003). Androgen Action in Bone. In: Orwoll, E.S., Bliziotes, M. (eds) Osteoporosis. Contemporary Endocrinology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-278-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-278-4_17

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-260-5

  • Online ISBN: 978-1-59259-278-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics